On Modeling Top-Down VLSI Design
Bernd Schirmann Joachim Altmeyer Martin Schitze

University of Kaiserslautern
D-67653 Kaiserslautern, Germany

Abstract by the design steps at the lower levels. Because of toler-
ances between estimations and final results the top-down
We present an improved _data _model that reflects thedesign is more an iterative process. Cells must be
whole VLSI design process including bottom-up and top- jmproved several times until they meet the global restric-
down design phases. The kernel of the model is a statiGjons, Often backtracking over several hierarchy levels
version concept that describes the convergence of apecomes necessary [8].
design. The design history which makes the semantics 0 The hierarchical design in general and the top-down
most other version concepts, is modeled explicitly by addi'design in particular are possible only by using a design
tional o_bject classes (entities types) but not by the_v_ersiondatabase that manages the huge amount of data which are
graph itself. Top-down steps are modeled by splitting a the result of the various design steps. However, standard
design object into requirements and realizations. The com- 45tapase systems, which are very successful in application
position hierarchy is expressed by a simple but powerful gomains as banking and flight reservations, are not suit-
configuration method. Design data of iterative refinement gpje for the VLSI design. Design objects are very complex
processes are managed efficiently by storing incrementalgng have a lot of interdependencies. The transaction con-

data only. cept has to be improved because design transactions often
] need very long time and may be nested.
1. Introduction All these requirements of the CAD domain resulted in

) ~ new database research projects. Two basic problem

Due to the complexity of current and future VLSI Cir- cjasses have to be solved. One topic addresses new trans-
cuits hierarchical design approaches become more antaction concepts which allow concurrent and cooperating
more important. Even systems like TimberWo_If WhiCh design steps and new storage concepts for complex
seem to favor the flat approach change to a hierarchicalppjects. The other research topic is at the modeling level.
design style to get acceptable run times for very large cir- geyeral groups are looking for data models which
cuits [7]. There are two possible hierarchical approaches,qescribe the whole VLSI design process in an appropriate
top-downandbottom-up _ _ __ manner (esp. at the meta model level). Most of the

The bottom-up design style is the simpler one, and it is yesearch is based on the first works of R. Katz [3] and the
used by most current design systems. Cells at the lowelgefinition of the EDIF data format.
hierarchy levels are designed first by considering internal Using the basic concepts of EDIF, our research group
restrictions only. The layouts of these cells will then be gefined a data model with object-oriented features that
composed to larger cells. The disadvantage of this gypports hierarchical designs very well. It has been pub-
approach is the possible waste of chip area and wiring|ished in [9]. We implemented the model in a prototype
length. Since all subcells are designed independently, thegatapase system and tested its quality by performing sev-
shapes of adjacent cells generally do not fit and result ingpg| (large) designs. The key concepts and our experiences
empty space when they are combined to larger modules.yith that model are briefly described below.

Wiring lines become relatively long because the pins areé |n parallel to our works, several more or less similar
mostly at ‘wrong’ sides of the subcells. models have been developed by other groups. Important
These disadvantages can be avoided by a top-dowrcontributions are the works of R. Katz [4], E. Kupitz [1],

design. Here, the cells at upper hierarchy levels will be \y wilkes [10], the Nelsis group [11], and the CFI (CAD
designed first to get the global minimal layout and shorter Framework Initiative) which is working on a standard data
wires [5], [12]. Further, the shapes and pin positions of the yodel for the VLSI design [2]. This list is by far not com-
subcells are determined at the upper level and must be Meplete. What is common to all approaches is the fact that

Permission to copy without fee al or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice isgiven that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,

requires a fee and/or specific permission. [J 1994 ACM 0-89791-690-5/94/0011/0508 $3.50

they support the bottom-up design style very well. The I:l view object

top-down style on the other hand, which is made up *
Cell »| Interface

many (iterative) improvements, cannot be expressed domains |,
clearly. This design style needs the integration of a conve- IS versions
nient version and configuration concept that is different < :
. . . . N nterface

from the design history and the ability to express require- S Version
ments. The description of a suitable data model is the sub- _ “v* S _
ject of this paper. Configu-]¢_configs[~— "~ = Instances

