
Iterative Algorithms for Formal Veri�cation of Embedded

Real-Time Systems

Felice Balarin� Alberto L. Sangiovanni-Vincentelli

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720

Abstract

Most embedded real-time systems consists of many

concurrent components operating at signi�cantly dif-

ferent speeds. Thus, an algorithm for formal veri-

�cation of such systems must e�ciently deal with a

large number of states and large ratios of timing con-

stants. We present such an algorithm based on timed
automata, a model where a �nite state system is aug-

mented with time measuring devices called timers. We

also present a semi-decision procedure for an extended

model where timers can be decremented. This exten-

sion allows describing behaviors that are not express-

ible by timed automata, for example interrupts in a

real-time operating system.

1 Introduction

Most of the recent developments in formal veri�ca-
tion of real-time systems stem from the work of Alur
and Dill [1]. They de�ne timed automata, a model
where a �nite state system is augmented with real-
valued, time measuring devices called timers. Even
though the state space of timed automata is in�nite,
they provide a construction of an equivalent �nite-
state system called a region automaton.

Each state of a region automaton consists of an un-
timed part corresponding to the state of the original
�nite-state system, and a region corresponding to pos-
sible values of timers. Unfortunately, the number of
reachable untimed parts is typically exponential in the
number of components of the system, and the number
of regions grows exponentially not only with the num-
ber of timers, but also in the sizes of constants used in
timing constraints. The latter is particularly problem-
atic for sti� real-time systems, i.e. systems consisting
of components operating at widely di�erent speeds.
Most of the embedded systems can be classi�ed as sti�

�Supported by SRC under grant # 94-DC-008.

real-time systems. For example, in an automotive sys-
tem the engine revolution data may be collected sev-
eral thousands times in one second, while the cabin
temperature may be checked only once every ten sec-
onds. Even when time constants in the environment
do not vary so widely, most embedded systems con-
tain both (typically slow) software and (typically fast)
hardware components.

The primary contribution of this paper is a new
iterative algorithm for sti� real-time systems with the
following features:

1. it can be combined with implicit state enumer-
ation techniques (e.g. [4]), therefore it can deal
e�ciently with large untimed state spaces, and

2. the complexity of every iteration does not depend
on the sizes of timing constants, therefore itera-
tions are e�cient even for sti� systems.

One approach to managing a large number of re-
gions is to represent sets of regions symbolically with
matrices. This approach proved to be fairly insensitive
to sti�ness [8, 2], but untimed parts of all reachable
states have to be explicitly enumerated. Thus, this
approach can be used only for systems with a small
untimed portion of the state space.

Another iterative approach was suggested by Alur
et al. [3]. This approach is compatible both with ex-
plicit and implicit state enumeration techniques, but
the problem is that in every iteration they construct
what is essentially a complete region automaton for a
subset of timers. Thus, this approach is not suitable
for sti� real-time systems.

Finally, in our previous work [7] we have suggested
an approach where in every iteration we construct an
automaton the state space of which does not depend
on the sizes of timing constants. However, in any iter-
ation we may introduce some auxiliary I/O variables,
with the number of values proportional to timing con-
stants in the model. Thus, this approach may still suf-
fer from sti�ness, as shown by experiments presented

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0450 $3.50

in section 6.

Of course, the approach presented here is just a
heuristic and not a general e�cient solution for a prob-
lem that is known to be PSPACE-complete [1]. Even
though every iteration is e�cient, the number of it-
eration can be exponential, and in the worst case the
full region automaton is constructed in the last itera-
tion. Fortunately, the worst case is rare: we have yet
to �nd a real example that requires the construction
of the full region automaton.

Another contribution of this paper is a semi-
decision procedure for an extended model that allow
timers to be decremented. We show how this exten-
sion can be used to model features (such as interrupts)
which cannot be modeled with standard timed au-
tomata.

2 Timed automata with decrement

To be able to treat uniformly both strict and non-
strict inequalities we introduce the concept of bounds
similar to [3]. The domain of bounds is the extension
of the set of integers with expressions of the form n�

and n+, which can be thought of as real numbers in-
�nitesimally smaller (larger) than integer n. The ad-
dition, negation and comparison to reals is then natu-
rally extended to bounds [5]. For example, x � n+ is
equivalent to x > n, and �(n�) = (�n)+.

