I ncremental Formal Design Verification *

Gitanjali M. Swamy

Robert K. Brayton

Department of Electrical Engineering and Computer Science.
University of California at Berkeley
Berkeley, CA 94720

Abstract

Language containment is a method for design verification that
involves checking if the behavior of the system to be verified is
a subset of the behavior of the specifications (properties or re-
quirements), which it has to meet. If this check fails, language
containment returns a subset of ‘fair’ states involved in behavior
that the system exhibits but the specification does not. Current
techniquesfor language containment do not take advantage of the
fact that the process of design is incremental; namely that the
designer repeatedly modifies and re-verifies hisher design. This
resultsin unnecessary and cumber some computation. e present
a method, which successively modifies the latest result of verifica-
tion each time the design is modified. Our incremental algorithm
translates changes made by the designer to an addition or sub-
traction of edges, states or constraints (on acceptable behavior)
fromthe transition behavior or specification of the problem. Next,
these changes are used to update the set of ‘fair’ states previously
computed. This incremental algorithm is superior to the current
techniques for language containment; a conclusion supported by
the experimental results presentedin this paper.

1 Introduction

Design verification is the process of checking if what the designer
specifiedis what he/shewants. One of the waysto perform design
verification on sequential logic circuits is to specify the design
(also called the system), aswell as, the requirements of the design
(also called the properties) as a finite automaton (or finite state
machine), usually by the process of abstraction, and verify that
the language (the set of behaviors) of the property is a superset
of the language (or behavior) of the system. The requirement that
the language of the property contains the language of the system
is called language containment. If language containment fails, it
is due to the presence of states that show behavior that is in the
system but not in the property. This set of statesis called the set of
‘Fair states.

In general, the system itself need not be asingle finite state ma-
chine. It is more commonly expressed as a set of interacting finite
state machinesthat form a compound entity called the product ma-
chine. Figure 1 illustrates a system composed of three interacting
finite state machines. The transition relation of this system de-
scribes how the current state of the system and inputs relate to the
next state and outputs; it is the product of the individual trangtion
relations of the component machines. The problem of language
containment has to be solved in this environment of interacting
finite state machines.

Current techniques [1, 2] perform language containment as a
single pass. If the designer modifies the design after a solution has
been obtained, then the entire language containment algorithm is
repeated for the new problem. In practice, the process of designis

*Thiswork is supportedin part by the National Science Foundation, the California
Micro program, Bell Northern Research and Fujitsu

Permissionto copy without fee al or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires afee and/or specific permission.

Figure 1: A System of Interacting Finite State Machines

incremental; the designer modifies and reverifies the design many
times. If standard language containment algorithms are used in
real-life design situations, they result in redundant re-computation
of information because the similarity between the old system and
the new systemis not utilized. We introduce the concept of incre-
mental verification, which allows multiple changes to the system
but runs the entire language containment algorithm only once, and
propagates successive changes or increments from the latest solu-
tion.

The language containment algorithms of [1] and [2] start with
all reachable states, and successively reduce this set until only the
“fair” states remain. These algorithms are monotonic in nature,
i.e., once astateis removed from the set of potential fair states, it is
never added back. Hence, a similar algorithm that starts with any
superset of the fair set, would return the fair set. Our algorithm
usesinformation about the changein the system andthe original set
of fair statesto derive asmaller superset of fair states (smaller than
the set of all reachablestates). Thenit reducesthis supersetwith an
algorithm similar to [2]. Since this superset is much smaller than
the set of all reachable states, the incremental algorithm converges
faster.

Theaim of this exerciseisto get the new answer to the verifica-
tion decision problem, “Iswhat | specified what | wanted?’, using
theold solution and theincremental changesthat the designer made
to the input problem, while spending less time and effort in this
computation than if the entire language containment algorithm was
run on the new problem.

The paper is organized as follows. The basic terms used in the
paper are given in Section 2. Previous work is described in Sec-
tion 3. Our work beginsin section 4, by recognizing that all (small)
changesto the system can be translated to the addition and subtrac-
tion of edges, states and constraints. Next, we analyze how each

00 1994 ACM 0-89791-690-5/94/0011/0458 $3.50

of these changesto the system can be propagated to get the new
set of fair states or Fair T™** and prove the correctness of these
techniques. This section summarizeshow incremental changesare
classified and how each particular change can be handled individu-
ally. Next, the proceduresfor handling individual classesof change
are merged to get a general algorithm for handling any change to
the system. Section 5 describes the entire incremental language
containment algorithm. Finally, we conclude by presenting our
results in section 6 and give future direction for this research in
section 7. The interested reader may also refer to [3] for a more
detailed analysis.

It is important to keep in mind that all operations are to be
carried out in the context of the Binary Decision Diagram (BDD)
data structure[4]. Even though not explicitly stated, all quantities
are represented astheir BDD's [5].

2 Definitions

Definition 1 Finite State Machine: A finite state machine or
finite automaton M isa5-tuple (@, Z, I, T, I') where

o () isafinite set of states

> isafinite set of inputs

I" isa finite set of outputs
o T'CQxZIxTI x@QistheTransition Relation
e [isasetofinitial or starting states of the machine.

