
Incremental Formal Design Verification �

Gitanjali M. Swamy Robert K. Brayton
Department of Electrical Engineering and Computer Science.

University of California at Berkeley
Berkeley, CA 94720

Abstract
Language containment is a method for design verification that
involves checking if the behavior of the system to be verified is
a subset of the behavior of the specifications (properties or re-
quirements), which it has to meet. If this check fails, language
containment returns a subset of ‘fair’ states involved in behavior
that the system exhibits but the specification does not. Current
techniques for language containment do not take advantage of the
fact that the process of design is incremental; namely that the
designer repeatedly modifies and re-verifies his/her design. This
results in unnecessary and cumbersome computation. We present
a method, which successively modifies the latest result of verifica-
tion each time the design is modified. Our incremental algorithm
translates changes made by the designer to an addition or sub-
traction of edges, states or constraints (on acceptable behavior)
from the transition behavior or specification of the problem. Next,
these changes are used to update the set of ‘fair’ states previously
computed. This incremental algorithm is superior to the current
techniques for language containment; a conclusion supported by
the experimental results presented in this paper.

1 Introduction
Design verification is the process of checking if what the designer
specified is what he/she wants. One of the ways to perform design
verification on sequential logic circuits is to specify the design
(also called the system), as well as, the requirements of the design
(also called the properties) as a finite automaton (or finite state
machine), usually by the process of abstraction, and verify that
the language (the set of behaviors) of the property is a superset
of the language (or behavior) of the system. The requirement that
the language of the property contains the language of the system
is called language containment. If language containment fails, it
is due to the presence of states that show behavior that is in the
system but not in the property. This set of states is called the set of
‘Fair’ states.

In general, the system itself need not be a single finite state ma-
chine. It is more commonly expressed as a set of interacting finite
state machines that form a compound entity called the product ma-
chine. Figure 1 illustrates a system composed of three interacting
finite state machines. The transition relation of this system de-
scribes how the current state of the system and inputs relate to the
next state and outputs; it is the product of the individual transition
relations of the component machines. The problem of language
containment has to be solved in this environment of interacting
finite state machines.

Current techniques [1, 2] perform language containment as a
single pass. If the designer modifies the design after a solution has
been obtained, then the entire language containment algorithm is
repeated for the new problem. In practice, the process of design is

�This work is supported in part by the National Science Foundation, the California
Micro program, Bell Northern Research and Fujitsu

M1

M2

M3

i1

y1
x1

i2
o2

y2 x2

y3 x3

o3T1

T2

i3

T3o1

Figure 1: A System of Interacting Finite State Machines

incremental; the designer modifies and reverifies the design many
times. If standard language containment algorithms are used in
real-life design situations, they result in redundant re-computation
of information because the similarity between the old system and
the new system is not utilized. We introduce the concept of incre-
mental verification, which allows multiple changes to the system
but runs the entire language containment algorithm only once, and
propagates successive changes or increments from the latest solu-
tion.

The language containment algorithms of [1] and [2] start with
all reachable states, and successively reduce this set until only the
“fair” states remain. These algorithms are monotonic in nature,
i.e., once a state is removed from the set of potential fair states, it is
never added back. Hence, a similar algorithm that starts with any
superset of the fair set, would return the fair set. Our algorithm
uses information about the change in the system and the original set
of fair states to derive a smaller superset of fair states (smaller than
the set of all reachable states). Then it reduces this superset with an
algorithm similar to [2]. Since this superset is much smaller than
the set of all reachable states, the incremental algorithm converges
faster.

The aim of this exercise is to get the new answer to the verifica-
tion decision problem, “Is what I specified what I wanted?”, using
the old solution and the incremental changes that the designer made
to the input problem, while spending less time and effort in this
computation than if the entire language containment algorithm was
run on the new problem.

The paper is organized as follows. The basic terms used in the
paper are given in Section 2. Previous work is described in Sec-
tion 3. Our work begins in section 4, by recognizing that all (small)
changes to the system can be translated to the addition and subtrac-
tion of edges, states and constraints. Next, we analyze how each

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0458 $3.50

of these changes to the system can be propagated to get the new
set of fair states or Fair+new and prove the correctness of these
techniques. This section summarizes how incremental changes are
classified and how each particular change can be handled individu-
ally. Next, the procedures for handling individual classesof change
are merged to get a general algorithm for handling any change to
the system. Section 5 describes the entire incremental language
containment algorithm. Finally, we conclude by presenting our
results in section 6 and give future direction for this research in
section 7. The interested reader may also refer to [3] for a more
detailed analysis.

It is important to keep in mind that all operations are to be
carried out in the context of the Binary Decision Diagram (BDD)
data structure[4]. Even though not explicitly stated, all quantities
are represented as their BDD’s [5].

2 Definitions
Definition 1 Finite State Machine: A finite state machine or
finite automatonM is a 5-tuple (Q; Σ;Γ; T; I) where

� Q is a finite set of states

� Σ is a finite set of inputs

� Γ is a finite set of outputs

� T � Q � Σ� Γ�Q is the Transition Relation

� I is a set of initial or starting states of the machine.