Let V = fx1; : : : ; xng denote a set of timer vari-

ables. The set timing constraints 	 is the set of for-
mulas of the form x � a, x � b or x� y � c, where x
and y are timer variables, and a, b, and c are bounds.
Let 2	 denote the set of all �nite subsets of 	. A

timer valuation � : V ! R assigns a real value to ev-
ery timer variable. We say that a timer valuation �

satis�es timing constraints x � a, (x � b, x � y � c)
if � (x) � a, (� (x) � b, � (x)� � (y) � c, respectively).

A timed automaton with decrement (TAD) is a 8-
tuple (�; Q; I; TR; V; TO; TM;F) where � is some �-
nite set of I/O values, Q is some �nite set of states,
I � Q is a set of initial states, TR � Q � � � Q is a
transition relation, V = fx1; : : : ; xng is a set of timer
variables, TO : Q � Q ! 2	 is a timing obligation,
TM : Q � Q � V ! fresetg [f0; 1; 2; : : :g is a timer

modi�er, and F � Q is a set of �nal states.

We say that a sequence of states q0q1 : : : qn 2 Q� is
a run of a sequence of I/O values �1�2 : : :�n 2 �� if for
all i = 1; : : : ; n: (qi�1; �i; qi) 2 TR. A run is initialized
if q0 2 I. A run is terminated if qn 2 F . A sequence
0 = �0 < �1 < �2 < : : : < �n of non-negative real
numbers is a consistent timing of q0q1 : : : qn if there

exists a sequence of timer valuation �1�2 : : : �n such
that for all i = 1; : : : ; n:

the timing obligation is ful�lled: �i satis�es all

timing constraints in TO(qi�1; qi),

the timer modi�er is obeyed: for all timer vari-
ables x 2 V : �i(x) = �i � �i�1 if i = 1 or
TM (qi�2; qi�1; x) = reset, and otherwise:

�i(x) = �i�1(x)� TM (qi�2; qi�1; x) + �i � �i�1 :

A run is accepting if it is initialized, terminated
and admits a consistent timing. The formal veri�-
cation problem typically reduces to deciding an ex-
istence of an accepting run [4]. This problem is un-
decidable for TAD's in general [5], but Alur and Dill
have shown [1] that it is decidable (in fact PSPACE-
complete) for timed automata, a subclass of TAD's
satisfying TM (q; s; x) 2 freset; 0g for all q; s 2 Q and
all x 2 V .

An untimed automaton is just a special case timed
automaton with an empty set of timer variables. We
denote it by (�; Q; I; TR; F). Checking language
emptiness of untimed automata can be done in time
proportional to the number of states [9].

3 Examples

In the railroad crossing in Figure 1 (adapted
from [2]), the system has three components: the train,
the gate, and the controller, and all states are �nal.
The set of I/O values is a domain of the vector vari-
able (t; c; g), where the the domain of component t
is fo; a; ig (indicating that the train can be out, ap-
proaching or in the crossing), the domain of c is fl; rg
(indicating that the controller can instruct the gate to
lower or raise), and the domain of g is fu; dg (indicat-
ing that the controller can be up or down).

The train approaches from outside of the crossing.
After at least two time units of approaching, the train
will enter the crossing, and then exit at most �ve
time units from the beginning of the cycle. Exactly
one time unit after the train approaches the controller
commands the gate to lower, and with a delay of at
most one time unit the gate will close. Similarly, at
most one time unit after the train exits the crossing
the controller commands the gate to raise, and with a
delay of at least one and at most two time units the
gate will open. For simplicity, we require the train to
approach only if the gate is up.

Two properties to be veri�ed are:

L2R

c = l

t = i

g = d ^ c = rc = l ^ t = o

g = u g = d

z < 1

DOWN

t = a^ g = u

t = o

z < 2

g = u ^ c = r

c = r ^ t = a

y := 0x := 0
g = u ^ c = l

z := 0

c = r

y < 1

LOWER

g = u

y < 1 y:=0

y = 1

c = rt = at = o

x < 5
D2UIN

2 � x < 5

g = d

z := 0

g = d ^ c = lc = l ^ t 6= o

x < 5

1 < z < 2

z < 1

c = r ^ t 6= a

y < 1

OUT

x < 5

APP RAISE R2L

t = i

c = l

UP

GATECONTR.TRAIN

U2D

Figure 1: Railroad crossing example.

safety: the gate is down whenever the train is in the
crossing, and

liveness: the gate is never down for more than seven
time units.