(g,0,v,t) € T meansthat fromstateq € @ oninput o € X, there
isatransitionto somestatet € @, whiletheoutputisy € I'. Thus
an FSM can be represented by a directed graph, whose vertices
are states, and edges are labelled with elements of (X x IM). This
directed graphis called a State Transition Graph.

Definition 2 Run: A sequenceof states, r = r,...7; ..., 7 €
Q¥,isarun,or apathof T'foraworde = (69...0:...),0 € ¥,
if ro € I'andfor ¢ > O, T(r;, 04, v, 1i+1) = 1. Theset I refers
to the set of initial states. The infinity set of a run r, denoted
inf(r), is the set of states that are visited infinitely many times in
r. Arunr over T' isaccepting if inf(r) satisfies some acceptance
condition C'. Theacceptancecondition C distinguishesdifferent w-
automata (Automata acceptinginfinitebehavior; eg. L-automata,
Buchi, Streett and Rabin automata), and is used to indicate what
is acceptable behavior.

Definition 3 The behavior (set of fair runs) of the systemis a
subset of the runs of the system. This subset is specified using
fairness constraints on the processes of the system. The fairness
conditions express restrictions on the infinitary behavior of the
finite state machine, and are used to model the system, the environ-
ment, and acceptablebehaviors. Fairnessconditions aremodelled
differently for different classes of automata. The language of an
automaton M, represented as L(3), is the set of all strings ac-
cepted by it.

Definition 4 Product Machine: Given a collection of intercon-
nected finite state machines { M1, M, ..., M, }, their product is
the finite state machine on the product state space. The transition
relation is the conjunction of the component transition relations.
A closed system of interacting FSM’s is a systemwith no external
inputs. Any open system can be closed by adding machines that
simulate the environment. Figure 2. showsa system of interacting
machines M and M3, where the corresponding product machine
M isindicated in figure 2.

0/b

8%2

Va log i

b/1 a0
al0, bt
SN
~_—
b/l

Ola

M1:i1,01

M2:i2,02

M =M1xM2

Figure 2: Forming the Product Machine

Definition 5 Language Containment: The requirement that the
language of the property (or specification) is a superset of the
language of the systemis called language containment. In the lan-
guage containment paradigm, verification of the systemis equiva-
lent to determining if thereisa fair path starting at aninitial state.
This path correspondsto behavior that is generated by the system
but rejected by the task or property automaton and it is a witness
to the failure of the property. The set of states which are involved
in fair behavior are called Fair states.

Definition 6 Streett Automaton [6]: An FSM, which ac-
cepts infinite behavior that satisfies the Streett acceptance con-
ditions is called a Streett automaton. The Streett accep-
tance condition consists of a finite set of ordered pairs ¢ =
{(U1, V1), (U2, V2), ..., (Un, Vn)} wheree; = (U;, V;) are sub-
sets of the state space of the machine and run r isaccepting if and
only if Vi ((inf(r) N U; # #) U (inf(r) C V;)), where ¢ ranges
over afinite set. This can also bewritten as F*°(U;) + G*°(V;).
There are an additional class of Fairness Constraints in the form
of Positive Fair Edge £; which must be traversed infinitely often
and Negative Fair Edge N; which must not be traversed infinitely
often in any accepting run r.

Definition 7 Rabin Automaton [7]: The fairness conditions for
a Rabin Automaton are the complements of the fairness conditions
for a Streett automaton.

Definition 8 Reachable states: The set of reachable states is
denoted by R, ¢ € R if and only if thereis a path (not necessarily
fair) fromsomeinitial stateqo € 7 togq.

Definition 9 FairT: The set of states which can reach or areon
a ‘fair cycle , i.e. a cycle which satisfies the fairness constraints,
constitute Fasr™. The presence of a non-empty set Fasr™ indi-
cates that the automaton has non-empty behavior.

2.1 Somelmportant Computations

This section describes the computation procedurefor all important
operatorsrequired in this paper.

1. Least Fixed Point Computation[8]: Given an initial set of
states So(x), atransition relation T'(«, y), and a variable set
z, the least fixed point returns a function LF P(z,T, So)
where L F' P is computed as follows.
LFP(z,T(z,y), Sn(x))
Snti(z) = (Fe(T(z,y) - Sn(x)) + Snle))y = z)

if (Snt1=5n)
return .S,
else

return LEP(x, T, Sny1)

2. Greatest Fixed Point Computation[8]: Given aninitial set
of states So(«), atransitionrelation7'(z, y), and avariable set
«, the greatest fixed point returns afunction G F P(x, T, So)
where G F' P is computed as follows.

