
An Enhanced Flow Model for Constraint Handling

in Hierarchical Multi-View Design Environments

Pieter van der Wolf, Olav ten Bosch and Alfred van der Hoeven

Delft University of Technology
Department of Electrical Engineering / DIMES
Mekelweg 4, 2628 CD Delft, The Netherlands

Abstract
In this paper we present an enhanced design flow model
that increases the capabilities of a CAD framework to
support design activities on hierarchical multi-view design
descriptions. This flow model offers new constructs for
the configuration of complex design constraints in terms of
conditions on the hierarchical multi-view structure of a
design. The design flow management system enforces
these constraints and uses them to inform the designer
more effectively about the validity of verification results
and the executability of tools. This helps to make the
design process less error prone and to improve produc-
tivity. Our solution is original in that we introduce the
notions of design hierarchy and equivalence in a design
flow model. We thereby bridge a gap between the areas of
data management and design flow management. Strong
points of our solution are its simplicity and the seamless
integration with existing flow management concepts.

1. Introduction
CAD frameworks play an important role in building as
well as in operating integrated design environments.
They must help designers to keep track of the state of
design and to select the most appropriate design activity
that is to be performed next. The design descriptions
stored in a CAD framework database can be complex
hierarchical multi-view structures. Design activities may
be performed at different levels in the design hierarchy
and at different levels of abstraction. These design activi-
ties yield a potentially large number of interrelated partial
design descriptions, each having their own status. This
makes it hard for the designer to keep track of the overall
state of design and plan his design activities. The problem
we face in this paper, is to effectively support the designer
in performing design activities on such hierarchical
multi-view design descriptions.

In the next section we quickly review the state of the
art in CAD frameworks, to assess how far frameworks got
in their evolution from design databases to design assis-
tants. In section 3 we define in more detail the problem
hhhhhhhhhhhhhhhhhh
This research was supported in part by the commission of the EU under
ESPRIT contract 7364 (JESSI-Common-Frame).

that we address and present requirements. Before taking
off, we summarize our starting points in section 4. Sec-
tion 5 is the key section of this paper, in which we present
an enhanced flow model that allows complex constraints
to be configured conveniently and permits the state of
design to be represented effectively to the designer. In
section 6 we present an example to illustrate the capabili-
ties of the enhanced flow model. The implementation in
the Nelsis CAD Framework is discussed in section 7.
Section 8 presents our conclusions.

2. State of the Art
In the early eighties, the first role allotted to CAD frame-
works was that of common data repository, or design
database. Subsequently, more functions were added to
support the management of design descriptions, for exam-
ple, to support versioning, multiple representations, etc.
CAD frameworks started to fulfil a second role, that of
design data manager. A design data management system
maintains information about the structure and status of the
design to provide management support and enforce con-
straints on the design process. Browse facilities were
introduced to visually present this information to the
designer.

The third major role allotted to CAD frameworks is
that of design process manager. With the increasing
number of tools in today’s CAD systems, there is a grow-
ing need to support the designer in correctly executing
these tools to perform his design tasks. The terms design
methodology management and design flow management
are both used to denote framework services that help the
designer to correctly perform design activities according
to a pre-defined design procedure. For example, such ser-
vices may inform the designer for a particular piece of
design about which tools have been run, which can be run,
and which can not be run. An excellent overview of the
state of the art in the area of design flow/methodology
management is presented by Kleinfeldt et.al. in [1].

Typically, a design flow management system permits a
design flow to be pre-defined, or configured. A design
flow is the definition of a design procedure in terms of
design activities which may be performed by tools, and
dependencies between design activities. See, for example,

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0500 $3.50

[2, 3] and [4]. A design flow is defined in terms of the
constructs provided by a design flow model. For example,
several systems employ a design flow model based on a
variant of the data flow paradigm [2, 4]. Several research-
ers [5, 6] claim that systems which require a design flow
to be pre-defined are not suited to design styles that
require a lot of freedom. We do not agree with this view.
We take the approach that a design flow management sys-
tem must allow the required degree of freedom to be
configured in the appropriate design flow.