The rest of this paper is organized as follows: Section L8400 | =
gives an overview of our first data model. Our experiences , |Versions versiond « 2|, *
and differences to other approaches are described in sqEgnfig 1 * Contents *
tion 3. There, we also address the requirements of hierg Version configurations Version [parter] Instance
chical top-down designs. In section 4, we present our 5 1
improved data model that supports the requirements very -§
well. Section 5 concludes the paper with some final g
remarks. 8L« 4

— selection dule

2. The Old Model fssociaton o

In this section we describe the key ideas of a data Figure 1 The current model

model that is implemented in our current design database.

We present this model because it comprises most of the,iion s which form the relations between the instances
commonly applied concepts. Further concepts and differ- (harts of the corresponding contents) and the selected
ences between our and other approaches can be found igpjects. It is allowed to select either a contents or another

the following section. configuration. If we select a contents we connect exactly

The notation used in this paper is an extended ER dia-q hierarchy levels. Otherwise, we connect three or more
gram. Boxes describe entity sets or object classes aNthierarchy levels by selecting a configuration.

arrows describe relationships between the object classes Now we can express the composition hierarchy of a
Arrows with a filled head represent functional relations .o But this is not enough to describe a whole design.

which are defined in both directions. The cardinality is gesjdes the composition hierarchy, we need an abstraction
written at the arrow end. A * means an arbitrary number hierarchy, a version concept, and the ability to build
including zero, '+ at least one, ‘?’ zero or one, and ‘1" \iaws.
exactly one. The name of the relation against the arrow A cel| will generally be designed at different abstrac-
direction is formed by exchanging the ending ‘s’ of the o |evels which we call domains. The first design steps
given relation name with the pattern ‘Of' (egut s — are the behavioral design (domain behavior) and the
part Of). . . netlist generation (domain structure). Later on, we per-
The basis of the data model is the description of a cell fory area estimation and floorplanning (domain floor-
which is described by its interface and contents (white plan), and we assemble the layout (domain masklayout).
boxes in figure 1). The interface is the abstraction of the Tpis distinction between different domains is modeled by

cell to its enviro_nmgnt while the contents describes its inserting the relationdomains between the root object
structure or realization. In most cases, we have severa\ce” and thanterface s of the different domains.

realization alternatives which are all abstracted by the e gray boxes in figure 1 show the remaining con-
same interface. A contents_ is generally the composition Ofcepts. An important concept is the version management.
several parts (subcells) which amstances of other cell \iersjons are generated sequentially by correcting design

Interfaces . errors or by improvement steps. In contrast to alternatives,

So far, we are able to describe the realization of a cell atyy the last version is generally valid. Versions are used
one hierarchy level. It may be sufficient to reflect a flat ¢y, the object classedsterface Contents . andCon-

approach. However, if we have alternative realizations g ration . Instances need not be versioned individu-
(contents) for the subcells, which again may be composi- 5|l They exist with their surrounding contents only and,
tions of smaller parts, we have to decide which alterna- therefore, have the same version as the contents.

tives should be used for the instances. This selection is Tnhe |ast major extension is the view concept. Views are
called configuration. A contents has one or more configu- the place for storing the actual design data. They act as an
ration alternatives. The configuration is a listeoci- interface between the meta model and the detail data. In

our current database implementation, the design data arecdown designs possible. While designing a cell at one hier-
stored in files. Views are pointers to the file system only. archy level, it is not necessary to decide which realization
Each object may have several views. They are used to repalternative (contents) will be used for a given instance.
resent the same data in different forms (e.g. a circuit canThe decision can be postponed until the whole hierarchy
be expressed in form of a schematic or an equivalentof an actual design is needed. This is knowlaag deci-
netlist) or to partition the object data into different aspects sion
(e.g. a cell interface may be partitioned into the views Currently, we allow a change of the circuit hierarchy,
frame andpins). that is calledrepartitioning in the domainstructure