GFP(z,T(z, y), Sn(z))
Sn+1(x) = (Elf(T(ma y) . Sn(x)))y:.r

if (Snt1=5n)
return S,
else

return GFP(z, T, Sny1)

. Forward Reachable Operator: Given T'(z, y), the transi-
tionrelationand A(z), aset of vertices, theforward reachable
operator returns the set of vertices which can be reached by
A. The forward reachable operator F'R is computed using
the following algorithm:

FR(T, A)
return LFP(z,T(z,y), A(z))

. Backward ReachableOperator : GivenT'(z, y), thetransi-
tion relation and A(z), a set of vertices, the backward reach-
able operator returns the set of vertices, which can reach A.
It can be computed as follows:

BR(T, A)
return LFP(z,T(y,), A(z))

. Reach Reachable States Operator: Given T'(z,y), the
Transition Relation and S(z), a set of vertices, the Reach
Reachable States operator returns the set of vertices which
canreach S or bereached by S. The Reach Reachable Sates
operator or RRS(T, S) is computed as follows:

RRS(T, 5)
return (BR(T, S) + FR(T, S))

. Forward Stable Set Operator[2]: Givenatransitionrelation
T(z,y) and a set of vertices A(z), the forward stable set
operator or F'SS(T, A) returns a set of states in A, which
are on a cycle or can reach acyclein A. Alternately, the
FSS operator removes from A all those states which have no
successorsstates (next states) in the transition structure. The
following algorithm is used to compute the Forward Stable
Set operator F.SS :

FSS(T, A)
return (GFP(y, T(=,y), A(z)))

. Forward Fair Path Operator[2]: Given T'(z, y), the tran-
sition relation, A(z), aset of statesand C, a set of fairness
constraints, theforward fair path operator or # F P(1',C, A),
returns a subset of states in A(xz) which are on a fair path.
For our analysis, C(x, y) are Streett fairness constraints in
the form C; = F*°(U;) + G*°(V;) and positive fair edges
E;i(z,y). Hence, F'F P returns those states « in A such that
1) for each F;, there is a path in A from « to E;, and 2)
for each C;, either « € V; or thereisa pathin A from a to
some state in U;. Note that this operator returns just a path
and not necessarily an infinite path. The FFP operator can be
computed by using the following algorithm:

FFP(T,C, A)
return((Hl.yclec(GFP(x,T, A-U))+Vin
(1, 5,ec(GFP(=,T, (3, E(y,2)))))

3 PreviousWork

The problem of verifying whether amachine (M) satisfiesa given
property (P) reducesto the problem of checking whether the lan-
guage of the machine automaton is contained in the language of
the property automaton [9]. The language containment check in
turn reducesto a language emptiness check for the product of the
system automaton and the complement of the property automaton.
Checkingwhether L(M) C L(P) isthe sameascheckingwhether
the languageof D = M N P isempty, or L(M N P) = ¢.

When P is expressed as an L-automaton, the problem of com-
plementing P is solved by expressing it as an L-process [1]. The
acceptance condition for L-processesand L-automata are comple-
mentary and representing P by a L-process is easily done (if P
is deterministic) by just keeping the same transition structure and
complementing the acceptance conditions (the complementation
is implicit by the choice of representation). Similarly when P is
expressed as a Rabin automaton the problem of complementation
is solved by expressing P as a Streett automaton, since the accep-
tance conditions for Rabin and Streett automata complementary.
Our experimentsare going to berun inthe framework of Streett and
Rabin automata. All successivediscussionsin this report, though
centered around Streett and Rabin automata, are also applicableto
other classes of automata.

A language emptiness check remains to be done, and it is per-
formed by checkingthe product automata > for acceptableinfinite
behavior[1] (or fair paths), which indicate that the languagefor the
system-property product machine is not empty. A cycleis asso-
ciated with any infinitary behavior in a finite graph, and in order
for this infinite behavior to be acceptable, this cycle must also sat-
isfy the fairness constraints. Thus, a machine has a non-empty
language if there exists a path from an initial state to an accepted
cycle, i.e, the cycle satisfies the fairness constraints specified in
the automaton. The set of states that lie on such cycles form a set
of fair statesor states, which causethefair or non-empty behavior.
Thisset isalso called the set of Fair states. In general, we compute
a superset of this set called Fairt, which consists of all states
which are on a path to afair cycle.

In [2] an agorithm for computation of Fadrt, within a Streett
environment, is given. The algorithm computes Fairt by starting
with the set of reachable states, and alternately applying the FSS,
and the FFP operators. These operators successively restrict the
original set of reachablestatesto thoseon apath from aninitial state
to acycle (FSS) and those which are on afair (or acceptable) path
(FFP). Thus, the set Flairt is obtained by successively shrinking
the set of reachable states until only those states that are on a fair
path from some initial state to afair cycle remain. The algorithm
for verification in the Streett-Rabin environment becomes:

Algorithm 3.1: Non_Incremental L anguage_.Containment
Fair™ = Compute_Fair *
if Fair™ isempty return(PASS)
elsereturn(FAIL)

Theset Fairt iscomputed using the following algorithm:

Algorithm 3.2: Compute_Fair*
Restrict the Transition Relation T'(z, y) to reachable states
Removenegative fair edges
Set So = Reachablestates
While Sp41 # Sn
S' = FSS(T, Sn)
Snt1= FFP(T,C,S")
return S,

The proof of correctness of this algorithm can be found in [2].

This algorithm has a complexity of O(N?), where N is the
number of reachable states in the state space. At each iteration of
thefixed point computation, at |east one statein the set of reachable
states, but notin Flair® isdeleted from the reachable set, and this
step takes O(N) time, which results in an overall complexity of
O(N?).

