
 Abstract

We present an improved data model that reflects the
whole VLSI design process including bottom-up and top-
down design phases. The kernel of the model is a static
version concept that describes the convergence of a
design. The design history which makes the semantics of
most other version concepts, is modeled explicitly by addi-
tional object classes (entities types) but not by the version
graph itself. Top-down steps are modeled by splitting a
design object into requirements and realizations. The com-
position hierarchy is expressed by a simple but powerful
configuration method. Design data of iterative refinement
processes are managed efficiently by storing incremental
data only.

1. Introduction

Due to the complexity of current and future VLSI cir-
cuits hierarchical design approaches become more and
more important. Even systems like TimberWolf which
seem to favor the flat approach change to a hierarchical
design style to get acceptable run times for very large cir-
cuits [7]. There are two possible hierarchical approaches,
top-down andbottom-up.

The bottom-up design style is the simpler one, and it is
used by most current design systems. Cells at the lower
hierarchy levels are designed first by considering internal
restrictions only. The layouts of these cells will then be
composed to larger cells. The disadvantage of this
approach is the possible waste of chip area and wiring
length. Since all subcells are designed independently, the
shapes of adjacent cells generally do not fit and result in
empty space when they are combined to larger modules.
Wiring lines become relatively long because the pins are
mostly at ‘wrong’ sides of the subcells.

These disadvantages can be avoided by a top-down
design. Here, the cells at upper hierarchy levels will be
designed first to get the global minimal layout and shorter
wires [5], [12]. Further, the shapes and pin positions of the
subcells are determined at the upper level and must be met

by the design steps at the lower levels. Because of toler-
ances between estimations and final results the top-down
design is more an iterative process. Cells must be
improved several times until they meet the global restric-
tions. Often backtracking over several hierarchy levels
becomes necessary [8].

The hierarchical design in general and the top-down
design in particular are possible only by using a design
database that manages the huge amount of data which are
the result of the various design steps. However, standard
database systems, which are very successful in application
domains as banking and flight reservations, are not suit-
able for the VLSI design. Design objects are very complex
and have a lot of interdependencies. The transaction con-
cept has to be improved because design transactions often
need very long time and may be nested.

All these requirements of the CAD domain resulted in
new database research projects. Two basic problem
classes have to be solved. One topic addresses new trans-
action concepts which allow concurrent and cooperating
design steps and new storage concepts for complex
objects. The other research topic is at the modeling level.

Several groups are looking for data models which
describe the whole VLSI design process in an appropriate
manner (esp. at the meta model level). Most of the
research is based on the first works of R. Katz [3] and the
definition of the EDIF data format.

Using the basic concepts of EDIF, our research group
defined a data model with object-oriented features that
supports hierarchical designs very well. It has been pub-
lished in [9]. We implemented the model in a prototype
database system and tested its quality by performing sev-
eral (large) designs. The key concepts and our experiences
with that model are briefly described below.

In parallel to our works, several more or less similar
models have been developed by other groups. Important
contributions are the works of R. Katz [4], E. Kupitz [1],
W. Wilkes [10], the Nelsis group [11], and the CFI (CAD
Framework Initiative) which is working on a standard data
model for the VLSI design [2]. This list is by far not com-
plete. What is common to all approaches is the fact that

On Modeling Top-Down VLSI Design

Bernd Schürmann Joachim Altmeyer Martin Schütze

University of Kaiserslautern
D-67653 Kaiserslautern, Germany

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0508 $3.50

they support the bottom-up design style very well. The
top-down style on the other hand, which is made up of
many (iterative) improvements, cannot be expressed so
clearly. This design style needs the integration of a conve-
nient version and configuration concept that is different
from the design history and the ability to express require-
ments. The description of a suitable data model is the sub-
ject of this paper.

The rest of this paper is organized as follows: Section 2
gives an overview of our first data model. Our experiences
and differences to other approaches are described in sec-
tion 3. There, we also address the requirements of hierar-
chical top-down designs. In section 4, we present our
improved data model that supports the requirements very
well. Section 5 concludes the paper with some final
remarks.