With figure 1, we described the main parts of the data only. In all other domains the hierarchy must be fixed
model. The complete model further has object classes forbecause we have a lot of references to the circuit netlist
cell libraries, technologies, etc. Data objects of different which is stored in the domain structure. On principle, this
domains are linked by generated relation which basi- is a technical problem only. Most of the physical design
cally models the execution of a tool. For instance, the tools work at one hierarchy level and need no knowledge
floorplan of a cell igeneratedrom the netlist by execut- of the hierarchy meta model. However, this becomes dif-

ing the chip planner. ferent if tools like a floorplanner perform repartitioning.
Data models which support the change in hierarchy during
3. Experiences and Related Works the whole design process can be found in [1] and [11].

We implemented the model in the design database of3-2 lterative Refinement Process
the PLAYOUT VLSI design system [12]. During the last A top-down design often consists of many incremental
two years, we then designed several test circuits with vari-improvement steps. Currently, we can model the results of
ous number of hierarchy levels. Some of the designs werethe different steps as independent alternatives or linear
performed bottom-up while in most cases we preferred theversions only. Using the alternative concept, we do not
top-down approach. The largest design was a circuit with know the derivation history of the objects. Modeling the
about 280.000 standard cells. In that time, we got a lot ofimprovement steps as linear versions we cannot express
experiences with our data management. alternative versions which are derived from the same pre-
In the remaining part of this section, we will discuss decessor.
three topics which are important for top-down design: the Solutions to this problem can be found at various places
composition hierarchy, the iterative refinement process, in the recent literature. Many data management research
and the distinction between requirements and realizations.groups are working on versioning. Nearly all authors
For each of these topics, we will describe the strengthsdescribe trees or directed acyclic graphs (DAGS) as possi-
and weaknesses of our model and we will show different ble structures. They differ in the semantics of the relations
solutions. only. A good overview of the most important version con-
3.1 Composition Hierarchy cepts is given in [4].
The basic object classégerface , contents , and 3-3 Requirements and Realizations
instance can be found in nearly all flat design systems Using a top-down approach, a contents needs relations
and exchange formats, e.g. high-level synthesis systems ato two different interfaces. The first is a requirement that is
MIMOLA [13], one-level Place&-Route tools, as well as the result of the design at the upper hierarchy level. For
hardware description languages like YAL [6] and Calcos. example, the chip planner determines the placement and
For hierarchical designs, we must introduce a configu- frames of all subcells in a floorplan. These subcell frames
ration concept. The most simple way is storing the config- are inputs or requirements for the chip planning steps at
uration directly at the instance as it is done in the CFl the next lower hierarchy level. The floorplans of the sub-
connectivity information model [2]. But this simplification cells have to meet these requirements (frames) as good as
has several restrictions. For instance, it allows the descrip-possible. However, because of estimation tolerances there
tion of one fixed hierarchy tree only. More flexibility is will always be differences.
available with the introduction of the fourth object class So, the contents of the subcells (i.e. the subcell floor-
Configuration ~ as shown in figure 1. Such an object can plans) have relations to the requirements they are derived
be found in several other hierarchical models as for from and to abstraction data of the realizations. The
instance the VHDL data model [14] or the Cadlab data requirements and the abstraction data are both interface
model [1] that shall become part of the JESSI Common descriptions. Since most data models support bottom-up
Framework. designs we do not find distinctions between requirement
The configuration makes the data management of top-and realization.