Though not explicitly stated in the above algorithm, the set of
reachablestates can also be used to minimize the transition relation
BDD. Thissimplification resultsin aconsiderablespeedupand will
be used throughout this paper without an explicit mention.

Incremental algorithmsfor certain graph problemswere studied
by Ramalingam et. al.[10]. This paper defined incremental algo-
rithms as algorithms, whose time complexity could be written as
a function of the change to the system alone, where the change
or A could be written as the sum of the change in the input and
output of the algorithms. Thus, A = Ainpur + Doutput, and the
complexity of the algorithm = O(f(A)). They also showed that
some problems were intrinsically non-incremental; i.e. there was
nolocally persistent (storing only local information) algorithm that
could be written for update, which had a complexity only depen-
dent on the size of the change. One such problemis the problem of
reachability, which is a very important part of verification. Hence,
for our purposes, we will impose a slightly lessrigid criterion for
incrementality, by requiring that the incremental algorithm take
less time than the corresponding non-incremental algorithm.

4 Incremental Language Containment
41 Overview

The computation of FasrT involves successiveapplications of the
F'SS and F' B P operators, which involve the successivereduction
of theset of statesinvolved. Itisimportant to notethat the algorithm
beginswith asuperset of thestatesin Fair ™ (namely all Reachable
States), and eliminates states. Once a state has been removed from
this set, it never is added in again and hence the agorithm is
monotonic. Our incremental algorithm is based on the fact that if
we supply any superset of Fair™ to algorithm 3.2, it still returns
the set Fairt. Thetrick lies in using the previously computed
Fair™ and the changesto the system to obtain a superset of the
new Fairt, which is not necessarily as large as the set of all
reachable states, and in most casesis significantly smaller. Given
a smaller set, the algorithm converges much faster and hence the
incremental algorithm is faster.

4.2 Characterizing Incremental Changes

Recall that Fairt is a set of states that characterize the fair or
unwanted behavior in the system. We want to use information
about the changes to the system to incrementally modify Fairt.
The potential for speedupin this methodisthat F'air* need not be
recomputed; intermediate results can be used to avoid unnecessary
computations.

At the start we proceed normally, running language containment
toobtain Fair . Oncethe designer changesthe system, the current
Fair™ is modified using information about the changes induced
in the system and this processis repeated as the system changes.

We have categorized six different incremental changes to an
instance of the language containment problem. Briefly, changes
to the system may consist of 1) addition or subtraction of edges
to the transition relation, 2) addition or subtraction of states (and
hence edges) to the state space of the machine and 3) addition or
subtraction of fairness constraints. Addition and subtraction of
states can be characterized in terms of edges. Clearly, removing a
state from the state spaceis equivalent (behaviorally) to removing
all edgesto the state, thus making it unreachable. Similarly, if a

state is added to the state space, it is similar to making one of the
unreachable statesin the state space reachable by adding edges.

Thus, we consider four types of incremental change: addition
and subtraction of edges and constraints. For each type we first
deal with a set of changes of the same type, and then we provide
a general incremental algorithm to handle a complex change with
many individual types. The algorithm is given in terms of implicit
BDD operations.

Suppose the designer modifies the original transition relation
T to a new transition relation 77¢*. Using 7 and T, we
create T°** and 744, T+ consists of the original transition
relation 7" minus all transitions, which were removed in 77 and
T4 js T*4* plus all the transitions added in 77¢*. Note that
Tedd — Tmew byt for the purposes of incremental modification
we can deal with 7%%¢ as a single modification to 7°“® by only
adding edges. The exact computation of 7% and 7 under
different changesin input is described in section 5.

Notethat fairness constraints never affect the transition structure;
they only affect the FFP operator (Section 2). The new fairness
constraints, with constraints added and subtracted from the original
set, are used to compute a new FFP operator.

4.3 Subtraction of Edges

Consider the system obtained after deleting a set of edgesfrom the
transition relation. Deleting an edge cannot make any unreachable
state reachable, nor can it create a new cyclein the state transition
graph. Thus, deleting an edge can never add anew stateto Fasrt.
Figure 3 indicatesthat deleting edge «b can potentially remove all

Figure 3: Deleting edge b can potentially remove all statesin A
and B from fair™

statesin sets A and B from the set Fair™. Thefollowing lemma
formalizes this idea.

Lemmad4.l The set FairT™** for the new system obtained by
deleting edges from the original transition relation is a subset of
the Fair™ of the original system.

Proof Assumetheconverse. 3.(s € Fair™™"), (s & Fair™).
Hences € R™*", where R™°“ isthe new reachable set, and s can
reach a new fair cycle. Since transitions have only been deleted
from the transition structure no states can be made reachable and
no new cycles can be added. Hence, s was reachablein T (the
original transition structure) and s could reach a fair cycle. This
contradicts s ¢ Fairt. m

Thus, if the only change induced in the system consists of re-
moval of edges from the state transition graph, then the following
algorithm can be used to generate Fasirt ™% given the new tran-
sition relation and the old set of states comprising Fair™.