2. The Old Model

In this section we describe the key ideas of a data
model that is implemented in our current design database.
We present this model because it comprises most of the
commonly applied concepts. Further concepts and differ-
ences between our and other approaches can be found in
the following section.

The notation used in this paper is an extended ER dia-
gram. Boxes describe entity sets or object classes and
arrows describe relationships between the object classes.
Arrows with a filled head represent functional relations
which are defined in both directions. The cardinality is
written at the arrow end. A ‘*’ means an arbitrary number
including zero, ‘+’ at least one, ‘?’ zero or one, and ‘1’
exactly one. The name of the relation against the arrow
direction is formed by exchanging the ending ‘s’ of the
given relation name with the pattern ‘Of’ (e.g.part s →
part Of).

The basis of the data model is the description of a cell
which is described by its interface and contents (white
boxes in figure 1). The interface is the abstraction of the
cell to its environment while the contents describes its
structure or realization. In most cases, we have several
realization alternatives which are all abstracted by the
same interface. A contents is generally the composition of
several parts (subcells) which areInstances of other cell
Interfaces .

So far, we are able to describe the realization of a cell at
one hierarchy level. It may be sufficient to reflect a flat
approach. However, if we have alternative realizations
(contents) for the subcells, which again may be composi-
tions of smaller parts, we have to decide which alterna-
tives should be used for the instances. This selection is
called configuration. A contents has one or more configu-
ration alternatives. The configuration is a list ofAssoci-

ation s which form the relations between the instances
(parts of the corresponding contents) and the selected
objects. It is allowed to select either a contents or another
configuration. If we select a contents we connect exactly
two hierarchy levels. Otherwise, we connect three or more
hierarchy levels by selecting a configuration.

Now, we can express the composition hierarchy of a
cell. But this is not enough to describe a whole design.
Besides the composition hierarchy, we need an abstraction
hierarchy, a version concept, and the ability to build
views.

A cell will generally be designed at different abstrac-
tion levels which we call domains. The first design steps
are the behavioral design (domain behavior) and the
netlist generation (domain structure). Later on, we per-
form area estimation and floorplanning (domain floor-
plan), and we assemble the layout (domain masklayout).
This distinction between different domains is modeled by
inserting the relationdomains between the root object
cell and theInterface s of the different domains.

The gray boxes in figure 1 show the remaining con-
cepts. An important concept is the version management.
Versions are generated sequentially by correcting design
errors or by improvement steps. In contrast to alternatives,
only the last version is generally valid. Versions are used
for the object classesInterface , Contents , andCon-

figuration . Instances need not be versioned individu-
ally. They exist with their surrounding contents only and,
therefore, have the same version as the contents.

The last major extension is the view concept. Views are
the place for storing the actual design data. They act as an
interface between the meta model and the detail data. In

Interface
Version

Contents
Version Instanceparts

instances

re
al

iz
at

io
ns

*
*

*

configurations
*Config-

Version

as
so

ci
at

io
ns

* selection
module

1

1

Cell
domains

*
Interface

Contents

re
al

iz
at

io
ns

*
Configu-

ration

versions

*

versions
* versions *

view object

configs*

Association

Figure 1 The current model

our current database implementation, the design data are
stored in files. Views are pointers to the file system only.
Each object may have several views. They are used to rep-
resent the same data in different forms (e.g. a circuit can
be expressed in form of a schematic or an equivalent
netlist) or to partition the object data into different aspects
(e.g. a cell interface may be partitioned into the views
frame andpins).

With figure 1, we described the main parts of the data
model. The complete model further has object classes for
cell libraries, technologies, etc. Data objects of different
domains are linked by agenerated relation which basi-
cally models the execution of a tool. For instance, the
floorplan of a cell isgenerated from the netlist by execut-
ing the chip planner.