Upon actual use of the design flow management sys-
tem by the designer, that is, when tools are actually run to
operate on design data, the system must keep track of the
state of design. For this purpose the CAD framework
must administer information about relevant events that
affect the state of design. As shown in [2, 3] and [7],
flow-based browse facilities can represent the state of
design and the design history to the designer. Such facili-
ties present the configured flow and allow this flow to be
‘colored’ with identifications of design descriptions. This
may inform the designer about the derivation history of a
design description or show in which design activity it may
be involved next.

3. Problem Definition and Requirements
3.1 Global problem definition

From the overview above we conclude that CAD frame-
works have come a long way to assist the designer in per-
forming the design process. However, today’s systems
are still limited in their capabilities to inform the designer
about the state of design for complex hierarchical multi-
view design descriptions. Such design descriptions are
composed of large numbers of interrelated partial design
descriptions, typically called design objects by the frame-
work community. Examples of relationships between
design objects are hierarchical relationships, which relate
design objects upon hierarchical composition, and
equivalence relationships, which relate design objects that
are known to be different representations of the same
design. Figure 1 presents the hierarchical multi-view
structure of an example design. It shows a hierarchical
layout design description with equivalent extracted circuit
design objects and derived DRC-results.

CIRCUIT

= DESIGN OBJECT

= HIERARCHICAL RELATIONSHIP

= EQUIVALENCE RELATIONSHIP

DRC_RESULT LAYOUT

Figure 1. The hierarchical multi-view structure of an
example design.

A major problem for a designer operating on such poten-
tially complex design structures is to keep track of the

state of the design and to decide which design activity to
perform next on which part of the design. In particular
when teams of designers are operating concurrently on
different parts of the design, while propagating their
changes now and then, it gets hard to keep an overview of
the verification status of the design and to identify parts
that need to be reworked. This significantly hampers the
productivity of designers and makes the design process
more error prone.

In this paper we study how the capabilities of CAD
frameworks can be enhanced to better inform the
designer about the state of design for complex
hierarchical multi-view design descriptions. We
want the framework to effectively support the
designer in performing his design activities on such
design descriptions.

Consider, for example, a designer working with his fellow
designers on a complex hierarchical chip layout. People
working on different parts are running DRCs, netlist
extractions and simulations to verify their parts, and per-
form updates as flaws are detected. For the designer
doing the top level assembly it must now, for example, be
easy to conclude that his DRC results and simulation
results have been invalidated due to modification of a
lower level component. The system must be able to tell
him which component was modified and what its status is.
Further, the system must help him to pick the best design
activity to perform next and help avoid useless tool runs.
For example, the system may promote DRC checks on
component layouts before the activation of a routing pack-
age that assembles a compound layout from these com-
ponent layouts.

3.2 Initial investigation

The problem defined above touches both the areas of
design data management and design flow management.
Data management is concerned with the administration of
the hierarchical and equivalence relationships and their
consistency when changes occur. Design flow manage-
ment is concerned with the execution of design activities
in the right order and the presentation of the design status
to the designer. Existing design flow management sys-
tems have only limited knowledge of the hierarchical
multi-view structure of design descriptions. In particular
the hierarchical composition of design descriptions is
ignored by these systems. Their flow models do not
include the notion of hierarchy (i.e. design hierarchy1).
However, the above example shows that the state of a
design description may depend in a complex way on the
states of multiple individual design objects and the rela-
tionships that may exist between these design objects.
The executability of tools and the validity of verification
results for a design description may be subject to complex
conditions on its hierarchical multi-view structure. This
hhhhhhhhhhhhhhhhhh
1. Flow models can be hierarchical in the sense that they allow design
flows to be defined hierarchically. However, this is another issue for
which the term hierarchy happens to be used as well.

reasoning suggests that we must somehow establish a
closer link between the areas of design data management
and design flow management.

Our goal is to provide a framework service that is
able to clearly represent the state of design to the
designer, taking into account the intricate relation-
ships among design objects, and allows complex con-
straints for the execution of design tools to be
configured and enforced.