4. The New Model Definition (attribute states): Each attribute is in one of
the states: unknown, default, predicted, preliminary, or
With our new data model we present solutions for all final. We further define a partial order on these state values
three problems. As far as possible, we adapted the conWhich represents the refinement of the attribute: _
cepts of other approaches. Nevertheless, several key idea = {S“finszwn' Cfézzlé}t; g:g’fste::ef’i’rg’n’z:tag S<1ﬂri’6él
described below are new. Although we combined different __ " (:) T
) . s2 is more precise than s1.
ideas, our new model seems to be simpler than most othe)
models. We first address the iterative refinement process AS an example, let us choose the geometrical frame of a
then the difference between requirements and realizationsCell- This frame isinknownas long as we do behavior or
and finally the decomposition hierarchy. structure synthesis. During top-down chip planning the
At the end of this section, we discuss an additional Computation of the subcell frames is based on a preceding
topic: the data inheritance. Data inheritance is the keyaréa estimation so that the state changeseticted The
aspect for the definition of a simple but powerful data frame of a floorplan is in stagereliminary because the
model without storing many redundant data. geometry of the floorplan may still change. Only the frame
Our tool execution model describes the dynamical Of @ layout may be in stafal. _
els the static refinement relationships only. However, theseVersion semantics.
aspects are beyond the scope of this paper. Version Semantics

A design tool gets one version of a cell as input and
generates a new version as output. In general, the input
We already mentioned that the a top-down design oftenand output objects are linked by thesion relation.
results in many iterative refinement steps. This is espe- This version concept describes the execution order of
cially true for the physical design phase. Due to estimation design tools as we can see it in most publications. How-
tolerances, it is not possible to perform pure top-down ever, such a version graph may be different to the refine-
chip planning. Without adjustment steps at upper hierar- ment steps of a cell. A continuous refinement process may
chy levels, the final layout consists of a large amount of go into a ‘dead end’ if the estimation errors are too large.
wasted area or long critical paths [8]. Then, it may be necessary to exchange a more precise
Our designs have shown that in practice each cell existsdesign object (e.g. a layout frame in stial) by a less
in many refinement states. These different instances of aprecise object (e.g. the frame of a flexible cell in qiate

cell are generally called versions [4]. As we described dicted to increase the flexibility of a design. This problem
above, there generally exist versions which are derivedill be explained with figure 2.

from others and versions which are alternative to others.
So, we need a version tree as proposed by Katz.

For our needs, the tree structure is sufficient. There is
no need for a DAG which allows the merge of versions. In
practice, the merge of two or more versions is a too com-
plicated task.

We now discuss our version semantics in more detail.
We first define the refinement of attributes or views of
design objects, and then we define dfmement rela-
tion of the meta data model. This refinement relationship
describes one possible version semantics.

4.1 lterative Refinement Process

Example (refinement): Figure 2 shows a floorplan with
four subcells. In floorplan all subcells are flexible, i.e.
their shapes are based on an area estimation. The next
steps are chip planning and layout generation of the sub-
cells. This can be done for all subcells in parallel or
sequentially. In the example, we first generate the layouts
of subcellsA and B. After that, we adjust the top-level
floorplan (floorplar2). We assume that for cellsandB
the estimation is correct so that floorptadoes not differ
from 1. Next we generate the layout of dellFor this cell,
the shape of the layout is different from the shape based
Refinement of Attributes on the estimation. The adjustment at the top level is now
Each version of a cell has several simple attributes (e.g.more complicated. For minimizing the wasted area, we
cell name) and more complex attributes (e.g. a netlist). put cellA on top of cellD and discard the layout of cél
The complex attributes correspond to the views describedCells B andC get new shapes which fit to the layouts of
above. The actual design data are stored in files while thecells A andD (floorplan3). After that, we compute a new
data management system uses the file name as attributlayout for cellB that fits in the given areg.
value. For the context of this paper it is not necessary to
distinguish between attributes and views. We will use the
term attribute only.
For documenting the design progress, we assign a statt
value to each attribute.