(q; �;
; t) 2 T means that from state q 2 Q on input � 2 Σ, there
is a transition to some state t 2 Q, while the output is
 2 Γ. Thus
an FSM can be represented by a directed graph, whose vertices
are states, and edges are labelled with elements of (Σ� Γ). This
directed graph is called a State Transition Graph.

Definition 2 Run: A sequence of states, r = ro : : : ri : : : ; r 2
Q
! , is a run,or a path of T for a word� = (�0 : : : �i : : :), � 2 Σ! ,

if r0 2 I and for i � 0, T (ri; �i;
i; ri+1) = 1. The set I refers
to the set of initial states. The infinity set of a run r, denoted
inf(r), is the set of states that are visited infinitely many times in
r. A run r over T is accepting if inf(r) satisfies some acceptance
conditionC . The acceptance conditionC distinguishes different!-
automata (Automata accepting infinite behavior; e.g. L-automata,
Buchi, Streett and Rabin automata), and is used to indicate what
is acceptable behavior.

Definition 3 The behavior (set of fair runs) of the system is a
subset of the runs of the system. This subset is specified using
fairness constraints on the processes of the system. The fairness
conditions express restrictions on the infinitary behavior of the
finite state machine, and are used to model the system, the environ-
ment, and acceptable behaviors. Fairness conditions are modelled
differently for different classes of automata. The language of an
automaton M , represented as L(M), is the set of all strings ac-
cepted by it.

Definition 4 Product Machine: Given a collection of intercon-
nected finite state machines fM1;M2; : : : ;Mng, their product is
the finite state machine on the product state space. The transition
relation is the conjunction of the component transition relations.
A closed system of interacting FSM’s is a system with no external
inputs. Any open system can be closed by adding machines that
simulate the environment. Figure 2. shows a system of interacting
machines M1 and M2, where the corresponding product machine
M is indicated in figure 2.

M1:i1,01 M2:i2,o2
M = M1 x M2

0/b

0/a, 1/b

1/a

0/a

s2s1

b/1

a/0, b/1

a/0

t1 t2

b/1

(s1,t1)
(b,1)

(s1,t2)

(s2,t2)
(a,0), (b,1)

(s2,t1)

(a,0)
(a,0)

o1

o2i1

i2

Figure 2: Forming the Product Machine

Definition 5 Language Containment: The requirement that the
language of the property (or specification) is a superset of the
language of the system is called language containment. In the lan-
guage containment paradigm, verification of the system is equiva-
lent to determining if there is a fair path starting at an initial state.
This path corresponds to behavior that is generated by the system
but rejected by the task or property automaton and it is a witness
to the failure of the property. The set of states which are involved
in fair behavior are called Fair states.

Definition 6 Streett Automaton [6]: An FSM, which ac-
cepts infinite behavior that satisfies the Streett acceptance con-
ditions is called a Streett automaton. The Streett accep-
tance condition consists of a finite set of ordered pairs C =
f(U1; V1); (U2; V2); : : : ; (Un; Vn)g where ci = (Ui; Vi) are sub-
sets of the state space of the machine and run r is accepting if and
only if 8i((inf(r) \ Ui 6= ;) [(inf(r) � Vi)), where i ranges
over a finite set. This can also be written as F1(Ui) +G

1(Vi).
There are an additional class of Fairness Constraints in the form
of Positive Fair Edge Ei which must be traversed infinitely often
and Negative Fair Edge Ni which must not be traversed infinitely
often in any accepting run r.

Definition 7 Rabin Automaton [7]: The fairness conditions for
a Rabin Automaton are the complements of the fairness conditions
for a Streett automaton.

Definition 8 Reachable states: The set of reachable states is
denoted by R, q 2 R if and only if there is a path (not necessarily
fair) from some initial state q0 2 I to q.

Definition 9 Fair+: The set of states which can reach or are on
a ‘fair cycle’ , i.e. a cycle which satisfies the fairness constraints,
constitute Fair+ . The presence of a non-empty set Fair+ indi-
cates that the automaton has non-empty behavior.

2.1 Some Important Computations
This section describes the computation procedure for all important
operators required in this paper.

1. Least Fixed Point Computation[8]: Given an initial set of
states S0(x), a transition relation T (x; y), and a variable set
x, the least fixed point returns a function LFP (x; T; S0)
where LFP is computed as follows.
LFP(x;T (x; y); Sn(x))
Sn+1(x) = (9x(T (x; y) � Sn(x)) + Sn(x))(y := x)
if (Sn+1 = Sn)

return Sn
else

return LFP (x;T; Sn+1)

2. Greatest Fixed Point Computation[8]: Given an initial set
of statesS0(x), a transition relationT (x; y), and a variable set
x, the greatest fixed point returns a function GFP (x; T; S0)
where GFP is computed as follows.