Such a service must have at its disposal all the necessary
information about the design data and the design history.
This information is typically termed meta data by the
framework community [8]. Modern CAD frameworks
maintain meta data administrations as they track design
activities. Such a meta data administration contains the
domain-neutral knowledge of the CAD framework about
the state of design in terms of:

g the design objects and their relationships, and
g the operations performed on the design objects.

In this paper we focus on the exploitation of the informa-
tion already present in such a meta data administration to
the advantage of the designer. Publications focusing on
design tracking for the administration of meta data are [5,
9, 10]. We assume that a facility for maintenance of the
consistency of the administered information is already in
place. Hence, all meta data in the administration is valid.
For example, when a low level component in a hierarchi-
cal design is modified, the consistency mechanism invali-
dates the equivalence relationships for which validity can
no longer be guaranteed. This may include a traversal
upward in the design hierarchy to perform the invalida-
tion. We will not discuss strategies for change propaga-
tion and consistency maintenance in this paper.

3.3 Requirements

We define the following requirements for our new frame-
work service:

g The executability of tools and the validity of
verification results may be subject to complex condi-
tions on the state of design objects and the relation-
ships among design objects. We must allow these
conditions to be configured as constraints on the
design process.

g As the designer performs his design activities, the
framework must guarantee that the configured con-
straints are obeyed.

g The representation of the state of design to the
designer must show whether or not the configured
constraints are satisfied. It must be easy for him to
learn which data is valid, what the history of this data
is, which tools can be executed, etc.

g It must be user friendly. The new service must be
easy to use by both the configurator and the designer.
Constraint configuration must be simple. It must be
easy for the designer to understand why constraints are
satisfied or violated. For this purpose the system must
offer an explanation facility.

g It must be efficient. The new service should not intro-
duce unacceptable performance degradations.

In the next section we present our starting points before
presenting our solution to the defined problem in section
5.

4. Starting Points
4.1 Meta data management

Our first starting point is that the hierarchical multi-view
web is administered in the meta data as design objects and
their hierarchical and equivalence relationships. In the
Nelsis CAD Framework, meta data is organized according
to a semantic data schema [11], which represents the
object types known to the framework [8]. A simplified
version of this data schema is shown in figure 2.

ViewType DesignerVstatusName

EqClassDesignObject

HierarchyRel

O D O DCP

TransactionEquivalenceRelVersionDerivRel

Figure 2. Backbone of the Nelsis data schema.

Boxes represent object types and lines connecting boxes
represent attribute relationships. The central object type is
DesignObject. It has the attributes Name, VersionStatus,
ViewType and Designer. Via the types HierarchyRel,
VersionDerivRel and EquivalenceRel, hierarchical rela-
tionships, version derivation relationships and equivalence
relationships between design objects are administered. A
hierarchical relationship represents the instantiation of a
child design object in a parent design object. A version
derivation relationship administers that a derived design
object is a new version of an original design object. An
equivalence relationship relates a derived design object to
an original design object in a way specified by the
equivalence class. The type Transaction is used to admin-
ister the operations performed on a design object.

4.2 Design flow basics

Our second starting point is a flow model for the
specification of tools and their interdependencies in a
design flow. The Nelsis CAD Framework uses a design
flow model as described in [4, 10]. Central in this model
is the notion of activity. An activity is a design function
of a tool. A tool may perform any of its activities any
number of times during a single tool run. Because of the
ability to describe the design process at the level of activi-
ties rather than at the level of tool runs, we say that the
design flow model supports fine-grained design flow
management. An activity has input and output ports,
which describe its data access and production. The type

of an input port determines whether the data access via
that port is required or optional. The viewtype of a port
specifies which type of design objects can be accessed or
produced via that port. Ports can be connected by chan-
nels to describe allowed data transfer. A channel connects
a number of output ports (producer ports) to a number of
input ports (consumer ports). Design flows can be
described hierarchically using flow graphs. A flow graph
is either an activity or consists of several other flow
graphs, in which case it is a compound flow graph. Con-
structs like and’s, or’s and loops can be expressed by
combining channels and ports. Figure 3 shows a design
flow with flow graphs (rectangles), ports (small squares)
and channels (arrows).