3. Experiences and Related Works

We implemented the model in the design database of
the PLAYOUT VLSI design system [12]. During the last
two years, we then designed several test circuits with vari-
ous number of hierarchy levels. Some of the designs were
performed bottom-up while in most cases we preferred the
top-down approach. The largest design was a circuit with
about 280.000 standard cells. In that time, we got a lot of
experiences with our data management.

In the remaining part of this section, we will discuss
three topics which are important for top-down design: the
composition hierarchy, the iterative refinement process,
and the distinction between requirements and realizations.
For each of these topics, we will describe the strengths
and weaknesses of our model and we will show different
solutions.

3.1 Composition Hierarchy

The basic object classesinterface , contents , and
instance can be found in nearly all flat design systems
and exchange formats, e.g. high-level synthesis systems as
MIMOLA [13], one-level Place&-Route tools, as well as
hardware description languages like YAL [6] and Calcos.

For hierarchical designs, we must introduce a configu-
ration concept. The most simple way is storing the config-
uration directly at the instance as it is done in the CFI
connectivity information model [2]. But this simplification
has several restrictions. For instance, it allows the descrip-
tion of one fixed hierarchy tree only. More flexibility is
available with the introduction of the fourth object class
Configuration as shown in figure 1. Such an object can
be found in several other hierarchical models as for
instance the VHDL data model [14] or the Cadlab data
model [1] that shall become part of the JESSI Common
Framework.

The configuration makes the data management of top-

down designs possible. While designing a cell at one hier-
archy level, it is not necessary to decide which realization
alternative (contents) will be used for a given instance.
The decision can be postponed until the whole hierarchy
of an actual design is needed. This is known aslazy deci-
sion.

Currently, we allow a change of the circuit hierarchy,
that is calledrepartitioning, in the domainstructure

only. In all other domains the hierarchy must be fixed
because we have a lot of references to the circuit netlist
which is stored in the domain structure. On principle, this
is a technical problem only. Most of the physical design
tools work at one hierarchy level and need no knowledge
of the hierarchy meta model. However, this becomes dif-
ferent if tools like a floorplanner perform repartitioning.
Data models which support the change in hierarchy during
the whole design process can be found in [1] and [11].

3.2 Iterative Refinement Process

A top-down design often consists of many incremental
improvement steps. Currently, we can model the results of
the different steps as independent alternatives or linear
versions only. Using the alternative concept, we do not
know the derivation history of the objects. Modeling the
improvement steps as linear versions we cannot express
alternative versions which are derived from the same pre-
decessor.

Solutions to this problem can be found at various places
in the recent literature. Many data management research
groups are working on versioning. Nearly all authors
describe trees or directed acyclic graphs (DAGs) as possi-
ble structures. They differ in the semantics of the relations
only. A good overview of the most important version con-
cepts is given in [4].

3.3 Requirements and Realizations

Using a top-down approach, a contents needs relations
to two different interfaces. The first is a requirement that is
the result of the design at the upper hierarchy level. For
example, the chip planner determines the placement and
frames of all subcells in a floorplan. These subcell frames
are inputs or requirements for the chip planning steps at
the next lower hierarchy level. The floorplans of the sub-
cells have to meet these requirements (frames) as good as
possible. However, because of estimation tolerances there
will always be differences.

So, the contents of the subcells (i.e. the subcell floor-
plans) have relations to the requirements they are derived
from and to abstraction data of the realizations. The
requirements and the abstraction data are both interface
descriptions. Since most data models support bottom-up
designs we do not find distinctions between requirement
and realization.

4. The New Model

With our new data model we present solutions for all
three problems. As far as possible, we adapted the con-
cepts of other approaches. Nevertheless, several key ideas
described below are new. Although we combined different
ideas, our new model seems to be simpler than most other
models. We first address the iterative refinement process,
then the difference between requirements and realizations,
and finally the decomposition hierarchy.