GFP(x;T (x; y); Sn(x))
Sn+1(x) = (9x(T (x; y) � Sn(x)))y:=x
if (Sn+1 = Sn)

return Sn
else

return GFP (x; T; Sn+1)

3. Forward Reachable Operator: Given T (x; y), the transi-
tion relation andA(x), a set of vertices, the forward reachable
operator returns the set of vertices which can be reached by
A. The forward reachable operator FR is computed using
the following algorithm:

FR(T;A)
return LFP (x; T (x; y); A(x))

4. Backward Reachable Operator : Given T (x; y), the transi-
tion relation andA(x), a set of vertices, the backward reach-
able operator returns the set of vertices, which can reach A.
It can be computed as follows:

BR(T;A)
return LFP (x; T (y; x);A(x))

5. Reach Reachable States Operator: Given T (x; y), the
Transition Relation and S(x), a set of vertices, the Reach
Reachable States operator returns the set of vertices which
can reach S or be reached by S. The Reach Reachable States
operator or RRS(T; S) is computed as follows:

RRS(T; S)
return (BR(T; S) + FR(T; S))

6. Forward Stable Set Operator[2]: Given a transition relation
T (x; y) and a set of vertices A(x), the forward stable set
operator or FSS(T; A) returns a set of states in A, which
are on a cycle or can reach a cycle in A. Alternately, the
FSS operator removes from A all those states which have no
successors states (next states) in the transition structure. The
following algorithm is used to compute the Forward Stable
Set operatorFSS :

FSS(T;A)
return (GFP (y; T (x; y);A(x)))

7. Forward Fair Path Operator[2]: Given T (x; y), the tran-
sition relation, A(x), a set of states and C , a set of fairness
constraints, the forward fair path operator orFFP (T;C;A),
returns a subset of states in A(x) which are on a fair path.
For our analysis, C(x; y) are Streett fairness constraints in
the form Ci = F

1(Ui) + G
1(Vi) and positive fair edges

Ei(x; y). Hence, FFP returns those states a in A such that
1) for each Ej , there is a path in A from a to Ej , and 2)
for each Ci, either a 2 Vi or there is a path in A from a to
some state in Ui. Note that this operator returns just a path
and not necessarily an infinite path. The FFP operator can be
computed by using the following algorithm:

FFP(T;C;A)
return((

Q
i;ci2C

(GFP (x;T; A � Ui)) + Vi)\

(
Q

j;Ej2C
(GFP (x;T; (9yEj(y; x)))))

3 Previous Work
The problem of verifying whether a machine (M) satisfies a given
property (P) reduces to the problem of checking whether the lan-
guage of the machine automaton is contained in the language of
the property automaton [9]. The language containment check in
turn reduces to a language emptiness check for the product of the
system automaton and the complement of the property automaton.
Checking whetherL(M) � L(P) is the same as checking whether
the language of D =M \ P is empty, or L(M \ P) = �.

When P is expressed as an L-automaton, the problem of com-
plementing P is solved by expressing it as an L-process [1]. The
acceptance condition for L-processes and L-automata are comple-
mentary and representing P by a L-process is easily done (if P
is deterministic) by just keeping the same transition structure and
complementing the acceptance conditions (the complementation
is implicit by the choice of representation). Similarly when P is
expressed as a Rabin automaton the problem of complementation
is solved by expressing P as a Streett automaton, since the accep-
tance conditions for Rabin and Streett automata complementary.
Our experiments are going to be run in the framework of Streett and
Rabin automata. All successive discussions in this report, though
centered around Streett and Rabin automata, are also applicable to
other classes of automata.

A language emptiness check remains to be done, and it is per-
formed by checking the product automataD for acceptable infinite
behavior[1] (or fair paths), which indicate that the language for the
system-property product machine is not empty. A cycle is asso-
ciated with any infinitary behavior in a finite graph, and in order
for this infinite behavior to be acceptable, this cycle must also sat-
isfy the fairness constraints. Thus, a machine has a non-empty
language if there exists a path from an initial state to an accepted
cycle, i.e., the cycle satisfies the fairness constraints specified in
the automaton. The set of states that lie on such cycles form a set
of fair states or states, which cause the fair or non-empty behavior.
This set is also called the set of Fair states. In general, we compute
a superset of this set called Fair

+ , which consists of all states
which are on a path to a fair cycle.

In [2] an algorithm for computation of Fair+ , within a Streett
environment, is given. The algorithm computesFair+ by starting
with the set of reachable states, and alternately applying the FSS,
and the FFP operators. These operators successively restrict the
original setof reachablestates to those on a path from an initial state
to a cycle (FSS) and those which are on a fair (or acceptable) path
(FFP). Thus, the set Fair+ is obtained by successively shrinking
the set of reachable states until only those states that are on a fair
path from some initial state to a fair cycle remain. The algorithm
for verification in the Streett-Rabin environment becomes:

Algorithm 3.1: Non Incremental Language Containment
Fair

+ = Compute Fair+

if Fair+ is empty return(PASS)
else return(FAIL)

The set Fair+ is computed using the following algorithm:

Algorithm 3.2: Compute Fair+

Restrict the Transition Relation T (x; y) to reachable states
Remove negative fair edges
Set S0 = Reachable states
While Sn+1 6= Sn

S
0 = FSS(T; Sn)

Sn+1 = FFP (T;C; S0)
return Sn

The proof of correctness of this algorithm can be found in [2].

This algorithm has a complexity of O(N 2), where N is the
number of reachable states in the state space. At each iteration of
the fixed point computation, at least one state in the set of reachable
states, but not in Fair+ is deleted from the reachable set, and this
step takes O(N) time, which results in an overall complexity of
O(N 2).

