
Adaptive Cut Line Selection in Min-cut Placement
for Large Scale Sea-of-gates Arrays

K. Takahashiy K. Nakajimaz M. Teraiy K. Satoy

ySystem LSI Laboratory zElectrical Department
Mitsubishi Electric Corp. Meryland Univ.

Itami, Hyogo 664 College Park, Meryland 20742

Abstract
We present a new min-cut based placement algorithm for

large scale sea-of-gates arrays. In the past all such algorithms
used a �xed cut line sequence that is determined before min-
cut partitioning is performed. In our approach, we adaptively
select a next partitioning pattern based on the current param-
eter value; we then perform the corresponding min-cut parti-
tionings and measure a new parameter value. We repeat this
process until all cut lines are processed. As a parameter, we
introduce a new global objective function based on wire con-
gestions on cut lines. We establish a close relation between
this function and cut line sequences. This relation is used to
develop an innovative method of adaptively determining a cut
line sequence so as to minimize this global function. With this
adaptive selection of cut lines along with a new cluster-based
min-cut partitioning technique, our algorithm can produce, in
a short time and at a low cost, �nal placement results that

achieve the 100% completion of wiring on chips of �xed sizes.
This has led to its successful production use, having generated
more than 400 CMOS sea-of-gates array chips.

1 Introduction
In the gate array approach �nal products are made at a

low cost by customizing only metal layers of preprocessed gate
array chips, called masterslices. Min-cut based placement has
most often been used in existing layout systems for gate ar-
rays (e.g. [2, 4, 7]). This is because (1) its primary goal is
the reduction of excessive congestions of wires [7] and (2) it
produces in a short time a placement that achieves the 100%
completion of wiring [6].

As the sizes of gate arrays get larger, the wiring completion
problem becomes more di�cult to handle in the traditional
framework of min-cut placement. This is mainly due to (i) its
reliance on the single local optimization function, called the
sequential cut line objective function [1] and (ii) the use of a
�xed cut line sequence that is determined at the beginning
of min-cut placement. In this paper we introduce a global
function based on the congestion of wires on each cut line.
We then propose a method of adaptively determining next
patterns of cut lines so as to minimize this function.

In our masterslice model illustrated in Fig. 1, the entire
chip area consists of an internal area containing rows of inter-
nal slots, and a peripheral area containing external slots. A
circuit is hierarchically speci�ed with sets of circuit elements
and signal nets that connect circuit elements. It is composed
of functional modules such as ALUs, comparators, and coun-
ters, and each module in turn consists of lower level func-
tional modules such as
ip-
ops and logic gates. The circuit
elements are categorized as external elements and internal el-
ements that are to be allocated to external and internal slots,
respectively. Since the positions of all external elements are
usually predetermined, in this paper we deal only with the
internal elements and slots, which we refer to simply as ele-
ments and slots, respectively.

We de�ne the size of an area as the number of slots that
reside in it. We de�ne the size of an element as the number of
slots required to accommodate it. We call a set of one or more
elements a cluster and de�ne its size as the sum of sizes of the
elements that constitute the cluster. Similarly, we de�ne the
size of a functional module. We de�ne our placement problem
as that of allocating all elements of a given circuit to slots of
a masterslice in such a way that no two elements share the
same slot.

A grid of horizontal and vertical lines is de�ned on a mas-

terslice and all wiring for signal nets between elements is done
on grid lines. In the routing areas that exist between adja-
cent rows of slots, both horizontal and vertical grid lines can
accommodate wire segments as long as they do not overlap.
In the rows of slots, only those vertical grid lines that are not
obstructed by the wiring patterns of elements can be used as
feed-throughs for wiring.

In min-cut placement [1], we de�ne cut lines on a master-
slice in both the horizontal and the vertical directions. In our
masterslice model, we set a horizontal cut line between each
pair of adjacent rows of slots and a vertical cut line on the
boundary between each pair of adjacent slots. At each step of
min-cut placement, we �rst select a cut line and divide each
area of concern into two subareas of as equal sizes as possible
along the line. We then reassign one subset of the elements to
one subarea and the other subset to the remaining subarea.
In this new assignment, if the elements connected to the same
signal net are allocated to di�erent subareas, the net is said
to be cut by the cut line. The number of signal nets to be
cut by a cut line is called a cut value of the line. We per-
form the above area division and element assignment in such
a way that (1) the corresponding cut value is minimized and
(2) the sum of sizes of the elements to be assigned to each
new subarea does not exceed the size of the subarea.