At the end of this section, we discuss an additional
topic: the data inheritance. Data inheritance is the key
aspect for the definition of a simple but powerful data
model without storing many redundant data.

Our tool execution model describes the dynamical
design aspects and completes a version concept that mod-
els the static refinement relationships only. However, these
aspects are beyond the scope of this paper.

4.1 Iterative Refinement Process

We already mentioned that the a top-down design often
results in many iterative refinement steps. This is espe-
cially true for the physical design phase. Due to estimation
tolerances, it is not possible to perform pure top-down
chip planning. Without adjustment steps at upper hierar-
chy levels, the final layout consists of a large amount of
wasted area or long critical paths [8].

Our designs have shown that in practice each cell exists
in many refinement states. These different instances of a
cell are generally called versions [4]. As we described
above, there generally exist versions which are derived
from others and versions which are alternative to others.
So, we need a version tree as proposed by Katz.

For our needs, the tree structure is sufficient. There is
no need for a DAG which allows the merge of versions. In
practice, the merge of two or more versions is a too com-
plicated task.

We now discuss our version semantics in more detail.
We first define the refinement of attributes or views of
design objects, and then we define therefinement rela-
tion of the meta data model. This refinement relationship
describes one possible version semantics.

Refinement of Attributes
Each version of a cell has several simple attributes (e.g.

cell name) and more complex attributes (e.g. a netlist).
The complex attributes correspond to the views described
above. The actual design data are stored in files while the
data management system uses the file name as attribute
value. For the context of this paper it is not necessary to
distinguish between attributes and views. We will use the
term attribute only.

For documenting the design progress, we assign a state
value to each attribute.

Definition (attribute states): Each attribute is in one of
the states: unknown, default, predicted, preliminary, or
final. We further define a partial order on these state values
which represents the refinement of the attribute:

{unknown, default} < predicted < preliminary < final
where (s1 < s2) means that s2 is a refinement of s1 , i.e.
s2 is more precise than s1 . ❑

As an example, let us choose the geometrical frame of a
cell. This frame isunknown as long as we do behavior or
structure synthesis. During top-down chip planning the
computation of the subcell frames is based on a preceding
area estimation so that the state changes topredicted. The
frame of a floorplan is in statepreliminary because the
geometry of the floorplan may still change. Only the frame
of a layout may be in statefinal.

The refinement states of attributes are the basis of our
version semantics.

Version Semantics
A design tool gets one version of a cell as input and

generates a new version as output. In general, the input
and output objects are linked by theversion relation.

This version concept describes the execution order of
design tools as we can see it in most publications. How-
ever, such a version graph may be different to the refine-
ment steps of a cell. A continuous refinement process may
go into a ‘dead end’ if the estimation errors are too large.
Then, it may be necessary to exchange a more precise
design object (e.g. a layout frame in statefinal) by a less
precise object (e.g. the frame of a flexible cell in statepre-
dicted) to increase the flexibility of a design. This problem
will be explained with figure 2.

Example (refinement): Figure 2 shows a floorplan with
four subcells. In floorplan1 all subcells are flexible, i.e.
their shapes are based on an area estimation. The next
steps are chip planning and layout generation of the sub-
cells. This can be done for all subcells in parallel or
sequentially. In the example, we first generate the layouts
of subcellsA and B. After that, we adjust the top-level
floorplan (floorplan2). We assume that for cellsA andB

the estimation is correct so that floorplan2 does not differ
from 1. Next we generate the layout of cellD. For this cell,
the shape of the layout is different from the shape based
on the estimation. The adjustment at the top level is now
more complicated. For minimizing the wasted area, we
put cellA on top of cellD and discard the layout of cellB.
Cells B andC get new shapes which fit to the layouts of
cells A andD (floorplan3). After that, we compute a new
layout for cellB that fits in the given area.❑

In our data model, we distinguish between the static
refinement or version relation and the modeling of the
dynamic aspects of tool executions. We define the version
semantics as follows:

between the floorplans2 and 3 (3 is computed from2)
that is annotated by the dotted line is part of the tool exe-
cution model but no version relationship.❑