Algorithm 4.3(T*%*%, C, Fairt)

InitSts = Initial States

Re“t = FR(T*", I'nitSts)

Remove Negative Fair Edgesfrom 7'¢%?
Fairg = Fairt N R

While Fairpy1 # Fairy,
A= FSS(T**, Fairy)
Fairnyr = FFP(T? C, A)

return Fairy,

Theorem 4.2 If the only changesinduced in the system consist of
removal of edgesfrom the state transition graph then algorithm4.3
iscorrectand returns Fairtme®

Proof Fromlemma4.l1and[2] =

Computing the conjunction of R***, and Fair™ in step 4. of
thealgorithm 4.3 is not necessary to the computation, but increases
the efficiency, if the computation of R*“? is not expensive. For
the evaluation of the complexity of thisalgorithm, this operationis
ignored.

Deletion of edgescan only remove states from Fair ™. At each
pass of the fixed-point computation in algorithm 4.3, at least one
state, which was in the old Flairt, but not in the new Fairt is
removed. Thus it converges in a most || Fairt — Fairt™®||
steps. But || Fair™ — Fair™™%|| = Aoutpus < A, and each step
takes O(V) time. Hence, the algorithm completesin O(N - A)
time.

44 Addition of Edges

Consider the addition of a set of edgesto the state transition graph.
Addition of edges may result in the creation of a new reachable
cycle whose states satisfy the fairness constraints. These states
are not necessarily in Fairt. Thus, addition of edges to the
state transition graph may increase Flair™ . Figure 4 indicates that

Figure 4: Adding edge b can potentially add all statesin A and
Bto Fairt

adding edge ab can potentially add all statesin sets A and B to the
set FairT. However, wewill be prove that if the addition of edges
resultsin the addition of one or more statesinto Fair™ then these
states must satisfy at least one of the following conditions in the
new Transition system 7¢%¢:

¢ The state belongs to the set, which can reach Fasr®. This
set Fair® iscomputed as:

Fair' = BR(T*, Fairt) (Section 2).

e The state can reach or be reached by one of the new transi-
tions. Thisset Fair? iscomputed as:

Fair® = RRS(T*%,3, Tz, y) - T(x,y)) (Section 2).

Lemma4.3 Thenewset Fairt™" isasubsetof FairlU Fair?,
i.e Fairt™® C Fairtt = Fairl U Fair?.

Proof Assume the converse. 3s(s € Fairt™), (s ¢
FairtT). Hence s € R*** where R s the reachable set,
computed using the transition structure 7¢?¢, and s can reach a
fair cycle in the new graph 794, If s € R, where R is the
old set of reachable states (using 7) and could reach afair cycle,
then s € Fair', which contradicts s ¢ Fair™t. Hence, s must
have been made reachable (and could reach a fair cycle) by addi-
tion of some new transition. Hences € Fair?. This contradicts
s ¢ Fairtt . m

The reader may also note that Fair ™™ C Fair™, since the
addition of edges can never remove states from Fasr™.

If the only changes to the system consist of edge addition, the
new set Fairt™* canbe computed asatwo step processthat first
computes Fair T+, and then reducesit by using the algorithm 4.3.

Algorithm 44T, T%% ¢, Fairt)
Fairtt = BR(T**, Fairt)u RRS(3,T(z,y) - T(z,y))
Remove Negative Fair Edges from 7444
Fairg = Fairtt
While Fairpy1 # Fair,
A = FSS(T* Fairy)
Fairnyr = FFP(T A ()
return Fairy,

Theorem 4.4 If the only changesinduced in the system consist of
addition of edgesfromthe state transition graph then Algorithm4.4
is correct and returnsthe new set Fairt™e®,

Proof FromLemma4.3and[2]. =

As noted in section 3, the set of reachable states can be used
to simplify the BDD for the transition relation. In the previous
algorithm the set of reachable states are not explicitly involved but
they are used to simplify the transition relation BDD. It is impor-
tant to note that for changes described in this section, reachability
computations do not need to be carried out by starting at the initial
states but need only proceed from the old set of reachable states R.
Thisresultsin considerable savingsin the computation.

The agorithm 4.4 converges in at most ||[Fairtt —
Fairt™”| = A’ steps. However, A” < N, where N is the
number of reachable states. Thus, the complexity of this algo-
rithm isO(N - A"). Since A < N this is faster than running the
non-incremental algorithm from the beginning.

45 Addition of Fairness Constraints

Theset Fairt satisfiesall thefairness constraints. If new fairness
constraints are only added, then the new set Fairt™" must sat-
isfy all of the older constraints as well as the new ones. The set
Fairt™" must be asubset of theold Fairt.

Lemma 4.5 If additional fairness constraints are imposed on the
system, then Fairt™” C Fairt.