The veri�cation problem is to decide an existence of
an accepting run in the composition of the automata
in Figure 1 with the automata specifying the behavior
violating the properties.

An example of a TAD which is not a timed automa-
ton is shown in Figure 2. It represents a model of the
i-th task in a real-time operating system running on a
single processor machine [6]. The whole system con-
sists of n such tasks, for i = 0; : : : ; n � 1. The task i

is activated by an interrupt of the i-th type. Between
two occurrence of such interrupts at least pi time units
must pass, as measured by the timer xi. When an in-
terrupt occurs, the corresponding task starts running
if no other task is running. Otherwise, it goes to the
pend state. The task i requires ri time units to ex-
ecute, as measured by the timer yi. Once running,
the task cannot be preempted by another task, but if
an interrupt occurs (i.e. tj = interrupt for some j),
the service routine that takes d time units is executed.
To model this we decrement yi by d whenever an in-
terrupt occurs. Since yi continues to increase, this
is equivalent to \freezing" yi for d time units.1 The
tasks are prioritized, so when the processor is available
(i.e. tj = done for some j), the pending task with the
lowest index will start running.

The property to be veri�ed is that every task com-
pletes before the next interrupt of its type occurs. This
property can be violated if the time a task needs to
complete (ri � yi) becomes larger than the time until
the next possible interrupt of the same type (pi� xi).
Therefore, whenever such a condition occurs, the au-
tomaton moves to the dead state, which is the unique

1The idea that decrementing a timer is in some cases equiv-

alent to freezing it is due to McManis [10].

�nal state. The system is veri�ed if it has an empty
language, i.e. no paths to the dead state.

4 Veri�cation algorithm

We start a veri�cation by relaxing all the timing
constraints. If the veri�cation succeeds, we have veri-
�ed the task. If the veri�cation fails, there is at least
one accepting run in the current abstraction. If that
run violates no timing constraints, the property is not
satis�ed and the veri�cation fails. However, if the run
does violate some timing constraints, we compose the
current abstraction of the system with some simple
automata that:

� preserve all the accepting runs in the original
TAD,

� eliminate the reported run.

We repeat this process until the veri�cation is ter-
minated, either successfully or unsuccessfully. This
strategy can lead to signi�cant savings in time and
space, provided that the behavior of the system is not
heavily dependent on the timing constraints.

function verify timed(�;Q; I; TR; V; TO; TM;F)

T := (�;Q; I; TR; F);

repeat

if (r :=verify(T)) = NULL then return NULL;

if (G :=analyze(T;r)) = NULL then return r;

T :=modify(G;T);

end repeat

end function

Figure 3: Iterative veri�cation procedure.

The veri�cation procedure is shown in Figure 3.
The function verify timed returns some accepting run

ti = interrupt ^ si
xi � pi
xi := yi := 0

ti = pend ^ si
xi < pi � ri

yi := 0

ti = interrupt ^ �si

xi := 0
xi � pi

run2

ti = dead
xi � pi � ri

ti = done
yi = ri ^ xi < pi

dead

ti = dead

ti = run ^

n�1_
j=0

tj = interrupt

yi < ri ^ xi � yi < pi � ri

yi := yi � d

pend

run1idle

xi < pi � ri

ti = pend ^ �si

yi � ri ^ xi � yi � pi � ri
ti = dead

ti = idle
ti = run ^

n�1^
j=0

tj 6= interrupt

yi < ri ^ xi � yi < pi � ri

si �

i�1^
j=0

(tj = idle) ^

n�1^
j=i+1

(tj 6= run)

Figure 2: A model of a real-time operating system.

in (�; Q; I; TR; V; TO; TM;F) if such a run exist, and
otherwise it returns NULL. It calls three auxiliary
functions: verify, analyze, and modify. The function
verify is an untimed analog of verify timed. It returns
some accepting run in T , if such a run exist, and
otherwise it returns NULL. Our procedure does not
depend on any particular implementation of verify as
long as it generates a failure report in the form of a
run.

In the rest of this section, we �rst describe func-
tions analyze (section 4.1) and modify (section 4.3),
and sketch the proof of correctness (section 4.4) for the
restricted case of timed automata with no constraints
of the form x� y � c. Then we provide an extension
to include these constraints (section 4.5). Finally, in
section 4.6 we give a semi-decision procedure for arbi-
trary TAD's.