We call such a division and assignment a min-cut parti-
tioning, or simply partitioning. We repeatedly apply this
partitioning to each of the subareas until all cut lines are
processed. We call a partitioning along a horizontal and ver-
tical cut line simply a horizontal and vertical partitioning,
respectively. The sequence of selected cut lines along which
partitionings are performed is called a cut line sequence.

In this paper we introduce a new global objective function,
called the max-congestion. We de�ne the cut line congestion
as the ratio of its corresponding cut value and the number
of grid lines usable for wiring that intersect it. In our de�-
nition the cut value of each cut line is the number of signal
nets rather than wires that are cut by the cut line. Thus,
the cut value gives a lower bound on the number of actual
wire segments that cross over the cut line. Therefore, as the
cut line congestion approaches 1.0, detoured wires and/or un-
routable wires may start to appear. We call the largest values
among the congestions on all horizontal and all vertical cut
lines the maximum horizontal and vertical cut line conges-
tions, respectively. We call the largest of the two congestions
the maximum cut line congestion. Under our new objective
function of max-congestion, we minimize the maximum cut
line congestion.

We �rst empirically demonstrate the existence of a close

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0428 $3.50

relation between the max-congestion function and cut line
sequences. Using this relation, we develop an innovative
method of adaptive selection of cut lines for the minimiza-
tion of the max-congestion objective function. Unlike previ-
ous approaches [1, 7], we do not select at the beginning of
min-cut placement, an entire cut line sequence among those
sequences that are predetermined. Instead, we adaptively se-
lect next patterns of cut lines to be processed and eventually
generate the entire cut line sequence at the end of this process.
We use as a guide the relative ratio of wiring capacities in the
horizontal and vertical directions that are a priori determined
for each combination of a masterslice and a circuit.

In Section 2, we show our experimental results and es-
tablish a relation between cut line sequences and the max-
congestion objective function. We then develop a method of
adaptive selection of cut lines to minimize this function. In
Section 3, we �rst brie
y explain our cluster-based min-cut
partitioning approach and some other implementation details.
We then present the entire placement algorithm. Section 4
provides its evaluations and further discussions.

2 Cut Line Sequence and Congestions
In this section, we examine extensively the e�ect of cut

line sequences on placement results for large scale sea-of-gates
arrays. We establish a relation between cut line sequences and
the maximum congestions on its corresponding horizontal and
vertical cut lines. We use this relation to develop a method
of adaptive selection of cut lines to minimize the new global
objective function of max-congestion.

Before we proceed, we de�ne the important notion of levels
for (i)the areas that are generated by partitionings, (ii)their
corresponding cut lines, and (iii)the partitionings done along
those cut lines. We assign level 1 to the initial entire area
on a masterslice. For i � 1, we give level i + 1 to those new
areas that are produced by dividing the areas of level i. We
assign level i to a cut line that divides an area of level i. We
also give level i to a partitioning performed along a cut line
of level i.

In this paper we assume that (1)cut lines of the same level
are in the same direction. We also assume that (2)we per-
form all partitionings of level i+ 1 only after we complete all
partitionings of level i. These propositions imply the follow-
ing:The process of partitioning in any ordering of cut lines of
the same level would yield the same placement result. This
leads us to rede�ne a cut line sequence to be a permutation
of the directions in which the cut lines of each level are pro-
cessed.

1. Relation between Cut Line Sequences and Maximum Con-
gestions

Let hM and vM denote the largest values among the cut
values of all horizontal and all vertical cut lines, respectively,
in a cut line sequence. Let th and tv be the numbers of usable
grid lines that intersect such horizontal and vertical cut lines,
respectively. The maximum horizontal and vertical cut line
congestions are expressed as hM=th and vM=tv , respectively.
In our masterslice model, tv represents the total number of
horizontal grid lines in the routing areas between adjacent
rows of slots. Although it may be de�ned in several ways,
as an approximation we set th to be the average number of
feed-throughs available in a row of slots. Note that the values
of th and tv are known before the execution of our placement
program, and they are constants.

In order to observe how cut line sequences a�ect the val-
ues of hM=vM and hM=th+vM=tv , we performed our min-cut
partitionings on nine typical circuits to be realized on master-
slices of 18.6K to 150K raw gates. Main features of the circuits
are given in Table 1. The results are plotted in Figs. 2 and 3.