In our data model, we distinguish between the static
refinement or version relation and the modeling of the
dynamic aspects of tool executions. We define the version
semantics as follows:

between the floorplang and3 (3 is computed fron2)
A A BLA BLA that is annotated by the dotted line is part of the tool exe-
B |D B |D D cution model but no version relationship.
C C ¢ ¢ 4.2 Requirements and Realizations
1 2 3 4 A second important topic for modeling the top-down
design process is the distinction between requirements and
flexible cell 9 realizations. Analyzing our designs, we can see that in
la most cases the relationship between interfaces and con-
yout :) o
o tents were used in a requirement-realization manner. For
ion/ instance, high-level synthesis systems specify the netlist
E—— \r/(aefrirs1lé)rrr11ent e e interfaces of cells which are not provided by a subcell

library. To these interfaces we later have to generate real-

design tool execution izations (contents), e.g. by using module generators.

Figure 2 Floorplan Refinement Another example is the top-down chip planning [12]. The
chip planner specifies the frames (geometrical interfaces)

Definition (Versions): A descendant in the version tree of the subcells for which it later computes one or more
always represents a more precise (i.e. refined) object than floorplans (realization alternatives).
a predecessor that is nearer to the root of the tree. In other Note that there is a difference between our semantics of
words, a design object 02 is a version of 01 (01 — 02) if a requirement and the more generally used term ‘specifi-
02 is more precise than o1. cation’. In principle, all input data of a design step can be
The preciseness of the design objects, and with that the seen as specification data. These are the interface data
version relation, is defined on the states of the object computed at a higher hierarchy level (which we call
attributes. An object 02 is a version of another object ol requirement) but also the more abstract data which were

only if all of its attributes are equally or more precise than

the attributes of ol. - computed by an earlier design step of the actual cell. The

. T _ - ~latter are the cell attributes of preceding versions.
.Thls .deflnltlon dgtermlnes the position of anew deglgn Definition (requirement): The term requirement repre-
object in .the version gral?h- After performing .a design sents the interface data of a cell which are (top-down) gen-
step, we first compare the input and output versions. In thegrated at the hierarchy level of the parent cell. .
case that all attributes of the output version are equally or
more precise than the attributes of the input version both _ .) o
versions will be linked, i.e. the output version becomes aChlp planning are cglle[daahzatlondata begause thgy are
direct descendant of the input version. In the case that att_he result of a previous design step. While thesdaza.—
least one attribute becomes less precise, we backtraclyon.d"’m’lmust be valid for the output Qata of following
through the version tree toward the root until we find a design steps the top—down computequwementshpuld .
version for which the condition is true (all attributes of the be met as good as possible. If a top-down requirement is

new version are equally or more precise than the attribute'.=1nOt :agactly met an adapnzn step alt th(.a”%ppe.r hletr)alrchy
of the considered version). The new version will be linked €vel becomes necessary. An example Wil be given below.
as a descendant to that version. The basis of our new model is the splitting ofell

i] into two object classe®equirement andRealization

Example (Version Tree):For our example, we define the (figure 3). A cell is described by all its realizations and
the state of the subcell shapes (see subsection 4.3 for morRegjization . Each of these versions has one or more
details). A floorplan is a refinement of another floorplan attributes/views which abstract the object to its environ-
only if all subcell frames are more precise. With that defi-
nition, floorplan2 is a version of floorplan because we . ?

. . . requirements
replaced twredictedshapes (flexible cells) Hinal lay-

All other specifications like the netlist input data for

Requirement) version
*

outs. Since we then discard the layout of cell B, the floor- - = ?

plan 3 is not more precise than floorplanand therefore Cell o | realizations

no descendant in the version tree. To find the right location derivations ,

in the tree, we traverse the tree back towards the root until * — refinements /
we find an object that is less precise than the new version. realizations Realization Dversions

In our case, this is the root (floorplaih The new floor- ?

