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Abstract overlapping classification of register function has been
o - ) employed to guide the algorithm. The concept of regis-
Application Specific Instruction-Set Processors (ASIPs) offia; classes is not new [2][3]; however, they are used in

designers the ability for high-speed data and contioy,r annroach in a unique manner. The methods are par-
processing with the added flexibility needed for late deS'QticularIy effective with a specific ASIP design style, but

specifications, accomodation of design errors, and produ,, anticipate that many of the methods are applicable to
evolution. However, code generation for ASIPs is a compléyiher ASIP and DSP design styles.

problem and new techniques are needed for its SUCCESS. * This approach works in conjunction with the instruc-

register assignment task can be a critical phase, since oftenyjqn_get matching and selection methodology outlined in
ASIPs, the number and functionality of available registers 4], and is part of the code generation system called
limited, as the designer has opted for simplicity, speed, and I(CodeSyn [1]. CodeSyn is one of the tools in the embed-

area. Intelligent use of register files is critical to the progranm yqq systems development environment, FlexWare [1]
execution time, program memory usage and data memCyhich also includes a retargetable VHDL-based instruc-
usage. This paper describes a methodology utilizing regist

. ) - tion-set simulator, Insulin [5].
classes as a basis for assignment for a particular style of AS 11,4 complete code generation system also contains a

architectures. The approach gives preference 10 SpeCigqrce-level parser, a graph rewrite module, an instruc-
purpose registers which are the scarce resources. Thijon set pattern matcher/selector, and a scheduler, which
naturally leads to the objectives of high speed and l0\ye ysed prior to register assignment. The back end con-
program memory usage. The approach has been implemeny,ing 4 compactor, assembler and linker. The process is
in a system called CodeSyn [1] and used on custom ASghqwn in Figure 1 and the steps are outlined in [1]. The

architectures. current source language is C.

1 Introduction

The Application Specific Instruction-Set Processo

(ASIP) has recently emerged as a new hardware desi BDS I/S Spec
sr?lutlo:: taking theb_lk_)es;c of aNo worldls: flexibility Graph Rewrite F’%tgt%m
through programmability from the general purpose pro Pattern Matohing Sructur Resourd
cessor and high-speed, low power, and low area throug and Covering Graph / Classes
dedicated circuitry from the Application Specific Inte- Global Scheduling

grated Circuit (ASIC). Much as synthesis has struggle nt~——
to keep up with the rate of advances in process technol
gy, how code generation is challenged by the new d¢
sign styles in ASIPs. L
Register assignment for ASIPs can be a d|ff|cult_ tas Figure 1 CodeSyn code generation process
due to the small number and restricted functionality o ) ) ) ) ]
physical register files. Limitations on the availabilty of ~ThiS paper is organized as follows. Section 2 outlines
registers is usually motivated through the designer’s wil'élatéd work in this area. Section 3 describes the ASIP
for high speed and low area through the reduction ¢d€sign style to which we have targeted this approach
busses and multiplexers. Also, a simple design reducé"d & formulation of the problem. Section 4 describes
the possibility of errors and allows fine tuning to an alo_the register assu;_mment approach. Section 5 d_escnbes a
plication area. full code generation example and results. Section 6 pro-
In this paper, we present an effective approach for thVides & summary and conclusion.

register assignment task in code synthesis for ASIPs. A

Register Assignme|
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2 Related Work effective code generation, methods such as these will
become important precursors to register assignment ap-

In high-level synthesis, register allocation has trad"proaches, such as the one presented here.

tionally been defined as the determination of the numbe
of registers needed to store values between time-ste 3 Problem Domain

for a given application. The required number of register:

are created or drawn from a library. Work in this arez 3.1 Target ASIP Architecture
has been successfully addressed through techniqu . .
such as rule-based systems]6], branch and bound me The target architecture-style for this approach has

. : - . been described in [4] and is repeated here for clarity.
ods [7], linear programm 8], and iterative approach:- . . :
es[s9][ J. finear progr ing (8] erative approa The registers and allowable data movement is depicted

in Figure 1. Specific registers must be used for particular
tasks, motivated by the designer’s desire for speed and
area improvements. This figure shows that RO is always
a constant 0 source as well as a bottomless sink, R1 is
the only register with write access to data memory, R6 is
the only data register through which data can be moved
from the ALU to the address register, and R7 is the only
register which can hold a constant from program memo-
ry and serve as a multiplicand in the multiply-adder of
the ALU.