F

A

B

C

D

E

Figure 3. An example design flow.

Flow graph C needs data produced by flow graph A or B
and flow graph E needs data from flow graph C and D.
Flow graph B may consume data produced by itself.

When an activity accesses or produces a design object
via a port, this is administered by a transaction in the meta
data. Each design object is created via one particular out-
put port of one particular activity in the design flow,
which is called the production port of that design object.
An activity is allowed to access a design object only if it
contains an input port which is connected by a channel to
the production port of that design object. An activity is
allowed to produce a design object only if it has an output
port of the proper view type. An activity is executable
with respect to a set of design objects if for all its required
input ports there is a design object that the activity may
access. An activity has completed successfully if it has
produced a design object for all its output ports.

In the user interface, the state of (part of) the design is
represented by a colored flow [7]. A colored flow consists
of the configured design flow, with a number of related
design objects assigned to it. Design objects are related if
they have been involved in the same run of an activity. A
design object assigned to the design flow colors the pro-
duction port of the design object, the input ports that have
a channel connected to the production port, and the chan-
nel parts in between. The executability and successful
completion of a flow graph is indicated by a color.

DO3

A

B

C

D

E

F

DO1
DO2

Figure 4. Colored flow with 3 design objects assigned.

Figure 4 shows a colored flow with design objects DO1,
DO2 and DO3. Dashed flow graphs are executable and
thick flow graphs have been completed. The flow color-
ing paradigm inherently offers powerful capabilities to
visualize the intricate relationships among tools and data.

5. Enhancing the flow model
The design flow model presented above permits definition
of constraints on the design process that originate from the
data or time dependencies between activities. Such design
constraints are specified as conditions on the executability
or completion of an activity based on the state of the
design objects on its input and output ports. Input ports
restrict the access of design objects to those of the right
view type for which there exists a channel from the pro-
duction port to the input port of the activity. Output ports
specify which data an activity must produce in order to
complete. See, for example, figure 5 which shows the
activity definition for a simulator with two input ports, one
for the circuit and one for the stimuli, and one output port
for the simulation result. The circuit must have been pro-
duced by the circuit extractor.

port1:
Extractor

Simulator

layout

port2:

circuit
port1:

circuit
port2:

stimuli

port3:

sim-result

Figure 5. Activity definitions of an extractor and a simula-
tor in a design flow.

A limitation of this design flow model is that we cannot
express conditions on the state of (related) design objects
for which no accesses are performed. For instance, we
can not express that a layout to circuit extractor may only
be executed on layouts for which all subcomponents have
been DRC-ed.

We want to be able to handle design constraints that
take the hierarchical multi-view web of design objects into
account. We introduce the notion of complex constraint.

Definition 5.1:
A complex constraint specifies a condition on the exe-
cutability or the completion of an activity based on the
relationships and the states of design objects in the
hierarchical multi-view web of design objects.

We investigate whether the inherent constraint definition
capabilities of the basic flow model can be enhanced for
expressing complex constraints in design flows.

A condition on the executability or completion of an
activity may relate to design objects that are not involved
in a run of this activity. In order to specify such a condi-
tion, we need a way to refer to these design objects.
Because we already have flow constructs to specify condi-
tions on design objects that are involved in the activity
run, it is a logical step to use the same sort of construct for
design objects that are not involved in a run of this
activity. We introduce a special type of port which acts as
a placeholder for design objects that have to satisfy a

certain condition, even though they are not accessed or
produced. We call such a port a condition port. Condi-
tion ports can be connected to channels to specify produc-
tion constraints in the same way as non-condition ports.

In addition to the specification of constraints on design
objects by means of ports and channels, we need a con-
struct to refer to relationships between design objects. For
this, we introduce a new flow construct, the object rela-
tionship constraint (ORC). An ORC relates two ports of
an activity and is used for two purposes:

1. to demand the existence of a relationship of a par-
ticular type between the design objects on the ports.

2. to specify a relationship via which a set of design
objects can be found for which additional con-
straints must hold.