plan 3 becomes a version of floorplan The relation Figure 3 Requirements and Realizations

ment (interface data). Further Version Semantics

The object classeRequirement —and Realization The version tree described so far expresses the refine-
are linked by two functional relatiomsalizations ~ and ment of design objects and design alternatives (branches
derivations . A requirement may result in several alter- in the tree). A third kind of versions mentioned by Katz
native realizations and we can derive different require- models the correction of wrong data [4]. We model this
ments from one realization. This should be illustrated by semantics by the same version tree. This is done by anno-
the example shown in figure 4. tating the relation between twealization ~ versions as

Example (requirement - realization): The upper part of ~ refinementr correction If we correct a given version we
the graphic shows a section of the geometrical refinementhave to mark that version and all descendants as invalid.
process of a cel [8]. First, X is input to the planning step The new version becomes a sibling node of the corrected
of the father cell. At that timeX is only estimated by a Version in the version tree.
shape function. The chip planner derives a first require- In general, there exists no direct relation between dif-
ment (frame) from that estimation. The requirement is ferent requirements. Nevertheless, we versioned these
input for a planning step which generates a floorpjaof objects. We use a linear relationship that expresses modifi-
cell X. f 4 is then used for an adjustment of the father cell cations or corrections of requirements. It is not necessary
that results in a new requirement of celvhich itself is ~ to model alternative requirements.
gllzz'; ;C)) a new planning step (computing a refined floor 4.3 Decomposition Hierarchy
The lower part of figure 4 shows the relationships In the previous two subsections, we described the mod-
between the design objects generated by these steps. Theling of requirements and iterative refinement. Now, we
first requirement (frame) oX is derived from the esti- add the decomposition hierarchy for which we need one
mated shape function and it results in a realization (floor- further object claststance as shown in figure 5. This
planf 1) which is a refinement of the estimation. It has a results in a simple data model that is as powerful as all
further versiorf ,. other models known by us in describing the cell hierarchy.
In section 3, we described the configuration as the
‘glue’ for connecting the hierarchy levels in a top-down

supercell floorplan design. In our new model, the configuration is done by the
objects of the claswkstance that has relationsagso-
_ supercell ciations _) to one or more objects the_ instance_ is configu-
Chip adjustment rated with. Theassociations relation configures a

Planner

subcell with eRequirement (which may be an imprecise
interface) or &Realization . This realization object can
be any node (version) in the refinement tree. It may be the
root of the tree which describes an interface in most cases,

associations to more than one object. In some cases, it is
subcell frame
The configuration is strongly related with the refine-

Chip Chip or it may be a very precise leaf node object which implies
Planner Planner the whole decomposition subtree. An instance may have
desirable to select several alternatives for one instance and
to postpone the restriction to one object to a further refine-
ment step.
) o ment tree. A realization object can only be as precise as its
O requirement O realization parts. This has already been mentioned in subsection 4.1.
We get following consistency condition:

frame frame Definition (subcell-based refinement): A realization
object R is a refinement of R’ if all subcells of R are associ-

p derivation realization ated with the same or more precise objects than the sub-
derivation realization cells of R’. An association A is called more precise than A
version version if A refers to a realization object that is a descendant (in

X: p(f1 the refinement tree) of the realization object referred by A.
shape function floorplan refined floorplan A reference to a requirement is as precise as the realiza-

tion the requirement is derived from. g

Figure 4 Design Example This condition is sufficient for the data management

version an attribute value starts at the actual version and follows
the refinement tree towards the root until it reaches a ver-
sion where the value is stored.