Though not explicitly stated in the above algorithm, the set of
reachable states can also be used to minimize the transition relation
BDD. This simplification results in a considerablespeedupand will
be used throughout this paper without an explicit mention.

Incremental algorithms for certain graph problems were studied
by Ramalingam et. al.[10]. This paper defined incremental algo-
rithms as algorithms, whose time complexity could be written as
a function of the change to the system alone, where the change
or ∆ could be written as the sum of the change in the input and
output of the algorithms. Thus, ∆ = ∆input + ∆output , and the
complexity of the algorithm = O(f(∆)). They also showed that
some problems were intrinsically non-incremental; i.e. there was
no locally persistent (storing only local information) algorithm that
could be written for update, which had a complexity only depen-
dent on the size of the change. One such problem is the problem of
reachability, which is a very important part of verification. Hence,
for our purposes, we will impose a slightly less rigid criterion for
incrementality, by requiring that the incremental algorithm take
less time than the corresponding non-incremental algorithm.

4 Incremental Language Containment
4.1 Overview
The computation ofFair+ involves successive applications of the
FSS and FBP operators, which involve the successive reduction
of the set of states involved. It is important to note that the algorithm
begins with a supersetof the states inFair+ (namely all Reachable
States), and eliminates states. Once a state has been removed from
this set, it never is added in again and hence the algorithm is
monotonic. Our incremental algorithm is based on the fact that if
we supply any superset of Fair+ to algorithm 3.2, it still returns
the set Fair+ . The trick lies in using the previously computed
Fair

+ and the changes to the system to obtain a superset of the
new Fair

+ , which is not necessarily as large as the set of all
reachable states, and in most cases is significantly smaller. Given
a smaller set, the algorithm converges much faster and hence the
incremental algorithm is faster.

4.2 Characterizing Incremental Changes
Recall that Fair+ is a set of states that characterize the fair or
unwanted behavior in the system. We want to use information
about the changes to the system to incrementally modify Fair+ .
The potential for speedup in this method is thatFair+ need not be
recomputed; intermediate results can be used to avoid unnecessary
computations.

At the start we proceed normally, running language containment
to obtainFair+. Once the designer changes the system,the current
Fair

+ is modified using information about the changes induced
in the system and this process is repeated as the system changes.

We have categorized six different incremental changes to an
instance of the language containment problem. Briefly, changes
to the system may consist of 1) addition or subtraction of edges
to the transition relation, 2) addition or subtraction of states (and
hence edges) to the state space of the machine and 3) addition or
subtraction of fairness constraints. Addition and subtraction of
states can be characterized in terms of edges. Clearly, removing a
state from the state space is equivalent (behaviorally) to removing
all edges to the state, thus making it unreachable. Similarly, if a

state is added to the state space, it is similar to making one of the
unreachable states in the state space reachable by adding edges.

Thus, we consider four types of incremental change: addition
and subtraction of edges and constraints. For each type we first
deal with a set of changes of the same type, and then we provide
a general incremental algorithm to handle a complex change with
many individual types. The algorithm is given in terms of implicit
BDD operations.

Suppose the designer modifies the original transition relation
T to a new transition relation T

new . Using T
new and T , we

create T
sub and T

add . T
sub consists of the original transition

relation T minus all transitions, which were removed in Tnew and
T
add is T sub plus all the transitions added in T

new . Note that
T
add = T

new , but for the purposes of incremental modification
we can deal with T

add as a single modification to T
sub by only

adding edges. The exact computation of Tadd and T
sub under

different changes in input is described in section 5.
Note that fairness constraints never affect the transition structure;

they only affect the FFP operator (Section 2). The new fairness
constraints, with constraints added and subtracted from the original
set, are used to compute a new FFP operator.

4.3 Subtraction of Edges
Consider the system obtained after deleting a set of edges from the
transition relation. Deleting an edge cannot make any unreachable
state reachable, nor can it create a new cycle in the state transition
graph. Thus, deleting an edge can never add a new state to Fair+ .
Figure 3 indicates that deleting edge ab can potentially remove all

A B

a b

Fair+

a b

Figure 3: Deleting edge ab can potentially remove all states in A
and B from fair

+

states in sets A and B from the set Fair+ . The following lemma
formalizes this idea.

Lemma 4.1 The set Fair+new for the new system obtained by
deleting edges from the original transition relation is a subset of
the Fair+ of the original system.

Proof Assume the converse. 9s(s 2 Fair
+new); (s 62 Fair

+).
Hence s 2 R

new , where Rnew is the new reachable set, and s can
reach a new fair cycle. Since transitions have only been deleted
from the transition structure no states can be made reachable and
no new cycles can be added. Hence, s was reachable in T (the
original transition structure) and s could reach a fair cycle. This
contradicts s 62 Fair

+ .
Thus, if the only change induced in the system consists of re-

moval of edges from the state transition graph, then the following
algorithm can be used to generate Fair+new given the new tran-
sition relation and the old set of states comprisingFair+ .