An ORC has a number of attributes which define its
detailed properties, like the type of relationship it refers to
and the type of constraint. An ORC may refer to a
hierarchical relationship (hierarchy ORC) or to an
equivalence relationship of a certain equivalence class
(equivalence ORC). Since hierarchical and equivalence
relationships can be traversed in two directions, an ORC is
a directed relationship.

A hierarchy ORC demands the design objects on its
ports to have a hierarchical relationship. We distinguish
between recursive hierarchy ORCs, for which the design
hierarchy must be traversed recursively, and non-recursive
hierarchy ORCs, for which just one level must be
traversed. An additional ORC attribute quantifies the set
of design objects that have to satisfy the constraint. We
allow three quantifiers to be assigned to ORCs: (for all),
——
— cc (at least one exists) and (none exists). Figure 6.a
shows an activity which descends the design hierarchy of
its input design object recursively. ORCs are drawn as
dashed edges. Since both ports are connected to the same
channel, both the parent design object and the component
design objects have the same production requirements.

We have the following categories of equivalence
ORCs:

g check equivalence ORC:
An ORC of this type specifies that the activity is exe-
cutable only if the equivalence of the specified
equivalence class exists between the design objects on
the ports of the ORC. Since an equivalence can only
relate existing design objects, this type of ORC can be
defined for input ports only. We allow four quantifiers
to be assigned to check equivalence ORCs: (for all),
——
— cc (at least one exists), (none exists) and O
(optional). Figure 6.b shows an activity with a check
equivalence ORC.

g produce equivalence ORC:
An ORC of this type specifies that the activity has
been completed successfully only if an equivalence
relationship of the specified equivalence class has
been produced between the design objects on the ports
of the ORC. Figure 6.c shows an activity with a pro-
duce equivalence ORC from an input port to an output
port.

g auto equivalence ORC:
An ORC of this type specifies that the activity has
been completed successfully only if an equivalence
relationship of the specified equivalence class exists.
If the tool does not produce the equivalence, it is
created automatically by the design flow management
system. Figure 6.d shows an activity with an auto
equivalence ORC.

d.

rec-hier check-equiv

a. b.

produce-equiv auto-equiv

c.
Figure 6. The use of different types of ORCs in activity

definitions.

In figure 7 we present two examples of the use of condi-
tion ports and ORCs. In figure 7.a we see an activity C
which can be executed on a design object only if there
exists another design object which is equivalent with the
input design object via some equivalence class and which
is produced by activity B and for which holds that all its
children have been produced by activity B too. Condition
ports are drawn as small circles. Figure 7.b shows an
activity which may only execute on root design objects
(the non-recursive hierarchy ORC demands that there
does not exist a parent design object for the input design
object).

b.

check-equiv

rec_hier
hier

A

B

C

a.

Figure 7. The use of condition ports and ORCs.

With the addition of ORCs and condition ports to the basic
design flow model, we have created a flexible way of
expressing complex constraints. A number of useful ORC
types have been defined. With only two new flow con-
structs we have given the flow configurator a powerful
method to enhance the configured design flow with design
constraints that closely reflect the specific needs and pos-
sibilities of his design environment. This enables the
design flow management system to present the state of
design to the designer in a more effective way, including
the adherence of the design to the configured application
specific design constraints.

6. An Example Design Flow
In this section we describe the design flow configuration
for an example design environment and illustrate how the
new framework service supports the designer in perform-
ing design activities. The design flow is depicted in figure
8.

design rule
checker

simulator

extractor

stimuli editor

simulator

results viewerlayout editor

expensive

Figure 8. Designer’s view of a design flow for an example
design environment.

The example design environment contains tools for layout
design and verification. Layout design descriptions can be
DRC-ed and circuit design descriptions can be extracted
from them. The simulators depicted in figure 8 need two
design objects, one circuit design object created by the
extractor activity and one stimuli design object created by
the stimuli editor activity. The stimuli object contains the
simulation control statements and the simulation input
data. The expensive simulator is a cpu and memory inten-
sive tool which may only be executed on a circuit design
object if the layout design object from which it was
extracted has been verified by the design rule checker.
We describe how the extractor and the expensive simula-
tor have been configured using the new constructs.