4.1 Failure analysis

Assume that the function verify in Figure 3 returns
a run q0q1 : : : qn. We want to check whether there
exists a consistent timing �1; : : : ; �n of that run.

The consistent timing must satisfy two classes of
constraints: those induced by the timing obligation
and those induced by the requirement that the time is
strictly increasing. To treat constraints of both type
uniformly, we assume (without loss of generality) that
there exists a timer x 2 V , such that it is reset on
every transition, and x > 0 is an enabling condition
of every transition (i.e. 8q; r:(TM (q; r; x) = reset and
(x > 0) 2 TO(q; r))).

To check whether a run q0q1 : : : qn admits a con-
sistent timing we form a graph. To every transition
(qi�1; qi) we associate a node i, and we add to the

graph a distinguished node 0. Edges in the graph cor-
respond to timing constraints. Given some constraint
x � c or x � c in TO(qi�1; qi) let k be the last node
before i on which the timer x was reset, i.e.:

k = maxfj < ijj = 0 or TM (qj�1; qj; x) = resetg ;

and let B be some set of transitions conditioned by
that constraint that includes at least the transition
(qi�1; qi). For every constraint of the form x � c, we
add an edge from i to k weighted c (corresponding
to the constraint �i(x) = �i � �k � c). For every
constraint of the form x � c, we add an edge from
k to i weighted �c (corresponding to the constraint
��i(x) = �k � �i � �c). In both cases, we label the
edge with x and B.

The sequence q0q1 : : : qn does not admit a consistent
timing if and only if the graph generated by the rules
above has a negative weighted loop (called an over-

constrained loop). Finding a negative weighted loop
in a graph is a well understood problem for which a
polynomial algorithm exists [11].

There is a signi�cant freedom in the choice of the
set of transition B. Some of those transitions will
eventually be eliminated from the current abstraction
of the system. The larger the set, more behaviors will
be eliminated in every iteration, thus the algorithm
will converge faster. On the other hand, to keep the
abstraction small, we want the representation of B to
be as small as possible. This freedom can be used to
�ne tune the algorithm.

4.2 Notation

Given some untimed automaton:

A = (�; Q; I; TR; F) ;

and some set of transitions B � Q���Q, let A�B be
an automaton the same as A except that all transitions
in B are removed from TR, i.e.:

A� B = (�; Q; I; TR�B;F) :

Given a TAD (�; Q; I; TR; V; TO; TM;F) and some
timer x 2 V , let R(x) be the set of all transitions on
which x is reset, i.e.:

R(x) = f(q; �; r)jTM (q; r; x) = resetg :

Let B denote the complement of some set of transi-
tions B � Q��� Q, i.e. let B = (Q� ��Q)� B.

If x; y 2 V are timer variables and c is a non-
negative bound, let hx � y � ci denote an untimed
automaton as shown in Figure 4a. The automaton has
two states, the \good" one corresponding to all valu-
ations of x and y satisfying x� y � c, and the \bad"
corresponding to valuations satisfying x� y > c. Be-
cause c � 0 and both x and y must be initially zero,
the unique initial state is x � y � c. Both states are
�nal. When c is a negative upper bound, the de�ni-
tion of hx � y � ci is slightly changed, as shown in
Figure 4b.

R(x)� R(y)R(x) [R(y) R(x)� R(y)

good

x� y � c

bad

b) c < 0

good

x� y � c

always

R(x) \ R(y)

x � y > c

bad

R(x) [R(y)

x� y > c

always

R(x) \ R(y)

a)c � 0

Figure 4: Automata hx� y � ci. S �R is an abbrevi-
ation for (S [R) \ S \R.

We use A(bad; �) to denote the set of all transi-
tions in which the present state component of A is
bad. Similarly, we use A(�; good) to denote the set of
all transitions in which the next state component of A
is good.

function modify(G;T)

/* G - an over-constrained loop */

/* T - an abstraction of the system to be veri�ed */

forall edges (i; k; x;w;B), (k; j; y; v;C) s.t. i; j < k

1: Ak := hy� x � w+ vi;
2: T := T
Ak �Ak(bad; �) \B \C;

3: remove edges (i; k; x;w;B) and (k; j; y; v;C);

4: if i < j then add to G an edge:

(i; j; x;w+ v;Ak(�; good) \R(y) \ R(x));

5: else if j < i then add to G an edge:

(i; j; y;w+ v;Ak(�; good) \R(x) \ R(y));

6: else return T ; /* i = j */

end if

end while

end function

Figure 5: Failure elimination procedure for timed au-
tomata.