Algorithm 4.3(T sub
; C;Fair

+)
InitSts = Initial States
R
sub = FR(T sub

; InitSts)
Remove Negative Fair Edges from T

sub

Fair0 = Fair
+ \Rsub

While Fairn+1 6= Fairn

A = FSS(T sub
; Fairn)

Fairn+1 = FFP (T sub
; C;A)

return Fairn

Theorem 4.2 If the only changes induced in the system consist of
removalof edges from the state transition graph then algorithm 4.3
is correct and returnsFair+new

Proof From lemma 4.1 and [2]
Computing the conjunction of Rsub, and Fair+ in step 4. of

the algorithm 4.3 is not necessary to the computation, but increases
the efficiency, if the computation of Rsub is not expensive. For
the evaluation of the complexity of this algorithm, this operation is
ignored.

Deletion of edges can only remove states from Fair
+ . At each

pass of the fixed-point computation in algorithm 4.3, at least one
state, which was in the old Fair

+ , but not in the new Fair
+ is

removed. Thus it converges in at most kFair+ � Fair
+newk

steps. But kFair+ � Fair
+newk = ∆output � ∆, and each step

takes O(N) time. Hence, the algorithm completes in O(N � ∆)
time.

4.4 Addition of Edges
Consider the addition of a set of edges to the state transition graph.
Addition of edges may result in the creation of a new reachable
cycle whose states satisfy the fairness constraints. These states
are not necessarily in Fair

+ . Thus, addition of edges to the
state transition graph may increaseFair+ . Figure 4 indicates that

a

Old-Fair+

a

A B
b

Figure 4: Adding edge ab can potentially add all states in A and
B to Fair+

adding edge ab can potentially add all states in setsA and B to the
setFair+ . However, we will be prove that if the addition of edges
results in the addition of one or more states into Fair+ then these
states must satisfy at least one of the following conditions in the
new Transition system T

add:

� The state belongs to the set, which can reach Fair+ . This
set Fair1 is computed as:

Fair
1 = BR(Tadd

; Fair
+) (Section 2).

� The state can reach or be reached by one of the new transi-
tions. This set Fair2 is computed as:

Fair
2 = RRS(Tadd

;9yT
add(x; y) � T (x; y)) (Section 2).

Lemma 4.3 The new setFair+new is a subset of Fair1[Fair2,
i.e. Fair+new � Fair

++ � Fair
1 [Fair2.

Proof Assume the converse. 9s(s 2 Fair
+new); (s 62

Fair
++). Hence s 2 R

add where R
add is the reachable set,

computed using the transition structure Tadd , and s can reach a
fair cycle in the new graph T

add . If s 2 R, where R is the
old set of reachable states (using T) and could reach a fair cycle,
then s 2 Fair

1 , which contradicts s 62 Fair
++ . Hence, s must

have been made reachable (and could reach a fair cycle) by addi-
tion of some new transition. Hence s 2 Fair

2 . This contradicts
s 62 Fair

++ .
The reader may also note that Fair+new � Fair

+ , since the
addition of edges can never remove states from Fair

+ .
If the only changes to the system consist of edge addition, the

new set Fair+new can be computed as a two step process that first
computesFair++ , and then reduces it by using the algorithm 4.3.

Algorithm 4.4(T; Tadd
; C;Fair

+)
Fair

++ = BR(Tadd
; Fair

+) [RRS(9yT
add(x; y) � T (x; y))

Remove Negative Fair Edges from T
add

Fair0 = Fair
++

While Fairn+1 6= Fairn

A = FSS(Tadd
; Fairn)

Fairn+1 = FFP (Tadd
;A;C)

return Fairn

Theorem 4.4 If the only changes induced in the system consist of
addition of edges from the state transition graph then Algorithm 4.4
is correct and returns the new set Fair+new .

Proof From Lemma 4.3 and [2].
As noted in section 3, the set of reachable states can be used

to simplify the BDD for the transition relation. In the previous
algorithm the set of reachable states are not explicitly involved but
they are used to simplify the transition relation BDD. It is impor-
tant to note that for changes described in this section, reachability
computations do not need to be carried out by starting at the initial
states but need only proceed from the old set of reachable statesR.
This results in considerable savings in the computation.

The algorithm 4.4 converges in at most kFair++ �
Fair

+newk = ∆0 steps. However, ∆0 � N , where N is the
number of reachable states. Thus, the complexity of this algo-
rithm is O(N � ∆0). Since ∆ � N this is faster than running the
non-incremental algorithm from the beginning.

4.5 Addition of Fairness Constraints
The set Fair+ satisfies all the fairness constraints. If new fairness
constraints are only added, then the new set Fair+new must sat-
isfy all of the older constraints as well as the new ones. The set
Fair

+new must be a subset of the old Fair+ .

Lemma 4.5 If additional fairness constraints are imposed on the
system, then Fair+new � Fair

+ .

Proof Assume the converse, 9ss 2 Fair
+new

; s 62 Fair
+ .