4.2 Requirements and Realizations

A second important topic for modeling the top-down
design process is the distinction between requirements and
realizations. Analyzing our designs, we can see that in
most cases the relationship between interfaces and con-
tents were used in a requirement-realization manner. For
instance, high-level synthesis systems specify the netlist
interfaces of cells which are not provided by a subcell
library. To these interfaces we later have to generate real-
izations (contents), e.g. by using module generators.
Another example is the top-down chip planning [12]. The
chip planner specifies the frames (geometrical interfaces)
of the subcells for which it later computes one or more
floorplans (realization alternatives).

Note that there is a difference between our semantics of
a requirement and the more generally used term ‘specifi-
cation’. In principle, all input data of a design step can be
seen as specification data. These are the interface data
computed at a higher hierarchy level (which we call
requirement) but also the more abstract data which were
computed by an earlier design step of the actual cell. The
latter are the cell attributes of preceding versions.

Definition (requirement): The term requirement repre-
sents the interface data of a cell which are (top-down) gen-
erated at the hierarchy level of the parent cell. ❑

All other specifications like the netlist input data for
chip planning are calledrealization data because they are
the result of a previous design step. While theserealiza-
tion datamust be valid for the output data of following
design steps the top-down computedrequirementsshould
be met as good as possible. If a top-down requirement is
not exactly met an adaption step at the upper hierarchy
level becomes necessary. An example will be given below.

The basis of our new model is the splitting of aCell

into two object classes:Requirement andRealization

(figure 3). A cell is described by all its realizations and
requirements. The version tree is defined on the class
Realization . Each of these versions has one or more
attributes/views which abstract the object to its environ-

Figure 3 Requirements and Realizations

realizations
derivations

requirements

realizations

version

Cell

*

Realization
*

*

*

refinements /
*

?

?

?

Requirement

versions

?

?

Definition (Versions): A descendant in the version tree
always represents a more precise (i.e. refined) object than
a predecessor that is nearer to the root of the tree. In other
words, a design object o2 is a version of o1 (o1 → o2) if
o2 is more precise than o1.
The preciseness of the design objects, and with that the
version relation, is defined on the states of the object
attributes. An object o2 is a version of another object o1
only if all of its attributes are equally or more precise than
the attributes of o1. ❑

This definition determines the position of a new design
object in the version graph. After performing a design
step, we first compare the input and output versions. In the
case that all attributes of the output version are equally or
more precise than the attributes of the input version both
versions will be linked, i.e. the output version becomes a
direct descendant of the input version. In the case that at
least one attribute becomes less precise, we backtrack
through the version tree toward the root until we find a
version for which the condition is true (all attributes of the
new version are equally or more precise than the attributes
of the considered version). The new version will be linked
as a descendant to that version.

Example (Version Tree): For our example, we define the
preciseness of the floorplan on the configuration, i.e. on
the state of the subcell shapes (see subsection 4.3 for more
details). A floorplan is a refinement of another floorplan
only if all subcell frames are more precise. With that defi-
nition, floorplan2 is a version of floorplan1 because we
replaced twopredicted shapes (flexible cells) byfinal lay-
outs. Since we then discard the layout of cell B, the floor-
plan 3 is not more precise than floorplan2 and therefore
no descendant in the version tree. To find the right location
in the tree, we traverse the tree back towards the root until
we find an object that is less precise than the new version.
In our case, this is the root (floorplan1). The new floor-
plan 3 becomes a version of floorplan1. The relation

Figure 2 Floorplan Refinement

A A B B
B B

C CC C

A A
D D

D D

1 2 3 4

43

2

1

A
A

flexible cell
layout

version/
refinement
design tool execution

Further Version Semantics
The version tree described so far expresses the refine-

ment of design objects and design alternatives (branches
in the tree). A third kind of versions mentioned by Katz
models the correction of wrong data [4]. We model this
semantics by the same version tree. This is done by anno-
tating the relation between tworealization versions as
refinement or correction. If we correct a given version we
have to mark that version and all descendants as invalid.
The new version becomes a sibling node of the corrected
version in the version tree.