6.1 The extractor

The extractor tool is a single level hierarchical extractor.
Its activity definition is displayed in figure 9. When
invoked, the extractor derives an equivalent circuit for the
layout design object at port 1. The extractor may only be
invoked if the conditions as specified by input ports 1, 2
and 3 and ORCs A and B are satisfied. ORC A and port 2
specify that the children of the design object at port 1 are
accessed as well. Via ORC B and input port 3, it is man-
dated that for each child design object there must be an
equivalent circuit design object. In designer’s terms, this
means that the children of the layout design object at port
1 must have been extracted previously. During extraction
a circuit design object is created at port 4, and an
equivalence between the design objects at port 1 and port
4 is inserted, as specified by ORC C.

port 4: circuit

port 1: layout

port 2: layout

port 3: circuit

ORC C: auto-equiv

ORC A: hier

ORC B: check-equiv

Figure 9. Configurator’s view on the activity of the
hierarchical layout-to-circuit extraction tool.

6.2 The simulator

Figure 10 shows the activity definition for the expensive
simulator. This tool may only be executed on circuit
design objects that have been derived from DRC-ed layout
design objects. The circuit design object and stimuli
design object are accessed via ports 3 and 5, respectively.
Port 4 and ORC A indicate that the simulator traverses the
circuit hierarchy recursively. ORC B and condition port 2
specify that there must exist a layout object that was used
to extract the circuit object at port 3. ORC C and condi-
tion port 1 specify that this layout design object must have
been DRC-ed before the simulator may be started. Port 1
has been connected to the output port of the design rule
checker (see figure 8) to indicate that design objects at
port 1 must have been produced by that particular design
rule checker. The activity completes when the simulation
result has been related to both the circuit object and the
stimuli object via equivalence relationships, as specified
by ORC D and ORC E. The simulation run is invalidated
if one of these equivalences is invalidated.

ORC A: rec-hier

port 2: layout

port 1: drc-result

port 3: circuit

port 4: circuit

port 5: stimuli

ORC C: check-equiv

ORC B: check-equiv

ORC D: auto-equiv

ORC E: auto-equiv

port 6: sim-result

Figure 10. Configurator’s view on the activity of the
’expensive simulator’.

6.3 The design flow in motion

For the example design environment, we demonstrate how
the designer is assisted in making the right tool choices.
Figures 12-15 represent the state of design as shown to the
designer by the flow-based browser. The representations
of the activity states used in these figures are displayed in
figure 11.

disabled completedexecutable

Figure 11. Representations of the activity states.

In figure 12, a designer has created a hierarchical layout
design object A composed of design objects B-F. When
he wants to perform a layout-to-circuit extraction, to be
able to perform a simulation next, he notices that the
extractor activity remains disabled. When he prompts the
browser for the reason why, the explanation facility
informs him that there are no equivalent circuit design
objects for one or more of the children of layout design
object A. After having extracted circuit design objects for
these children, the browser updates the flow coloring and
allows him to extract an equivalent circuit design object
for design object A.

F

extractor

stimuli editor

simulator

results viewerlayout editor

expensive

simulator

design rule
checker

A

B C

D E

Figure 12. Designer’s view of the design flow after crea-
tion of a hierarchical layout design object.

In order to simulate his extracted circuit design object, the
designer needs to create a stimuli design object with the
stimuli editor. The new state of his design is displayed in
figure 13.

checker

extractor

stimuli editor

simulator

results viewerlayout editor

expensive

simulator

design rule

Figure 13. Colored design flow after layout-to-circuit
extraction of the hierarchical layout design
object A and stimuli editing.

The simulator activity is enabled for execution, whereas
the expensive simulator activity is not. When he asks the
browser, the explanation facility informs him that the lay-
out design object from which he extracted the circuit to be
simulated has not been DRC-ed yet. After having
remedied this omission he can simulate his design and
view the result. The resulting state of design is shown in
figure 14.

checker

extractor

stimuli editor

simulator

results viewerlayout editor

expensive

simulator

design rule

Figure 14. Colored design flow after simulation of the
extracted, hierarchical circuit design object.