Addition of constraints never affect the transition structure, since
s 2 Fair

+new , s must be on a reachable path to a fair cycle.
Hence, s must also be on a reachable path to a fair cycle in the old
transition system. s 62 Fair

+) 9cc 2 C , s violates c, where
C is the old set of constraints. However, by assumption the new
set of constraints Cnew � C . Hence 9cc 2 C , s violates c. This
contradicts s 2 Fair

+new .
If the only change to the system consists of addition of con-

straints, the algorithm for computation of the new Fair
+new is:

Algorithm 4.5(T; Cnew
; Fair

+)
Remove Negative Fair Edges
Compute FFPnew

Fair0 = Fair
+

While Fairn+1 6= Fairn

A = FSS(T; Fairn)
Fairn+1 = FFP (T;Cnew

;A)
return Fairn

Theorem 4.6 If the only changes to the system consist of addition
of constraints then Algorithm 4.5 is correctand returns the new set
Fair

+new .

Proof From Lemma 4.5 and [2].
Using the same reasoning as section 4.3, this algorithm has a

time complexity ofO(N �∆), where N is the number of reachable
states.

The addition of constraints can very easily be used in conjunction
with the addition and subtraction of edges. If edges are deleted, in
addition to adding constraints, algorithm 4.3 can be used with the
FFP operator (including the new constraints) to compute the new
set Fair+new . If edges are added then algorithm 4.4 can be used
in conjunction with the new FFP operator. The following lemmata
formalize this idea.

Lemma 4.7 If additional fairness constraints are imposed on the
system, and edges are only subtracted from the transition structure
then Fair+new � Fair

+ .

Proof From lemma 4.1 and lemma 4.5
With the previous lemma, it is easily observed that the subtrac-

tion of edges and addition of constraints can be simultaneously
handled by using algorithm 4.3 (for the subtraction of edges) with
the additional caveat that the FFP operator is modified to include
the new constraints.

Lemma 4.8 If additional fairness constraints are imposed on the
system, and edges are only added to the transition structure then
Fair

+new � Fair
++ , whereFair++ is as defined in lemma 4.3.

Proof From lemma 4.3 and lemma4.5
In a similar manner to the previous analyses, it is observed that

the addition of edges and addition of constraints can be simulta-
neously handled by using algorithm 4.4 (for the addition of edges)
with the additional caveat that the new FFP operator (as defined in
lemma 4.5) is used for the computation.

4.6 Subtraction of Fairness Constraints
The set Fair+ contains states involved in infinite behavior that
satisfy all fairness constraints Ci . If some constraint Ci =
F
1(Ui) + G

1(Vi) is subtracted, Fair+ still contains states
that are involved in infinitary behavior, and satisfy all constraints
Cj 6= Ci (as well as Ci). Thus, the set Fair+ � Fair

+new . In

addition to the states in Fair+ , Fair+new also contains states that
may be in infinitary behavior that violates the deducted constraint
Ci . Such states are definitely a subsetofRRS(T; Ui[Vi); namely
states that may either reach or be reached by eitherUi or Vi . Since
more than one constraint may be deducted, let Ci; i 2 S denoted
the set of constraints to be deducted.

Lemma 4.9 If constraints Ci = F
1(Ui) + G

1(Vi), i 2 S

are subtracted from the set of original constraints, then the set
Fair

+new � Fair
++ = RRS(T;

S
i2S

(Ui [Vi)) [Fair
+ .

Proof If 9x; x 2 Fair
+new , then x is involved in infinitary

behavior, which satisfies all constraintsCj = F
1(Uj)+G

1(Vj),
j 62 S. The infinitary behavior that x is involved in may or may
not satisfy Ci , i 2 S. If it satisfies all Ci , i 2 S, then x 2 Fair

+

) x 2 Fair
++ . If it does not satisfy at least one of the Ci,

i 2 S, then it must belong to infinitary behavior that violates the
correspondingCi , and it must belong to RRS(T;

S
i2S

(Ui[Vi)).
Hence x 2 Fair

++ .
This leads to the following algorithm for changes, where con-

straints are only subtracted from the system.

Algorithm 4.6.1(T; Cnew
; S; Fair

+)
Fair

++ = RRS(T;
S

i2S
(Ui [Vi)) [Fair

+

Remove Negative Fair Edges from T

Fair0 = Fair
++

While Fairn+1 6= Fairn

A = FSS(T; Fairn)
Fairn+1 = FFP (T;Cnew

;A)
return Fairn

If, in addition to constraint subtraction, edges were added (added
edges= (9yT

add(x;y) � T (x; y))) to the transition structure then
the above formulation can be modified to account for it as follows:

Lemma 4.10 If fairness constraints are subtracted from the
system, and edges are only added to the transition structure
then Fair

+new � Fair
++ = RRS(Tadd

;

S
i2S

(Ui [Vi) [

(9yT
add(x;y) � T (x; y))) [BR(Tadd

; Fair
+)

Proof From lemma 4.3 and lemma 4.9
If subtraction of constraints is used in conjunction with addition of
edges, then the following algorithm describes the computation of
the new Fair

+new .

Algorithm 4.6(Tadd
; T;C

sub
; S; Fair

+)
Fair

++ = RRS(Tadd
;

S
i2S

(Ui [Vi) [(9yT
add(x; y) � T (x; y)))

[BR(Tadd
; Fair

+)
Remove Negative Fair Edges from T

Fair0 = Fair
++

While Fairn+1 6= Fairn

A = FSS(Tadd
; Fairn)

Fairn+1 = FFP (Tadd
; C

sub
;A)

return Fairn

This algorithm has a complexity of O(N � ∆0, where N is the
number of reachable states. The next section deals with putting
these individual algorithms together to form a general algorithm
which handles any change to the system.