In general, there exists no direct relation between dif-
ferent requirements. Nevertheless, we versioned these
objects. We use a linear relationship that expresses modifi-
cations or corrections of requirements. It is not necessary
to model alternative requirements.

4.3 Decomposition Hierarchy

In the previous two subsections, we described the mod-
eling of requirements and iterative refinement. Now, we
add the decomposition hierarchy for which we need one
further object classInstance as shown in figure 5. This
results in a simple data model that is as powerful as all
other models known by us in describing the cell hierarchy.

In section 3, we described the configuration as the
‘glue’ for connecting the hierarchy levels in a top-down
design. In our new model, the configuration is done by the
objects of the classInstance that has relations (asso-

ciations) to one or more objects the instance is configu-
rated with. Theassociations relation configures a
subcell with aRequirement (which may be an imprecise
interface) or aRealization . This realization object can
be any node (version) in the refinement tree. It may be the
root of the tree which describes an interface in most cases,
or it may be a very precise leaf node object which implies
the whole decomposition subtree. An instance may have
associations to more than one object. In some cases, it is
desirable to select several alternatives for one instance and
to postpone the restriction to one object to a further refine-
ment step.

The configuration is strongly related with the refine-
ment tree. A realization object can only be as precise as its
parts. This has already been mentioned in subsection 4.1.
We get following consistency condition:

Definition (subcell-based refinement): A realization
object R is a refinement of R’ if all subcells of R are associ-
ated with the same or more precise objects than the sub-
cells of R’. An association A is called more precise than A’
if A refers to a realization object that is a descendant (in
the refinement tree) of the realization object referred by A’.
A reference to a requirement is as precise as the realiza-
tion the requirement is derived from. ❑

This condition is sufficient for the data management

ment (interface data).
The object classesRequirement and Realization

are linked by two functional relationsrealizations and
derivations . A requirement may result in several alter-
native realizations and we can derive different require-
ments from one realization. This should be illustrated by
the example shown in figure 4.

Example (requirement - realization): The upper part of
the graphic shows a section of the geometrical refinement
process of a cellX [8]. First,X is input to the planning step
of the father cell. At that time,X is only estimated by a
shape function. The chip planner derives a first require-
ment (frame) from that estimation. The requirement is
input for a planning step which generates a floorplanf 1 of
cell X. f 1 is then used for an adjustment of the father cell
that results in a new requirement of cellX which itself is
input to a new planning step (computing a refined floor-
plan f 2).

The lower part of figure 4 shows the relationships
between the design objects generated by these steps. The
first requirement (frame) ofX is derived from the esti-
mated shape function and it results in a realization (floor-
plan f 1) which is a refinement of the estimation. It has a
further versionf 2. ❑

Chip
Planner

supercell
adjustment

realizationderivation

requirement realization

Figure 4 Design Example

X:

X:

framef1

supercell floorplan

refined floorplanfloorplanshape function

frame frame

f2

f2

f1

realization

versionversion
derivation

Chip
Planner

Chip
Planner

subcell frame

an attribute value starts at the actual version and follows
the refinement tree towards the root until it reaches a ver-
sion where the value is stored.

Attribute values may change several times during a
design process. In that case, several design object versions
containing different values of the same attribute exist on a
branch of the refinement tree.