4.3 Failure elimination

In this section we describe the modify function used
in the veri�cation procedure in Figure 3. The inputs
to modify are the current abstraction of the system
T and an over-constrained loop G, and it returns a
modi�ed abstraction of the system, in which the fail-
ure report that has induced G is no longer a run. The
modify function is shown in Figure 5, where we use
(i; j; x; w;B) to represent an edge from node i to node
j weighted w, and labeled with timer x, and behavior
B.

The failure trace q0q1 : : : qn that has induced the
over-constrained loop G is no longer a run in the mod-
i�ed automaton returned by modify because:

1. If Ak is the automaton generated in the last pass
through the while loop, then Ak must be in the
bad state after the rest of the system has gone
through the sequence of states q0 : : : qk�1.

2. If Ak is in the bad state the rest of the system has
gone through the sequence of states q0 : : : qk�1,
then either:

(a) the transition (qk�1; qk) is disabled in the
modi�ed automaton, or

(b) there exists m > k such that Am is in
the bad state after the rest of the system
has gone through the sequence of states
q0 : : : qk�1 : : : qm�1.

For example, consider the safety property of the
railroad crossing. When all the timing constraints are

relaxed, the property fails, and a possible failure trace
is:

TRAIN :
GATE :
CONT: :

2
4

OUT

RAISE

UP

3
5

| {z }
q0

2
4

APP

R2L
UP

3
5

| {z }
q1

2
4

IN

R2L
UP

3
5

| {z }
q2

:

This sequence does not admit a consistent timing, as
shown by the following over-constrained loop:

(q0; q1)| {z }
node 1

x�2
�! (q1; q2)| {z }

node 2

y<1
�! (q0; q1)| {z }

node 1

;

In this case there are only two edges in the graph:
(1; 2; x;�2; B) and (2; 1; y; 1�; C), where B and C are
some sets of transitions that contain (q1; q2). In step 1
of modify T is composed with A2 = hy�x < �1i, and
then all transition where (q1; q2) occurs while A2 is in
the x � y � 1 state are disabled. This is enough to
eliminate the sequence q0q1q2, because A2 must move
to x� y � 1 when x and y are both reset on (q0; q1).

4.4 Correctness

The correctness of the veri�ed timed algorithm can
be proven by the following steps:

1. The initial abstraction of the system contains the
language of the original.

2. The sequences eliminated by the modify function
do not admit a consistent timing.

3. Every run which cannot be consistently timed in-
duces an over-constrained loop.

4. Every run that induces an over-constrained loop
is eliminated by the modify function.

5. Only �nitely many di�erent Ak's can be gener-
ated in step 1 of the modify function.

Together, parts 1 and 2 show that at all times the
language of the current abstraction contains the lan-
guage of the original system. Parts 3 and 4 show that
in every iterations of the veri�ed timed algorithm we
get closer to the language of the original system. Part
5 is used to show that the algorithm terminates in
�nitely many iterations. The detailed proof appears
in [5].

4.5 Extension to x� y � c constraints

To extend our approach to constraints of the form
x�y < c, only the analyze function in the verify timed

algorithm needs to be changed. The rules for building
a graph in the failure analysis are augmented such that
for every timing constraint x � y � c in TO(qi�1; qi)
we add an edge from m to k weighted c where k (re-
spectively m) is the last node before i on which the
timer x (y) was reset, i.e.:

k = maxfj < ijj = 0 or TM (qj�1; qj; x) = resetg ;

m = maxfj < ijj = 0 or TM (qj�1; qj; y) = resetg :

Such an edge corresponds to the following constraint
that every consistent timing must satisfy:

�i(x)� �i(y) = �m � �k � c :

If k < m we label such an edge with x, and other-
wise we label it with y. In either case we also label
the edge with some set B of transitions conditioned by
x�y � c that includes at least the transition (qi�1; qi).
If that edge appears in the over-constrained loop, then
before calling the modify function we compose the cur-
rent abstraction of the system with A = hx � y � ci,
and eliminate transitions where transitions in B occur
while A is in the bad state.

It can shown that all �ve parts of the correctness
proof still hold, thus even with constraints of the form
x � y < c, the veri�ed timed function will terminate
with the correct result in �nitely many steps.

4.6 Extension to decrements

Due to space limitations, we only list the extensions
necessary to handle arbitrary TAD's. Full discussion
can be found in [5].