5 General Algorithm
We describe an incremental algorithm for language containment,
when a general change consisting of deletion and addition of edges
from the transition structure and addition and subtraction of con-
straints, is applied to the system.

We begin by separating the augmented transition relation Tnew

into T
sub , which consists of the original transitions relation T

minus all transitions which were removed inTnew andTadd which
is seen as T sub plus all the transitions, which are added in Tnew .

The change to the system can be seen as a two stage process; in
the first stage, constraints are added and edges are only subtracted
from the system. In the second stage constraints are only sub-
tracted and edges are only added to the transition structure obtained
from the previous stage. The first stage computes an intermediate
Fair

+new1 under the assumption that the only changes consist
of edge subtraction and constraint addition and for this stage, the
transition structure T sub is used. The second stage computes the
newFair

+new1 using as input the intermediate Fairnew1 and the
new transition structure Tadd.

5.1 Computing T add and T
sub using Tnew and T

Recall that, the augmented transition relation T
new is expressed

as two separate transition relations T sub and Tadd , where Tadd =
T
new = T

sub + (Tnew � T).
The designer modifies the original transition relation T to a new

transition relation Tnew by adding and subtracting edges from the
transition structure. In practice, this may be done in two ways:

1. The designer might choose to directly modify the Transi-
tion structure of the original system. If Tadd�edges and
T
sub�edges represent the set of edges which are to be added

and subtracted, respectively, from the system Transition
graph; the corresponding Tadd and T sub can be computed
by using the following equations.

T
sub = T \ T sub�edges

T
add = T

sub [Tadd�edges

2. A designer can also modify the system by adding or subtract-
ing processes from the system of interacting processes and
imposing additional constraints on these new processes. T1

is the product transition relation of only the added processes,
T
old is the transition relation of the original processes, and

T
new is the new transition relation of the augmented system.

R1 is the set of states within the transition structureT1 that are
reachable from the initial states (InitSts1) in it and it can be
computed as R1 = FR(T1; InitSts1). In order to compute
T
add and T

sub in this framework the following equations
may be used:

T = T
old \R1

T
sub = T \ Tnew

T
add = T

new = T1 \ T

Modifications can be made at many different levels. The de-
signer may input the changes in a high level language (e.g. Verilog).
Alternately, he/she might choose to augment individual subpro-
cesses in the system of interacting processes by directly modifying
the data-structure storing their transition relations and constraints.
In our implementation, the designer is allowed to directly change
the individual transition relations, or input process constraints and
new processes via the intermediate ‘Pif’ [11] format.

5.2 Incremental Language Containment
The general algorithm for computation of Fair+new is based on
4.3 and 4.4, with the additional caveat that the FFP is modified
to account for the changes in the set of constraints. As described
previously, the algorithm has two stages for its computation. First,

the changes due to deletion of the edges and next the changes due
to addition of new edges are handled. Let T sub, Tadd and Fair+

be defined as before and let Cadd be the set of constraints, which
consist of the old set of constraints plus added constraints. LetCsub

refer to the final set of constraints; i.e. Csub = C
add �Ci; i 2 S.

The general incremental language containment (ILC) algorithm:

Algorithm 5.2.1: Incremental Language Containment
Fair

+ = Incremental Compute Fair+

if Fair+ is empty return(PASS)
else return(FAIL)

where the algorithm for the incremental computation ofFair+ is:

Algorithm 5.2.2: Incremental Compute Fair+

Fair
+new1 = Algorithm 4:3(T sub

; C
add

; Fair
+)

Fair
+new = Algorithm 4:6(Tadd

; T
sub

; C
sub

; S; Fair
+new1)

return Fair+new

Theorem 5.1 Algorithm 5.2.2 is correct and returns the new set
Fair

+new .

Proof The first stage of the algorithm does not involve addition
of edges, hence the use of algorithm 4.3 is valid and returns the
correct set of fair states,Fairnew1 for this subproblem to the next
stage (refer to theorem 4.2 and lemma 4.7). The second stage does
not involve the subtraction of edges; hence the use of algorithm 4.6
is valid and the correct set Fairnew is returned (refer to theorem
4.4,lemma 4.8 and lemma 4.10)

6 Results
We have implemented the algorithms described in the previous
section and tested these on a set of verification benchmarks. Each
example was modified, and the fair set was recomputed for a gen-
eral change to the system, which consists of addition and subtrac-
tion of edges and constraints. The actual edges/constraints that are
added or subtracted from the transition relation are arbitrary, and
are chosen so as to make the system pass the language containment
check.

The first row in each table reports the name of the example,
and the iteration number. The second row reports the time taken
by the incremental language containment (ILC) algorithm; this
includes the time for incremental update of input data, and re-
initialization. The last row reports the time for the non-incremental
(NLC) algorithm with the non-incremental update; this includes the
time for non-incremental input of data and initialization. The last
column reports the total incremental, and non-incremental times,
summed over all iterations.