Example (data inheritance): Figure 6 shows the refine-
ment tree of an adder as an example. The circles represent
the versions of the adder. Beside these circles we find the
attributes which are stored with these versions. The exam-
ple uses the attributename, several views (complex
attributes), and theparts relation which is treated simi-
larly as attributes (see below). At the beginning, the func-
tion and the structural interface (i.e. the ports in views-

frame) of the cell are known. They are all stored with the
root version. Two realization alternatives are derived from
the root as refinements: the netlists of a carry-look-ahead
adder and a ripple-carry adder. Both inherit the function
and the interface data from the root but they overwrite the
cell name. They further store the additionalnetlist and
schematic (RC-adder only). The RC-adder is com-
posed of two half adder (HA1, HA2) and anOR gate which
refer to their interfaces (i.e. they refer to nodes of their
refinement trees). The next step is configuring the half
adders down to the leaf nodes of the composition tree
(version4). We then perform chip planning twice which
results in two alternative floorplans (versions5 and 6).

name: adder
view: s-frame
view: function

name: RC-adder
view: netlist
view: schematic
parts: HA1→ s-It

HA2 → s-It
OR → l-It

view: floorplan
view: f-frame
parts: HA1→ f-It

HA2 → f-It
OR → l-It

view: floorplan
view: f-frame
parts: HA1→ l-It

HA2 → l-It
OR → l-It

view: layout
view: l-frame

view: floorplan
view: f-frame
parts: HA1→ f-It

HA2 → f-It
OR → l-It

name: CLA-adder
view: netlist
parts:

parts: HA1→ s-Cf
HA2 → s-Cf
OR → l-It

2

56

7

8

3

1

4

Figure 6 Data Inheritance

system to insert a new realization object (version) at the
correct position in the refinement/version tree (see subsec-
tion 4.1). Generally, we get a new realization version due
to a refinement of one or more subcells. Then, the new
version will be linked to the version that was input to the
design step. However, in some cases it is necessary to
exchange an association by a less precise one for improv-
ing the design flexibility (because less precise objects gen-
erally are less rigid). In that case, the new version will be
linked to a predecessor of the version that was input to the
design step.

4.4 Data Inheritance

Subsections 4.1 to 4.3 described the basic object types
and relationships of a new data model. This model is very
simple and powerful. Interface data, contents data, and the
configuration are modeled (with different attributes) by
one object type, theRealization . The iterative refine-
ment of a cell is expressed by a version tree. However, one
may argue that we have to pay for this advantage with an
overhead in the design data. For instance, several configu-
ration alternatives could not share the data of one contents.
All contents data seem to be stored redundantly with each
configuration alternative. Even if we change the associa-
tion of one subcell only, we get a new realization object
that would have all attributes and all subcell associations.
Except the changed association, all data would be the
same as for the previous version.

We avoid this multiple storage of the same data by
applying inheritance. In contrast to the structural inherit-
ance of the object-oriented approach, we use the data
inheritance of object attributes. Attributes may be simple
data as names, sizes, etc., or complex data structures (see
above). Only attributes whose values have changed are
stored with the object. ARealization object inherits all
other attribute values from a predecessor that is located
nearer to the root of the refinement tree. The retrieval of

derivations

parts

realizations

associations

*requirements

Realizationrealizations

Cell

refinements/

version

*

*
* *

*

?

?

??

?

?
+

versions

Instance

Requirement

Figure 5 Basic Data Model

design steps. Since no model meets all requirements, we
had to define a new model.

Examining our chip designs, we found out that our new
model supports the top-down and refinement steps very
well without any disadvantages for bottom-up steps and
the usage of library data.

5. References

[1] M. Brielmann, E. Kupitz, “Representing the Hardware
Design Process by a Common Data Schema”, Proc. Int.
European Design Automation Conference, 1992

[2] “Design Representation Electrical Connectivity Informa-
tion Model and Programming Interface”, CFI Pilot Release
Document, CFI-92-P-6, 1992

[3] R.H. Katz, “Information Management for Engineering
Design”, Springer Verlag, 1985

[4] R.H. Katz, “Towards a Unified Framework for Version
Modeling in Engineering Databases”, ACM Computing
Surveys, Vol. 22, No. 4, 1990

[5] M. Pedram, B. Preas, “A Hierarchical Floorplanning
Approach”, Proc. Int. Conference on Computer Design,
Cambridge, 1990