Proof Assume the converse, 3.s € Fairt™™ s ¢ Fairt.
Addition of constraints never affect the transition structure, since
s € Fairt™", s must be on a reachable path to a fair cycle.
Hence, s must also be on areachable path to afair cyclein the old
transition system. s ¢ Fairt = 3.¢ € C, s violates ¢, where
C isthe old set of constraints. However, by assumption the new
set of constraints C™** O . Hence3d.c € C, s violatesc. This
contradicts s € Fairt™™ . u

If the only change to the system consists of addition of con-
straints, the algorithm for computation of the new Fair ™" is:

Algorithm 4.5(1", ™", Fair™)
Remove Negative Fair Edges
Compute F'F P™¢¥
Fairo = Fairt
While Fairpy1 # Fairy,

A= FSS(T, Fairy)
Fairnqy1 = FFP(T,C™", A)
return Fasry,

Theorem 4.6 If the only changesto the system consist of addition
of constraintsthen Algorithm4.5 is correctand returnsthe new set
Fairtmev,

Proof FromLemmad4.5and([2]. =

Using the same reasoning as section 4.3, this algorithm has a
time complexity of O(N - A), where N isthe number of reachable
states.

Theaddition of constraints can very easily be usedin conjunction
with the addition and subtraction of edges. If edgesare deleted, in
addition to adding constraints, algorithm 4.3 can be used with the
FFP operator (including the new constraints) to compute the new
set Fair ™™ . If edges are added then algorithm 4.4 can be used
in conjunction with the new FFP operator. Thefollowing lemmata
formalize this idea.

Lemma4.7 If additional fairness constraints areimposed on the
system, and edgesare only subtracted fromthe transition structure
then Fairt™" C Fair™T.

Proof Fromlemma4.1andlemma4.5a

With the previouslemma, it is easily observed that the subtrac-
tion of edges and addition of constraints can be simultaneously
handled by using algorithm 4.3 (for the subtraction of edges) with
the additional caveat that the FFP operator is modified to include
the new constraints.

Lemma4.8 If additional fairness constraints areimposed on the
system, and edges are only added to the transition structure then
Fairt™® C FairtT, where Fairtt isasdefinedinlemma4.3.

Proof Fromlemma4.3 andlemma4.5=

In asimilar manner to the previous analyses, it is observed that
the addition of edges and addition of constraints can be simulta-
neously handled by using algorithm 4.4 (for the addition of edges)
with the additional caveat that the new FFP operator (asdefinedin
lemma 4.5) is used for the computation.

4.6 Subtraction of Fairness Constraints

The set Fair® contains states involved in infinite behavior that
satisfy al fairness constraints C;. If some constraint C; =
F(U) + G*(V;) is subtracted, Fairt still contains states
that are involved in infinitary behavior, and satisfy all constraints
C; # C; (aswell as C;). Thus, the set Fair™ C Fairt™". In

additiontothestatesin Fairt, Fairt™°* asocontainsstatesthat
may be in infinitary behavior that violates the deducted constraint
C;. Suchstatesaredefinitely asubsetof RR.S (T, U; UV;); namely
statesthat may either reach or be reached by either U; or V;. Since
more than one constraint may be deducted, let C;, ¢« € S denoted
the set of constraints to be deducted.

Lemma4.9 If constraints C; = F*(U;) + G*(V;), i € S
are subtracted from the set of original constraints, then the set
Fairtm™® C Fairtt = RRS(T, Uies(Ui uVi)u Fair™.
Proof If 3.,z € Fair™™*", then ¢ is involved in infinitary
behavior, which satisfiesall constraintsC; = F*°(U;)+G*(V;),
j ¢ S. Theinfinitary behavior that = isinvolved in may or may
not satisfy C;, ¢ € S. If it satisfiesall C;,: € S, thenz € Fairt
= z € Fairtt. If it does not satisfy at least one of the C;,
¢ € S, then it must belong to infinitary behavior that violates the
corresponding C';, andit must belongto RRS(T, | J, .5 (Ui UVA)).
Hencez € FairtT. m

This leads to the following algorithm for changes, where con-
straints are only subtracted from the system.

Algorithm 4.6.1(T, C™% S, Fairt)
Fairtt = RRS(T, Uies(Ui uVi)u Fairt
Remove Negative Fair Edgesfrom T°
Fairg = Fairtt
While Fairpy1 # Fair,
A= FSS(T, Fairy)
Fairpy1 = FFP(T,C™", A)
return Fair,

If, in addition to constraint subtraction, edges were added (added

edges= (3,7 (x,y) - T(=, y))) to the transition structure then
the above formulation can be modified to account for it as follows:

Lemma4.10 If fairness constraints are subtracted from the
system, and edges are only added to the transition structure
then Fairt™ C Fairtt = RRS(T*, |, (Ui U Vi) U

(3,7 (2, y) - T(x,9))) U BR(T*, Fair't)

Proof Fromlemma4.3 and lemma4.9s

If subtraction of constraintsis used in conjunction with addition of
edges, then the following algorithm describes the computation of
the new Fairt™™.

Algorithm 4.6(T%% T, C*“* S, Fair™)

Fairtt = RRS(T*%, |, (U UV U (3, Tz, y) - T(x, y)))

UBR(T* Fairt)
Remove Negative Fair Edgesfrom T°
Fairg = Fairtt
While Fairpy1 # Fair,
A = FSS(T* Fairy)
Fairnyr = FFP(T Csvb A)
return Fair,

This agorithm has a complexity of O(N - A', where N is the
number of reachable states. The next section deals with putting
these individual algorithms together to form a general algorithm
which handlesany changeto the system.