We ran the incremental, and non-incremental algorithms on four
examples. The first example, Gigamax(Gmax), was a description
of the gigamax multiprocessor distributed, shared memory archi-
tecture. The secondexample, Scheduler(Schd), describes a version
of the scheduler example by Milner [12], and the system consists
of a token ring, where element of the ring, called a cell, com-
municates with its "job", and its two nearest neighbor cells. The
third example, Tcp, describes a simplified version of the TCP/IP
communication protocol. The final example, Idlc, describes an
industrial data link controller example. All the examples were
written in Verilog, and translated into the blif-mv format using the
vl2mv translator [13]. All successive incremental changes were
made directly to the system within the HSIS environment.

The results show that the incremental algorithm consistently
performs better than the non-incremental algorithm.

Gmax 1 2 3 4 5 Total

ILC1 25.0 9.1 35.2 22.8 25.1 117.3
NLC2 42.4 29.1 53.9 41.1 44.9 211.5

Schd 1 2 3 4 5 Total

ILC 18.5 0.8 21.7 8.5 19.6 69.2
NLC 25.4 7.7 27.6 23.8 29.2 113.8

Tcp 1 2 3 4 5 Total

ILC 40.6 14.6 97.3 22.3 8.4 183.2
NLC 447.7 420.6 463.9 431.0 417.2 2180.5

Idlc 1 2 3 4 5 Total

ILC 247.1 369.8 463.2 176.6 - 1256.7
NLC 2403.2 2659.4 2461.6 2573.3 - 10094.5

Table 1: NLC Vs ILC (in seconds)
1: ILC =Incremental algorithm and incremental data update
2: NLC =Non-incremental algorithm and non-incremental data input

7 Conclusions and Future
We have presented a framework for incremental language contain-
ment and shown that the incremental algorithms can be superior
to non-incremental algorithms for small changes in the input prob-
lem. It is also to be noted (from the results)that as the size of
the example increases, so does the gain from using an incremental
algorithm. In addition, we are examining alternate methods for
inputing changes to the system. We are also searching for a set
of larger benchmarks to get more evidence for the superiority of
the incremental methods. Since language containment is just one
approach to the problem of design verification; we intend to extend
this work to model checking methods as well.

8 Acknowledgements
The authors would like to thank Felice Balarin,Adnan Aziz, and the
UC Berkeley CAD group for their help ,and the National Science
Foundation for their support.

References
[1] H. Touati, R. K. Brayton, and R. P. Kurshan, “Checking Lan-

guage Containment using BDDs,” in Proc. of Intl. Workshop
on Formal Methods in VLSI Design, (Miami, FL), Jan. 1990.

[2] R. Hojati, T. R. Shiple, R. K. Brayton, and R. P. Kurshan,
“A Unified Environment for Language Containment and Fair
CTL Model Checking,” in Proc. of the Design Automation
Conf., (Dallas, Texas), pp. 475–481, June 1993.

[3] G. M. Swamy and R. K. Brayton, “Incremental Formal De-
sign Verification,” Tech. Rep. UCB/ERL M94/, Electronics
Research Lab, Univ. of California, Berkeley, CA 94720,
1994.

[4] R. Bryant, “Graph-based Algorithms for Boolean Function
Manipulation,” IEEE Trans. Computers, vol. C-35, pp. 677–
691, Aug. 1986.

[5] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli, “Implicit State Enumeration of Fi-
nite State Machines using BDD’s,” in Proc. Intl. Conf. on
Computer-Aided Design, pp. 130–133, Nov. 1990.

[6] R. S. Streett, “Propositional Dynamic Logic of Looping and
Converse is Elementary Decidable,” Information and Con-
trol, vol. 54, pp. 121–141, 1982.

[7] M. O. Rabin, Automata on Infinite Objects and Church’s
Problem, vol. 13 of Regional Conf. Series in Mathematics.
Providence, Rhode Island: American Mathematical Society,
1972.

[8] E. A. Emerson, “Temporal and Modal Logic,” in Formal Mod-
els and Semantics (J. van Leeuwen, ed.), vol. B of Handbook
of Theoretical Computer Science, pp. 996–1072, Elsevier
Science, 1990.

[9] M. Y. Vardi and P. L. Wolper, “An Automata-Theoretic Ap-
proach to Program Verification,” in Proc. IEEE Symposium
on Logic in Computer Science, pp. 332–334, 1986.

[10] G. Ramalingam and T. Reps, “On the Computational Com-
plexity of Incremental Algorithms,” Tech. Rep. TR 1033,
University of Wisconsion, Madison, University of Wiscon-
sion, Madison, 1991.

[11] R. Hojati, V. Singhal, and R. K. Brayton, “Edge-Streett/Edge-
Rabin Automata Environment for Formal Verification Us-
ing Language Containment,” Tech. Rep. UCB/ERL M94/12,
Electronics Research Lab, Univ. of California, Berkeley, CA
94720, 1994.

[12] R. Milner, Communication and Concurrency. New York:
Prentice Hall, 1989.

[13] R. B. et al., “HSIS: A BDD-Based Environment for For-
mal Verification,” in Proc. of the Design Automation Conf.,
pp. 454–459, June 1994.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