The de�nition of the automata hx�y � ci needs to
be extended to allow the following behavior when the
rest of the system is making the transition (q; r), and
neither TM (q; r; x) nor TM (q; r; y) are reset:

� if TM (q; r; x) > TM (q; r; y), then hx�y � ci can
move (from any state) to the good (i.e. x�y � c)
state,

� if TM (q; r; y) > TM (q; r; x), then hx�y � ci can
move (from any state) to the bad (i.e. x� y > c)
state.

The rules for building a graph in failure analysis
phase must be modi�ed as follows (k, m and B are
de�ned as before).

For every timing constraint x � c in TO(qi�1; qi)
we add add an edge:

(i; k; x; c+

i�1X
p=k+1

TM (qp�1; qp; x); B) : (1)

For every timing constraint x � c in TO(qi�1; qi) we
add an edge:

(k; i; x;�c�

i�1X
p=k+1

TM (qp�1; qp; x); B) : (2)

For every timing constraint x � y � c in TO(qi�1; qi)
we add an edge:

(m; k; x; c+

i�1X
p=k+1

TM (qp�1; qp; x)

�

i�1X
p=m+1

TM (qp�1; qp; y); B) : (3)

After an over-constrained loop is found, the weights of
edges generated by (1) and (2) are set to c and �c re-
spectively, and every edge generated by (3) is replaced
by edges (i0; k; x; c; B) and (m; i0; y; 0; B), where i0 is
a distinct copy of node i.

The modify function must be extended as shown in
Figure 6. If in steps 6 and 7 node m already appears
in the over-constrained loop G, new edges must be
connected to a distinct copy of m.

It is possible to show that �rst four parts in the
proof of correctness of the algorithm in Figure 5, also
hold for the algorithm in Figure 6. However, the �fth
part does not hold, and in fact the algorithm in Fig-
ure 6 may not terminate.

5 Hints

In our implementation of the algorithm in Figure 5,
we allow the user to give \hints", i.e. to specify which
timing constraints are not to be ignored initially. Ac-
tually, every hint forces our implementation to mod-
ify the initial abstraction of the system as in steps 1
and 2 of the algorithm. Therefore, to specify a hint,
one needs to specify some constraint x � �w, some
set of transitions B that are enabled only if that con-
strained is satis�ed, another constraint of the form
y � v, and some set of transitions C that are enabled
only if the second constrained is satis�ed. Given a
hint, our tool will compose the current abstraction of
the system with A = hy � x � w+ vi, and then elimi-
nate all transitions in A(bad; �)\B \C.

function modify(G;T)

/* G - an over-constrained loop */

/* T - an abstraction of the system to be veri�ed */

forall edges (i; k; x;w;B), (k; j; y; v;C) s.t. i; j < k

1: Ak := hy � x � w+ vi;
2: T := T
 Ak �Ak(bad; �) \B \C;

3: remove edges (i; k; x;w;B) and (k; j; y; v;C);

4: m := maxfp < kjp = 0 or TM(qp�1 ; qp; x) 6= 0 or

TM(qp�1 ; qp; y) 6= 0g;
5: D :=Ak(�; good)\

f(q; �; r)jTM(q; r; x) = TM(qm�1; qm; x)

and TM(q; r; y) = TM(qm�1 ; qm; y)g;
if m > i and m > j then

6: add an edge (i;m; x;w+ TM(qm�1 ; qm; x);D);

7: add an edge (m; j; y; v � TM(qm�1; qm; y);D);

else if i < j =m then

8: add an edge (i;m; x;w+ v + TM(qm�1 ; qm; x);D);

else if j < i =m then

9: add an edge (m; j; y;w+ v� TM(qm�1 ; qm; y);D);

else /* i = j = m */

10: return T ;

end if

end forall

end function

Figure 6: Failure elimination for timed automata with
decrement.

With hints, we can specify all the modi�cations
done in step 1 and 2, and therefore we can exactly cap-
ture all the implications of timing constraints. How-
ever, specifying the right hints requires deep under-
standing of the system being veri�ed.