5 General Algorithm

We describe an incremental algorithm for language containment,
when ageneral changeconsisting of deletion and addition of edges
from the transition structure and addition and subtraction of con-
straints, is applied to the system.

We begin by separating the augmented transition relation 7%
into 7°*°, which consists of the original transitions relation T
minusall transitionswhichwereremoved in7™** and 7“%¢ which
isseenas 7" plusall the transitions, which are added in 7<% .

The changeto the system can be seen as a two stage process; in
thefirst stage, constraints are added and edges are only subtracted
from the system. In the second stage constraints are only sub-
tracted and edgesare only added to the transition structure obtained
from the previous stage. The first stage computes an intermediate
Fairt™®! under the assumption that the only changes consist
of edge subtraction and constraint addition and for this stage, the
transition structure 7°“? is used. The second stage computes the
new Fairt™*! using asinput the intermediate Fa:+"** and the
new transition structure 7*<.

5.1 Computing 7% and 7°"* using 7" and T

Recall that, the augmented transition relation 77" is expressed
astwo separatetransition relations 7°** and 7¢%¢, where 7944 =
Tnew — Tsub + (Tnew _ T)

The designer modifiesthe original transition relation 7" to anew
transition relation 77“* by adding and subtracting edges from the
transition structure. In practice, this may be donein two ways:

1. The designer might choose to directly modify the Transi-
tion structure of the original system. If T@dd—cdges gng
Teub—edges represent the set of edges which are to be added
and subtracted, respectively, from the system Transition
graph; the corresponding 7“4 and 7*** can be computed
by using the following equations.

Tsub — T N T'sub—edges
Tadd _ Tsub U Tadd—edges

2. A designer can also modify the system by adding or subtract-
ing processes from the system of interacting processes and
imposing additional constraints on these new processes. 71
isthe product transition relation of only the added processes,
T°'4 is the transition relation of the original processes, and
T"" isthe new transition relation of the augmented system.
R istheset of stateswithin thetransition structure7: that are
reachable from the initial states (InitStsl) in it and it can be
computed as R1 = F'R(T1, InitStsl). In order to compute
T2 and T*“® in this framework the following equations
may be used:

T =T""nkRr
% =T nTrew
Tadd — Tnew — Tl nNT

Modifications can be made at many different levels. The de-
signer may input the changesin ahigh level language (e.g. Verilog).
Alternately, he/she might choose to augment individual subpro-
cessesin the system of interacting processesby directly modifying
the data-structure storing their transition relations and constraints.
In our implementation, the designer is allowed to directly change
theindividual transition relations, or input process constraints and
new processesviathe intermediate ‘ Pif’ [11] format.

5.2 Incremental Language Containment

The general algorithm for computation of Fairt™* is based on
4.3 and 4.4, with the additional caveat that the F'F' P is modified
to account for the changesin the set of constraints. As described
previously, the algorithm has two stagesfor its computation. First,

the changes due to deletion of the edges and next the changes due
to addition of new edgesare handled. Let 75%°, 7944 and Fair ™t

be defined as before and let C*?? be the set of constraints, which
consist of the old set of constraints plusadded constraints. Let C*“?
refer to the final set of constraints; i.e. C*“* = % — ;. i € S.
The general incremental language containment (ILC) algorithm:

Algorithm 5.2.1: Incremental L anguage_ Containment
Fair®™ = Incremental_Compute_Fair*
if Fair™ isempty return(PASS)
elsereturn(FAIL)

where the algorithm for the incremental computation of Fasr™ is:

Algorithm 5.2.2: Incremental_Compute_Fair*

Fairt™e*! = Algorithm 4.3(T<**, C*% Fairt)

Fairt™®® = Algorithm 4.6(T* T4t C** S Fairtrewl)
return Fairtme?

Theorem 5.1 Algorithm 5.2.2 is correct and returns the new set
Fairtmev,

Proof Thefirst stage of the algorithm does not involve addition
of edges, hence the use of algorithm 4.3 is valid and returns the
correct set of fair states, F'air™*™? for this subproblem to the next
stage (refer to theorem 4.2 and lemma4.7). The second stage does
not involvethe subtraction of edges; hencethe use of algorithm 4.6
isvalid and the correct set Flair™*" is returned (refer to theorem
4.4]lemma4.8 and lemma4.10) m

6 Results

We have implemented the algorithms described in the previous
section and tested these on a set of verification benchmarks. Each
example was modified, and the fair set was recomputed for agen-
eral changeto the system, which consists of addition and subtrac-
tion of edgesand constraints. The actual edges/constraintsthat are
added or subtracted from the transition relation are arbitrary, and
are chosen so asto makethe system passthe language containment
check.

The first row in each table reports the name of the example,
and the iteration number. The second row reports the time taken
by the incremental language containment (ILC) algorithm; this
includes the time for incremental update of input data, and re-
initialization. Thelast row reportsthetime for the non-incremental
(NLC) algorithmwith the non-incremental update; thisincludesthe
time for non-incremental input of data and initialization. The last
column reports the total incremental, and non-incremental times,
summed over all iterations.