In these experiments, we performed cluster-based partition-
ing at the �rst six levels and element-based partitioning at
the remaining levels, as explained in Section 3. We used 64
cut line sequences enumerated in Table 2. The symbols H and
V denote the horizontal and vertical directions, respectively,
of cut lines of the same level. Each sequence contains six Hs
and six Vs. In theory there are 924(=12 C6) sequences. Due
to the high cost of experiments, we have selected those 64
sequences that realize all possible combinations of Hs and Vs
at the �rst six levels. This is because as demonstrated later,
the partitionings at earlier levels are more likely to a�ect the
values of hM and vM than those of later levels. The parti-
tionings of levels 7 to 12 are performed in alternate directions
as long as there remain both Hs and Vs.

Note that the numbering of sequences in Table 2 is done
by decoding their �rst six characters as a 6-bit binary num-
ber with an H and a V representing 0 and 1, respectively.
The larger (respectively, smaller) a sequence number is, the
more signi�cant the bit positions of Vs (respectively, Hs) are
in the sequence. We say that the vertical direction is more
signi�cant in one partitioning pattern P than in another one
Q if a V appears in P in the leftmost bit position in which
P and Q contain di�erent symbols. P is also said to be more
vertical-oriented. Similarly, we say that the horizontal direc-
tion is more signi�cant in Q than in P and that Q is more
horizontal-oriented. If exactly two patterns P and Q are under
consideration, P and Q are simply said to be vertical-oriented
and horizontal-oriented patterns, respectively.

As shown in Fig. 2, as the number of the sequence applied
increases, the value of hM=vM tends to increase on the whole
with a few exceptions mentioned below. Thus the value of
hM=vM clearly depends on the signi�cance of the direction
of partitionings. However, when the number increases from
4r � 1 to 4r for each r = 1; 2; � � � ; 15, the value of hM=vM
decreases drastically. This exceptional phenomenon is caused
by the reversal of partitioning patterns such as from HVV to
VHH (i.e., in their binary representation, from 011 to 100).

As is seen from Fig. 3, the values of hM=th + vM=tv are
rather large when such cut line sequences as Nos. 0-9, 15-
17, 23, 24, 30-33, 39, 40, 46-48, 54-63 are applied. The main
feature of these sequences is that partitionings of the same
direction take place successively at more than two levels. For
all the other sequences, the values may be considered to be a
constant. In such a case, the minimization of the maximum
values of hM=th and vM=tv becomes equivalent to the equal-
ization of hM=th and vM=tv . Therefore, the selection of a cut
line sequence that satis�es hM=vM ' th=tv would result in the
minimization of the max-congestion objective function. This
would naturally lead to the minimization of the maximum
congestion of signal wires and hence reduce the possibility of
generating detoured wires and/or unroutable wires.

2. Selection of Partitioning Patterns

In what follows, we discuss a method of equalizing hM=vM
and th=tv when the value of hM=th+vM=tv is kept a constant.

Let hqM and vqM denote the maximum values among the
cut values of all the horizontal and all the vertical cut lines
processed thus far, respectively, of levels less than or equal to
q. We consider the application of a horizontal-oriented pat-
tern Ph, and a vertical-oriented pattern Pv, of partitionings
of levels q + 1 to q + x that include both Hs and Vs. Note
that partitionings of both directions are needed to determine
new values for hM and vM . This is because if partitionings
of a single direction only, say H, are performed, the value
for hM always increases while that for vM is unchanged, and
hence the ratio of hM=vM monotonely increases although we
want it to decrease as explained later. Judging from Fig. 2,
it is expected that h

q+x

M =v
q+x

M becomes smaller(respectively,
larger) in value than hqM=vqM in the case of Ph(respectively,
Pv).

In order to verify the above conjecture, we compared the
values of h

q
M=v

q
M and h

q+x
M =v

q+x
M , when cut line sequences

Nos. 17, 18, 21, and 22 were applied to circuit C6. The val-
ues of x and q each were set to 3. The results are shown in Fig.
4. Note that all sequences have the same initial partitioning
pattern HVH and thus their h3M=v3M values are all 0.59. The
patterns of the next three levels for the sequences Nos. 17,
18, 21, and 22 are HHV, HVH, VHV, and VVH, respectively,
and their h6M=v6M values are 0.42, 0.51, 0.62, and 0.72, respec-
tively. Clearly, the more signi�cant horizontal (respectively,
vertical) partitionings are, the more the ratio of hM=vM de-
creases (respectively, increases).