Now suppose that the designer does not approve of his
simulation result and decides to modify layout design
object D. Upon this modification the consistency mechan-
ism invalidates the equivalence relationships between
design object A and its DRC result and between design
object A and its derived circuit. Note that we do not dis-
tinguish between static version binding and dynamic ver-
sion binding. Upon static binding the invalidation of the
equivalence may be implicit, since a new version of A
gets created upon inclusion of a new version of D. Due to
the (implicit or explicit) invalidations, the flow browser
does not display the derived design objects. The extractor
activity and the expensive simulator activity are disabled.
Figure 15 displays the resulting design state.

checker

extractor

stimuli editor

simulator

results viewerlayout editor

expensive

simulator

design rule

Figure 15. Colored design flow for design object A after
modifying layout design object D.

When the designer asks how the extractor may be enabled
for object A, he will be directed to object D which needs
to be extracted first.

7. Implementation
We have implemented the new flow constructs in the
Nelsis CAD Framework. We refer to [10] for a descrip-
tion of the architecture of this CAD framework, and its
design flow management system in particular. Nelsis has
a common meta data database for data management infor-
mation, design flow definition, and design flow run-time
information, structured according to a single data schema.
This data schema evolves as new services are added to the
framework. Our new flow constructs require a small
extension of the data schema, in order to permit the ORCs
and condition ports to be configured. Figure 16 shows
parts of the new data schema. Lines connecting corners of
boxes indicate specialization. We have introduced a new
object type ORC. An ORC relates a Source port to a Des-
tination port. An ORC can be an equivalence ORC
(object type EqOrc), in which case it also has an
equivalence class (object type EqClass). The PortType
attribute is used to distinguish condition ports.

DO

EquivalenceRel

EqClass

ViewType

Port

OrcType

Part
Flow Configuration

Part
Data Management

PortType

EqOrc

DesignObject

D

Orc

S

FlowGraph

Figure 16. Part of the new data schema for meta data
management, including the object type ORC.

The design flow management system of Nelsis has been
implemented as a kernel service and a flow-based user
interface [10]. The kernel service keeps track of all
relevant events that affect the state of design and main-
tains the meta data administration. It responds to requests
from clients, which may be tools as well as the flow-based
user interface, and notifies them when changes occur.
From the tool requests it learns which activities are per-
formed and which design objects and relationships are

accessed by these activities. The framework kernel has
been enhanced with a constraint checking facility, which
permits a constraint to be checked for a set of design
objects. Upon access to a design object via a port, the
flow management kernel has the corresponding constraint
checked. Upon activity completion it checks whether for
all produce equivalence ORCs an equivalence has been
produced and inserts the missing equivalences for the auto
equivalence ORCs.

The flow-based user interface employs the principle of
flow coloring, as explained in [7]. The flow coloring algo-
rithm has been extended to produce colorings that con-
form to the configured constraints. When it gets notified
of the invalidation of an equivalence, it has the constraints
that refer to the corresponding equivalence class re-
evaluated. This may yield a new flow coloring in which
activities have become disabled or verification results
have become invalid. The evaluation of individual con-
straints is done via the new facility.

Further, the user interface is extended with an expla-
nation facility which allows the end-user to ask why a
constraint is not satisfied. Internally this causes the user
interface to re-issue the constraint evaluation and display
the textual response. For example, failure of a constraint
defined by a hierarchy ORC and a check equivalence
ORC may produce the response: "Component D of layout
A has no equivalent circuit design object". As described
in [7], the flow-based user interface has been integrated
with other browsers such as a hierarchy browser and a
version browser.

8. Conclusion
We have introduced a small number of simple constructs
as extensions to a basic design flow model. These addi-
tional constructs enhance the capabilities of a design flow
management system to support the designer in performing
design activities on hierarchical multi-view design des-
criptions. The graphical user interface exploits the con-
straints to inform the designer more effectively about the
state of design when he is executing the configured design
process. This includes an explanation facility that can tell
why a tool is not yet executable or why a verification
result is no longer valid.