Attribute values may change several times during a
design process. In that case, several design object versions

? ?

requirements *

Requirement

? *
p_— realizatione derivations gontaining different values of the same attribute exist on a
ranch of the refinement tree.
\ i 4 ? . Example (data inheritance): Figure 6 shows the refine-
roal7aTons Realization D ment tree of an adder as an egample. The circles represent
refinements/ + the versions of the adder. Beside these circles we find the
parts versions attributes which are stored with these versions. The exam-
* ple uses the attributeame, severalviews (complex
Instance 12 _ attributes), and thearts relation which is treated simi-
assoclations larly as attributes (see below). At the beginning, the func-

tion and the structural interface (i.e. the ports in view
frame) of the cell are known. They are all stored with the
system to insert a new realization object (version) at theroot version. Two realization alternatives are derived from
correct position in the refinement/version tree (see subsecthe root as refinements: the netlists of a carry-look-ahead
tion 4.1). Generally, we get a new realization version due adder and a ripple-carry adder. Both inherit the function
to a refinement of one or more subcells. Then, the newand the interface data from the root but they overwrite the
version will be linked to the version that was input to the cell name. They further store the additionadist — and
design step. However, in some cases it is necessary t&chematic (RC-adder only). The RC-adder is com-
exchange an association by a less precise one for improvposed of two half addeHAL HA2) and anORgate which

ing the design flexibility (because less precise objects gen-refer to their interfaces (i.e. they refer to nodes of their
erally are less rigid). In that case, the new version will be refinement trees). The next step is configuring the half
linked to a predecessor of the version that was input to theadders down to the leaf nodes of the composition tree
design step. (version4). We then perform chip planning twice which
results in two alternative floorplans (versiaghsand 6).

Figure 5 Basic Data Model

4.4 Data Inheritance

Subsections 4.1 to 4.3 described the basic object types name: adder
and relationships of a new data model. This model is very view: s-frame
simple and powerful. Interface data, contents data, and the view: function
conﬂgurauon are modeleq (with dlfferent ettrlbutes) by name: CLA-adder
one object type, th@ealization . The iterative refine- view: netlist
ment of a cell is expressed by a version tree. However, one parts: ...
may argue that we have to pay for this advantage with an
overhead in the design data. For instance, several configu-
ration alternatives could not share the data of one contents.

All contents data seem to be stored redundantly with each

configuration alternative. Even if we change the associa-

tion of one subcell only, we get a new realization object jew: fioorplan
that would have all attributes and all subcell associations. view: f-frame
Except the changed association, all data would be the parts: HAl- f-It
same as for the previous version. 3’32;,_[;”

We avoid this multiple storage of the same data by
applying inheritance. In contrast to the structural inherit-
ance of the object-oriented approach, we use the data
inheritance of object attributes. Attributes may be simple
data as names, sizes, etc., or complex data structures (see
above). Only attributes whose values have changed are view: layout
stored with the object. Realization object inherits all view: I-frame
other attribute values from a predecessor that is located
nearer to the root of the refinement tree. The retrieval of Figure 6 Data Inheritance

name: RC-adder
view: netlist
view: schematic

parts: HAl- s-It
HA2 - s-It
OR - |-t

view: floorplan

view: f-frame

parts: HA1- f-It
HA2 - f-It
OR - It

view: floorplan

view: f-frame

parts: HAl- [-It
HA2 - I-It
OR - I-It

The corresponding versions store ttarplan and design steps. Since no model meets all requirements, we
floorplan-frame and inherit the structural data from had to define a new model.

their common ancestors (versions3, and4). The sub- Examining our chip designs, we found out that our new
cells are configured with floorplan interfaces (frames). model supports the top-down and refinement steps very
The final two refinement steps are an adjustment of thewell without any disadvantages for bottom-up steps and
floorplan with subcell layouts (versiat) and the assem- the usage of library data.

bly of the final layout (versiog). Although the leaf node

stores théayout data only, it inherits the cell nameq- 5. References

adder) and the structural data from versidnand3, and

it inherits the floorplan data as well as the subcell configu- [1] M. Brielmann, E. Kupitz, “Representing the Hardware
ration with layout data from versiah Design Process by a Common Data Schema”, Proc. Int.