Weran theincremental, and non-incremental algorithms on four
examples. The first example, Gigamax(Gmax), was a description
of the gigamax multiprocessor distributed, shared memory archi-
tecture. The secondexample, Scheduler(Schd), describesaversion
of the scheduler example by Milner [12], and the system consists
of a token ring, where element of the ring, called a cell, com-
municates with its "job", and its two nearest neighbor cells. The
third example, Tcp, describes a simplified version of the TCP/IP
communication protocol. The final example, Idic, describes an
industrial data link controller example. All the examples were
written in Verilog, and translated into the blif-mv format using the
vi2mv translator [13]. All successive incremental changes were
made directly to the system within the HSIS environment.

The results show that the incremental algorithm consistently
performs better than the non-incremental algorithm.

| [7] M. O. Rabin, Automata on Infinite Objects and Church’s

Problem, vol. 13 of Regional Conf. Series in Mathematics.
Providence, Rhode Island: American Mathematical Society,

| 1972.

[8] E.A.Emerson,“Temporal and Modal Logic,” in Formal Mod-
elsand Semantics (J. van Leeuwen, ed.), vol. B of Handbook

| of Theoretical Computer Science, pp. 996-1072, Elsevier

Science, 1990.

[9] M.Y. Vardi and P. L. Wolper, “An Automata-Theoretic Ap-

| proach to Program Verification,” in Proc. IEEE Symposium

[Gmax | 1 [2 [3 4 5 Total
ILCt 25.0 9.1 35.2 22.8 251 1173
NLC? 424 29.1 53.9 41.1 44.9 2115

[SShd T 1 [2 [3 [4 [5 [Totd
ILC 185 0.8 21.7 85 19.6 69.2
NLC 25.4 7.7 27.6 23.8 29.2 113.8

[Tep [1 [2 [3 [4 [5 [Totd
ILC 40.6 14.6 97.3 22.3 8.4 183.2
NLC 4477 | 4206 | 4639 | 4310 | 417.2 | 21805

[Ide [1 [2 [3 [4 [5 [Totd
ILC 2471 | 369.8 | 463.2 | 176.6 - 1256.7
NLC 2403.2 | 2659.4 | 2461.6 | 2573.3 - 10094.5

on Logicin Computer Science, pp. 332—334, 1986.

[10] G. Ramalingam and T. Reps, “On the Computational Com-

Table 1: NLC VsILC (in seconds)
1: ILC =Incremental algorithm and incremental data update

plexity of Incremental Algorithms” Tech. Rep. TR 1033,
University of Wisconsion, Madison, University of Wiscon-
sion, Madison, 1991.

2: NLC =Non-incremental algorithm and non-incremental datainput

7 Conclusionsand Future

We have presented aframework for incremental language contain-
ment and shown that the incremental algorithms can be superior
to non-incremental algorithms for small changesin the input prob-
lem. It is also to be noted (from the results)that as the size of
the example increases, so does the gain from using an incremental
algorithm. In addition, we are examining aternate methods for
inputing changes to the system. We are also searching for a set
of larger benchmarksto get more evidence for the superiority of
the incremental methods. Since language containment is just one
approachto the problem of design verification; weintend to extend
this work to model checking methods aswell.

8 Acknowledgements

Theauthorswould liketo thank Felice Balarin, Adnan Aziz, and the
UC Berkeley CAD group for their help ,and the National Science
Foundation for their support.

References

[1] H. Touati, R. K. Brayton, and R. P. Kurshan, “ Checking Lan-
guage Containment using BDDs,” in Proc. of Intl. Workshop
on Formal Methodsin VLS Design, (Miami, FL), Jan. 1990.

[2] R. Hojati, T. R. Shiple, R. K. Brayton, and R. P. Kurshan,
“A Unified Environment for Language Containment and Fair
CTL Model Checking,” in Proc. of the Design Automation
Conf., (Dallas, Texas), pp. 475-481, June 1993.

[3] G. M. Swamy and R. K. Brayton, “Incremental Formal De-
sign Verification,” Tech. Rep. UCB/ERL M94/, Electronics
Research Lab, Univ. of California, Berkeley, CA 94720,
1994.

[4] R. Bryant, “Graph-based Algorithms for Boolean Function
Manipulation,” IEEE Trans. Computers, vol. C-35, pp. 677—
691, Aug. 1986.

[5] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli, “Implicit State Enumeration of Fi-
nite State Machines using BDD'’s,” in Proc. Intl. Conf. on
Computer-Aided Design, pp. 130—133, Nov. 1990.

[6] R.S. Streett, “Propositional Dynamic Logic of Looping and
Converse is Elementary Decidable,” Information and Con-
trol, vol. 54, pp. 121-141, 1982.

[11] R.Hojati, V. Singhal,and R. K. Brayton, “ Edge-Streett/Edge-
Rabin Automata Environment for Formal Verification Us-
ing Language Containment,” Tech. Rep. UCB/ERL M94/12,
Electronics Research Lab, Univ. of California, Berkeley, CA
94720, 1994.

[12] R. Milner, Communication and Concurrency. New York:
Prentice Hall, 1989.

[13] R. B. et a., “HSIS: A BDD-Based Environment for For-
mal Verification,” in Proc. of the Design Automation Conf.,
pp. 454459, June 1994.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