6 Experimental results

Overall results for the timed automata veri�cation
algorithm are summarized in Table 1. All experi-
ments were performed on a DEC workstation with
440Mb of physical memory. The examples can be di-
vided into two basic groups, communication protocols:
CSMA/CD, FDDI, and Fischer's (denoted in Table 1
with pre�x �s), and control examples: railroad cross-
ing (cross), seat-belt alarm (belt), and automated fac-
tory (fact). Results that are not available (either be-
cause none are published, or because the veri�cation
without hints is e�cient enough, so we haven't devel-
oped any hints) are marked NA, and memory overow
is labeled MO. In the last column we give the best
available result we have found in the literature.

The value of hints is obvious from Table 1. With-
out them, only the smallest examples can be veri�ed.

Table 1: Results for the timed automata algorithm
no hints with hints others

example time hints time time

csma 1:5s NA 45s
fddi-l 0:5s NA NA
fddi-s 39:0s NA NA
�s3 26:4 6 0:8s 0:4s
�s4 1; 141s 12 6:7 7s
�s5 MO 20 168:4s 159.4
belt MO 5 0:8s NA
fact MO 58 84:7s NA
cross-s 0:8s 3 0:3s 0:6s
cross-l 3:6s 11 0:4s 1:6s

Table 2: Sensitivity to sti�ness
cycle 5 100 200 500 1; 000 2; 000

old 1:8s 2:9s 4:5s 14s 45s 162s
new 0:8s 0:8s 0:8s 0:8s 0:8s 0:8s

This suggests that better failure analysis techniques
are needed. With hints, all but the factory example
terminated in one iteration. The automated factory
examples illustrates how automatic veri�cation can
complement hints. After several tries, we were able
to develop a set of hints that enforces most of the tim-
ing constraints necessary to verify the property. Au-
tomatic veri�cation then �lled-in the remaining gaps
in three iterations.

Compared to other available results our approach
is comparable without hints and almost always better
with hints. That is not surprising because the hints
rely on the knowledge (and the e�ort) of the user,
while other approaches are completely automatic.

To test the sensitivity to sti�ness we have compared
our old approach [7] to the algorithm in Figure 5 on
the safety property of the example in Figure 1 with
di�erent values of the train cycle time (instead of the
original value 5). The results are shown in Table 2.
The time in the old approach grows more than linearly
with the cycle time, while with the new approach the
time stays constant. All experiments were performed
without hints.

Finally, we mention some results for timed au-
tomata with decrements. It takes 16s of CPU time
to verify that the interrupt of highest priority task
will never be missed in the system of three tasks of
Figure 2. For the task with middle priority it takes
54s, and for the lowest priority task the program did
not terminate after more than twelve hours of CPU
time. This indicates that even for simple systems, the

veri�cation problem is hard and further advancements
are necessary to make the veri�cation practical.

References

[1] R. Alur and D. L. Dill. Automata for modelling
real-time systems. In Proceeding of ICALP'90.
Springer-Verlag, 1990. LNCS vol. 443.

[2] R. Alur et al. An implementation of three algo-
rithms for timing veri�cation based on automata
emptiness. In Proceedings of IEEE Real-time Sys-

tems Symposium, 1992.

[3] R. Alur et al. Timing veri�cation by succes-
sive approximation. In Proceedings of CAV'92.
Springer-Verlag, 1993. LNCS vol. 663.

[4] A. Aziz et al. HSIS: A BDD-based environ-
ment for formal veri�cation. In Proceedings of

the 31th ACM/IEEE Design Automation Confer-

ence, 1994.

[5] F. Balarin. Iterative Methods for Formal Veri-

�cation of Discrete Event Systems. PhD thesis,
University of California Berkeley, 1994. in prepa-
ration.

[6] F. Balarin et al. Formal veri�cation of the
PATHO real-time operating system. In Proceed-

ings of 33th Conference on Decision and Control,
1994.

[7] F. Balarin and A. L. Sangiovanni-Vincentelli. An
iterative approach to veri�cation of real-time sys-
tems. Formal Methods in System Design: An In-

ternational Journal, 1994. to be published.

[8] T. A. Henzinger et al. Symbolic model-checking
for real-time systems. In Proceedings of 7th LICS.
IEEE Computer Society Press, 1992.

[9] J. Hopcroft and J. Ullman. Introduction to Au-

tomata Theory, languages and Computation. Ad-
dison Wesley, 1979.

[10] J. McManis and P. Varaiya. Suspension au-
tomata: A decidable class of hybrid automata.
In Proceedings of CAV'94. Springer-Verlag, 1994.
LNCS vol. 818.

[11] R. E. Tarjan. Data Structures and Network Algo-

rithms. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1983.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