Key to our solution is that we establish a closer link
between design flow management and design data
management. Van den Hamer and Treffers have claimed
that the topics of design data management and design pro-
cess management are very closely interrelated, and that a
single set of concepts must handle both areas in a con-
sistent way [2]. We share this view and believe that the
simplicity of our solution is largely due to the recognition
of the ‘interrelatedness’ of both topics.

One may wonder why we didn’t resort to an extension
language facility for the expression of complex design
constraints. A language based approach could provide us
with the rich set of constructs offered by general purpose
programming languages. Potentially, this would make the
facility for constraint definition more expressive.

However, we felt that this advantage was outbalanced by
the advantages of our approach. Our solution is very sim-
ple. It yields a small number of simple constructs that
perfectly fit in our approach to design flow management.
The system configurator does not have to (learn and) use a
language. Constraint configuration is done via some extra
commands in our graphical design flow editor. The con-
straints directly relate to known flow constructs. The sim-
plicity helps to keep the explanation facility simple and
effective. A language based approach can make the
failure of a constraint hard to explain to the designer (in
his terminology). Finally we think that the simplicity of
our concept contributes to an efficient implementation.

Another observation is that tools may become simpler
as the generic mechanisms of CAD frameworks become
more powerful. In our case, if the framework guarantees
that complex tool-specific constraints are adhered to, then
the tools themselves would not have to check these con-
straints. Tool builders could then focus on the algorithmic
kernel of their tool, and have the boundary conditions for
its operation configured in the framework.

References
1. S. Kleinfeldt, M. Guiney, J. Miller, and M. Barnes,

‘‘Design Methodology Management’’, Proceedings of the
IEEE 82(2) pp. 231-250 (Feb 1994).

2. P. van den Hamer and M.A. Treffers, ‘‘A Data Flow
Based Architecture for CAD Frameworks’’, Proc. ICCAD
- 90, pp. 482-485 (1990).

3. J.B. Brockman and S.W. Director, ‘‘The Hercules CAD
Task Management System’’, Proc. IEEE ICCAD - 91, pp.
254-257 (1991).

4. K.O. ten Bosch, P. Bingley, and P. van der Wolf, ‘‘Design
Flow Management in the NELSIS CAD Framework’’,
Proc. 28th ACM/IEEE Design Automation Conference,
pp. 711-716 (June 1991).

5. A. Casotto, A.R. Newton, and A. Sangiovanni-Vincentelli,
‘‘Design Management based on Design Traces’’, Proc.
27th ACM/IEEE Design Automation Conference, pp.
136-141 (1990).

6. M. Rumsey and C. Farquhar, ‘‘Unifying Tool, Data and
Process Flow Management’’, Proc. EURO-DAC 92, pp.
500-505 (Sept 1992).

7. K.O. ten Bosch, P. van der Wolf, and P. Bingley, ‘‘A
Flow-Based User Interface for Efficient Execution of the
Design Cycle’’, Proc. IEEE/ACM International Confer-
ence on CAD - 93, pp. 356-363 (Nov 1993).

8. P. van der Wolf, G.W. Sloof, P. Bingley, and P. Dewilde,
‘‘Meta Data Management in the NELSIS CAD Frame-
work’’, Proc. 27th ACM/IEEE Design Automation Confer-
ence, pp. 142-145 (June 1990).

9. V. Vasudevan, Y. Mathys, and J. Tolar, ‘‘Damocles: An
Observer-Based Approach to Design Tracking’’, Proc.
IEEE/ACM International Conference on CAD - 92, pp.
546-551 (Nov 1992).

10. P. Bingley, K.O. ten Bosch, and P. van der Wolf, ‘‘Incor-
porating Design Flow Management in a Framework Based
CAD System’’, Proc. IEEE/ACM International Confer-
ence on CAD - 92, pp. 538-545 (Nov 1992).

11. J.H. ter Bekke, Semantic Data Modeling, Prentice Hall,
Englewood Cliffs, N.J. (1992). ISBN 0-13-806050-9.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