[6] B. Preas, K. Roberts, “YAL Language Description”, part of
the MCNC benchmark distribution, MCNC Research Tri-
angle Park, NC, 1987

[7] W. Sun, C. Sechen, “Efficient and Effective Placement for
Very Large Circuits”, Proc. Int. Conference of Computer
Aided Design, 1993

[8] B. Schuermann, J. Altmeyer, G. Zimmermann, “Three-
Phase Chip Planning - An Improved Top-Down Chip Plan-
ning Strategy”, Proc. Int. Conference of Computer Aided
Design, 1992

[9] E. Siepmann, G. Zimmermann, “An Object-Oriented Data-
model for the VLSI Design System PLAYOUT”, Proc.
26th Design Automation Conference, 1989

[10] G. Scholz, W. Wilkes, “Information Modelling of Folded
and Unfolded Design”, Proc. Int. European Design Auto-
mation Conference, 1992

[11] P. van der Wolf, N. van der Meijs, T.G.R. van Leuken,
et.al., “Data Management for VLSI Design: Conceptual
Modeling, Tool Integration and User Interface”, Proc. IFIP
Workshop on Tool Integration and Design Environments,
1988

[12] G. Zimmermann, “PLAYOUT - A Hierarchical Design
System”, Information Processing 89, G.X. Ritter (ed.),
Elsevier Science Publishers B.V. (North Holland), IFIP,
1989

[13] G. Zimmermann, “The MIMOLA Design System - A
Computer Aided Digital Processor Design Method”, 25
Years of Electronic Design Automation, A compendium of
papers from the Design Automation Conference, 1988

[14] “IEEE Standard VHDL Language Reference Manual”, The
Institute of Electrical and Electronics Engineers, Inc., New
York, 1988

The corresponding versions store thefloorplan and
floorplan-frame and inherit the structural data from
their common ancestors (versions1, 3, and4). The sub-
cells are configured with floorplan interfaces (frames).
The final two refinement steps are an adjustment of the
floorplan with subcell layouts (version7) and the assem-
bly of the final layout (version8). Although the leaf node
stores thelayout data only, it inherits the cell name (RC-

adder) and the structural data from versions1 and3, and
it inherits the floorplan data as well as the subcell configu-
ration with layout data from version7. ❑

The inheritance concept is not only used for attributes
but also for theparts relation. Relations are treated like
attributes as it is the case for the object-oriented approach,
too. A newInstance object (association) may supersede
an older version of the same subcell. Whenever we change
the association of a given subcell, we simply supersede the
part reference that belongs to the subcell identifier. The
associations of unchanged subcells will be inherited.

The inheritance concept can be implemented by assign-
ing unique identifiers to the subcells of a given cell. These
identifiers allow changing the decomposition hierarchy
(repartitioning) during the whole design process. For
changing the hierarchy, we add new subcell identifiers and
‘delete’ the identifiers of subcells which are no longer part
of the current cell. Subcells are deleted by setting their
part relation toNIL .

Inheritance is also applied to requirements. For the data
retrieval, we follow theversionOf andderivationOf

relations (figure 5). A requirement version inherits data
not only from previous versions but also from the realiza-
tion the requirement is derived from. For instance, the
requirement object of a module generator stores the netlist
interface itself, but it inherits the specified behavior from a
realization object.

4.5 Conclusions

With this paper, we presented an improved data model
for the VLSI design. We described the particular problems
of modeling top-down design steps. We solved the prob-
lems by defining a versioning concept that models the iter-
ative refinement of cells, and by splitting design objects
into requirements and realizations.

We only described the most important aspects of the
model which are different to current approaches. Other
aspects like libraries and technologies which are modeled
similarly to all other models have been neglected. The
inheritance concept avoids storing redundant design data
and makes the model simple. Tool executions will be
modeled independently of the static version tree.

Our new model is a result of performing and analyzing
several large test designs. We examined our old model but
also other models if they support all design objects and

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