European Design Autpmation Qonference, 1992
The inheritance concept is not only used for attributes [2] “Design Representation Electrical Connectivity Informa-

; ; ; tion Model and Programming Interface”, CFl Pilot Release
but also for theparts relation. Relations are treated like Document, CFI-92-P-6, 1992

attributes as it is the case for the object-oriented approach[3] R.H. Katz, “Information Management for Engineering
too. A newlinstance object (association) may supersede Design”, Springer Verlag, 1985

an older version of the same subcell. Whenever we changd¥ R.H. Katz, “Towards a Unified Framework for Version
-) . Modeling in Engineering Databases”, ACM Computing
the association of a given subcell, we simply supersede the gyrveys, Vol. 22, No. 4, 1990

part reference that belongs to the subcell identifier. The [5] M. Pedram, B. Preas, “A Hierarchical Floorplanning

associations of unchanged subcells will be inherited. Approach”, Proc. Int. Conference on Computer Design,
Cambridge, 1990

~ The inheritance concept can be implemented by assign{e] B, preas, K. Roberts, “YAL Language Description”, part of
ing unique identifiers to the subcells of a given cell. These the MCNC benchmark distribution, MCNC Research Tri-
identifiers allow changing the decomposition hierarchy angle Park, NC, 1987

(repartitioning during the whole design process. For [7] W. Sun, C. Sechen, “Efficient and Effective Placement for
p g gn p - Very Large Circuits”, Proc. Int. Conference of Computer

changing the hierarchy, we add new subcell identifiers and Aided Design, 1993 _
‘delete’ the identifiers of subcells which are no longer part [8] B. Schuermann, J. Altmeyer, G. Zimmermann, “Three-

of the current cell. Subcells are deleted by setting their Ei?]zsgt%g)g;!amg]g -lrﬁ‘.nclzrgrp])frgr\/eendcgogf-%%vr\]/jnp&glf AFHjaend

part relation toNIL . Design, 1992

Inheritance is also applied to requirements. For the datal® E. Siepmann, G. Zimmermann, “An Object-Oriented Data-

. . S model for the VLSI Design System PLAYOUT", Proc.
retrieval, we follow theversionOf andderivationOf 26th Design Automation Conference, 1989

relations (figure 5). A requirement version inherits data [10] G. Scholz, W. Wilkes, “Information Modelling of Folded
not only from previous versions but also from the realiza- and Unfolded Design”, Proc. Int. European Design Auto-

. . . . : mation Conference, 1992
tion 'the reqwrgment is derived from. For instance, th_e[] P. van der Wolf, N. van der Meijs, T.G.R. van Leuken,
requirement object of a module generator stores the netlist et.al., “Data Management for VLS| Design: Conceptual

interface itself, but it inherits the specified behavior from a Modeling, Tool Integration and User Interface”, Proc. IFIP

realization object. \1/\é08rlgshop on Tool Integration and Design Environments,
. [12] G. Zimmermann, “PLAYOUT - A Hierarchical Design

4.5 Conclusions System”, Information Processing 89, G.X. Ritter (ed.),
With this paper, we presented an improved data model il)ssegler Science Publishers B.V. (North Holland), IFIP,
for the VLSI design. We described the particular problems [13] G. zimmermann, “The MIMOLA Design System - A

of modeling top-down design steps. We solved the prob- Computer Aided Digital Processor Design Method”, 25

.- P P Years of Electronic Design Automation, A compendium of
lems by defining a versioning concept that models the iter papers from the Design Automation Conference, 1988

ative refinement of cells, and by splitting design objects [14] “|[EEE Standard VHDL Language Reference Manual”, The
into requirements and realizations. Institute of Electrical and Electronics Engineers, Inc., New

We only described the most important aspects of the York, 1988
model which are different to current approaches. Other
aspects like libraries and technologies which are modeled
similarly to all other models have been neglected. The
inheritance concept avoids storing redundant design data
and makes the model simple. Tool executions will be
modeled independently of the static version tree.
Our new model is a result of performing and analyzing
several large test designs. We examined our old model but
also other models if they support all design objects and

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