Using this property of the ratio, we adaptively select par-
titioning patterns of length x. In other words, at the comple-
tion of partitionings of level i �x, where i is a positive integer,
we measure the value of hixM=vixM . If hixM=vixM � th=tv , we se-
lect the horizontal-oriented pattern; otherwise, we select the
vertical-oriented pattern. The aim of this process is to make

the value of h
(i+1)x

M =v
(i+1)x

M closer to that of th=tv than the

value of hixM=vixM .

Figure 4 also shows that j h
(i+1)x

M =v
(i+1)x

M � hixM=vixM j de-
creases as i increases in value. Thus, with the above method,

the value of h
(i+1)x

M =v
(i+1)x

M becomes closer to that of th=tv
than the value of hixM=vixM . We may conclude that the above

process is able to make the �nal value of hM=vM closer to
that of th=tv.

In such a method, the smaller the value of x is, the �ner
tuning of the ratio we can make. When x = 2, only two
partitioning patterns of HV and VH are possible. In this
case, the most horizontal- and vertical-oriented patterns are
HVHV...HV as in sequence No. 21 and VHVH...VH as in
No. 42, respectively, of Table 2. Accordingly, the values of
hM=vM vary in the range of 0.8 to 1.2 as shown in Fig. 2. On
the other hand, the practical values of th=tv vary from 0.5 to
1.3. This prohibits the selection of these two patterns.

When x = 3, the possible patterns that include both Hs
and Vs are HHV, HVH, HVV, VHH, VHV, and VVH. How-
ever, the inclusion of patterns HHV, HVV, VHH, and/or VVH
would generate cut line sequences in which partitioning of the
same direction takes place successively at three or more lev-
els. As mentioned before, such sequences may not keep the
value of hM=th + vM=tv a constant, which would destroy the
basis of our discussion. Therefore, we select the two remain-
ing partitioning patterns, HVH and VHV; the former is a
horizontal-oriented pattern and the latter a vertical-oriented
pattern. In this case the values of hM=vM vary from 0.5 to
1.4, which covers the range of practical values of th=tv. In
conclusion, we decide to use the two patterns HVH and VHV

in an attempt to equalize the values of hM=vM and th=tv .

3 The Placement Algorithm and Implemen-
tation

Before we present the overall placement algorithm, we ex-
plain our cluster-based min-cut partitioning approach and
clarify two other implementation issues.

1. Clustering
In the past it was reported that cluster-based min-cut par-

titioning approaches reduce the total processing time and the
cut value [4, 5, 6]. In any such approach, the quality of clus-
ters plays the most important role in the production of a �nal
solution. The main features of our approach are: (i) logical
hierarchy of a circuit is used in cluster generation, and (ii)
total cut value is used to determine an upper bound on the
sizes of clusters to be generated.

Our min-cut partitioning approach consists of three steps:
(1) cluster generation, (2) partitioning based on clusters, and
(3) partitioning based on elements. We use the algorithm of
Shiraishi and Hirose [7] to perform min-cut partitionings on
clusters at Step (2) and on elements at Step (3). We generate
clusters at Step (1) as follows. The average size of the areas to
be created at the end of partitionings of level j is calculated as
s(j) = dA=(2j)e, where A is the total number of slots de�ned
on a masterslice. We use the value of s(j) as an upper bound
on the sizes of clusters to participate in all partitionings at
Step (2). Among all functional modules that appear in the
hierarchy of a circuit, we select as clusters as large modules
as possible that do not exceed s(j) in size. If the size of a
single element exceeds s(j), it makes a cluster by itself. After
extensive experiments, we have decided to set the value for j
to be six.

2. Other Issues
We describe two additional implementation details. The

�rst issue is on the determination of an initial value of hM=vM .
We may simply perform partitionings with two patterns HV
and VH separately and select the pattern that yields a value
of h2M=v2M which is closer to that of th=tv than the other.
However, to be consistent with the discussion of the previ-
ous section and for simplicity of programming, we decided to
apply the two chosen patters HVH and VHV in our imple-
mentation.

The second implementation issue is concerned with the
situation in which all partitionings in one direction have been
exhausted and partitionings with a particular pattern cannot
be performed. In such a situation we ignore the pattern and
perform partitionings in the remaining direction.

3. The Algorithm

We now present the overall placement algorithm. Let l�

show the level of the last partitioning.

Placement Algorithm
Step 1. (Clustering):

Generate clusters by the method described above.
Step 2. (Partitionings of the �rst three levels):

2.1. Perform partitionings with HVH and VHV.
2.2. Select the partitioning result with which the resultant

value of h3
M
=v3

M
is closer to the value of th=tv .

Step 3. (Initialization of the level l of partitionings):
Set l 3.

Step 4. (Selection of a pattern of partitionings of the next three

levels):

If hl
M
=vl

M
� th=tv , select the pattern of HVH; otherwise,

select VHV.
Step 5. (Partitionings of levels higher than 3):

5.1. Perform the following sequence of operations three times
as long as l � l�.
(1) Set l l+ 1.

(2) If l > l�, go to Step 6.

(3) Perform partitionings of level l on clusters if l � j or
on elements if l > j. If no cut line of a particular direction
remains, perform partitionings of the other direction.
5.2. Go to Step 4.

Step 6. (Elimination of overlappings of elements):

If overlappings of elements are created, remove them and
stop. 2

4 Evaluations and Discussions
We coded our placement algorithm in FORTRAN and im-

plemented it on our gate array layout system. The system is
set up on an IBM mainframe computer Model 3090.

Using the circuits C2, C5, and C6 of Table 1, we compared
our new placement program and the internally developed pro-
gram [3] that was previously in production use. The results
are tabulated in Table 3.

From Table 3, the superiority of our new program over the
old program is more than evident. Ours ran 11.3, 32.2, and
33.5 times faster than the old program for circuits C2, C5,
and C6, respectively. Furthermore, the old program failed to
generate a placement that results in the 100% completion of
wiring for circuit C6. Finally, our results on total wire length
were also always better than those of the old program.

Using circuit C5, we also compared our layout system with
the new placement program and two CAD vendors' gate array
layout systems. The results are provided in Table 4. Since
the vendors' systems run on workstations, their processing
times are converted to their equivalent values on the IBM
3090 computer, based on the MIPS values of their respective
computers. Our system produced a placement whose total
wire length is shorter by 8% and 37% than that of the place-
ments obtained by the �rst and second vendor's program, re-
spectively. As for the total processing time for placement, we
could not measure the time for each of the vendors' systems.
Instead, we give the sum of total processing times for their
placement and routing. Under this combined measure, our
system ran 7.9 and 6.3 times faster than the �rst and second
vendor's system, respectively.

5 Conclusions
As demonstrated above, our new placement program out-

performs the two CAD vendors' programs as well as our old.
Furthermore, it has successfully produced into the real world
more than 400 CMOS sea-of-gates array chips of 1.5K to 150K
raw gates. It should also be noted that our program requires
no manual speci�cation of parameters associated with min-
cut partitioning. This enables any user who is not skilled at
gate array layout and/or min-cut placement, to easily obtain
a good result on the �rst run of the placement program.

References
[1] M. A. Breuer, \Min-cut placement," Jour. Design and Fault-

Tolerant Computing, vol. 1, no. 4, pp. 343-362, Aug. 1977.

[2] M. Igusa, M. Beardsiee, and A. Sangiovanni-Vincentelli, \ORCA: A
sea-of-gates place and route system," Proc. 26th DAC, June 1989,
pp. 122-127.

[3] S. Murai, H. Tsuji, M. Kakinuma, K. Sakaguchi, and C. Tanaka, \A
hierarchical placement procedure with a simple blocking scheme,"
Proc. 16th DAC, June 1979, pp. 18-23.

[4] C. Ng, S. Ashtaputre, E. Chambers, K. Do, S. Hui, R. Mody, and
D. Wong, \A hierarchical
oor-planning, placement, and routing
tool for sea-of-gates design," Proc. CICC, May 1989, paper no.
3.3.

[5] T. -K. Ng, J. Old�eld, and V. Pitchumani, \Improvements of a
mincut partition algorithm," Proc. IEEE ICCAD, Nov. 1987, pp.
470-473.

[6] T. Payne, R. Wells, and W. Gundel, "A study of automatic place-
ment strategies for very large gate array designs," Proc. IEEE IC-
CAD, Nov. 1987, pp. 194-197.

[7] H. Shiraishi and F. Hirose, \E�cient placement and routing for
master-slice LSI," Proc. 17th DAC, June 1980, pp. 458-464.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