In contrast to this, register assignment in code gener:
tion involves finding the best use ofigedset of regis-
ters among hardware constraints. A popular techniqu
for register assignment is graph coloring [10][11]. The
procedure has been formulated as follows. An interfer
ence graph is constructed with nodes representing regi
ters and connecting edges representing conflictin
assignments. Adjoining nodes are given different colors
then each color is related to a physical register . Whili
this technique can give good results for architecture
with regular register files, it does not address dedicate
architectures with special purpose registers. In additior
coloring technigues do not naturally address the conce; We approach register assignment as an isolated prob-
of variable lifetimes in a procedural control context.  lem following selection of instructions which can exe-

Register assignment has also been solved throuccute the main operations of the source algorithm, and
greedy approaches such as that taken from the routircoarse scheduling of these operations. A coarse sched-
problem in microchip mask layout [12]. Theft-edge ule gives the general ordering of instructions without re-
algorithm is applicable to both hardware synthesis ancgard to the details of parallelism. The task is to
code generation. It offers optimal assignment for a regidetermine specific physical registers as the input and
lar and fixed register file within a control-flow block output operands of the instructions. Conflicting uses of
boundary. We have built upon this algorithm and modi-registers can only be resolved by moves to available
fied it to use functional classes of registers for one paregisters and spills to memory. In this style of architec-
of our approach for application-specific processors.  ture register to register moves are less expensive than

As processor architectures become more applicatiospills to memory, as addresses have to be set up for the
specific in nature, new approaches [13][14] are emerclater. It is rare but possible to have the converse.
ing which regard the heavy interdependence betwee
scheduling of instructions and register allocation. Foi

3.2 Problem Formulation

4 —— o Legend —p Movable data

Data — Address Pointer
Memory</ RO-R7  Data Calculation

CBB/CBE Circular Buffer Begin/End
AR/AAR (Auxiliagg Address Registers
BR Base Address Register

BR RC Repeat Counter

MAD Multiply-Adder

Register Classes

DataCalc: RO - R7
DataNull: RO
DataStore: R1
DataToMemAddr: R6
ALU 'I\DAataCortstagt: 517 R7
emoryLoad: -
W |Program MemoryStore: R1
MAD Memory . MemoryAddress: AR, AAR, BR, CBB, CBE
' ' constants Memory Address Registers Circular Buffer Begin: CBB
Data Calculation Registers Circular Buffer End: CBE
Loop Count: RC

Figure 1 Register connectivity and classification



4 Assignment Approach Candidate register sets are calculated for the data-flow
between operations from the intersection of the registers

4.1 Register Classification in each register class (the register allocation phase of the
We have adopted a methodology whereby we define algorithm). Three examples are shown in Figure 3.

number of overlappingegister classefor the given ar- DataCalc DataCalc ataCalc
chitecture. These classes group a set of registers | Intersection: Intersection: Intersection:
function. For example, in Figure 1 the register class RO-RT R DataT Nl
DataCalg contains eight physical registers (R0, R1, R2. aacCale  pataCalg MemAdar

R3, R4, R5, R6, R7). Data calculation functions can b | Ex.a Ex, b Daastore g Loastre

performed on any of these registers. Similarly, the regisFigure 3 Calculating Intersect Candidate Registers
ter classPataStore contains one physical register (R1),
the only register with write access to the data memory
There are typically two levels of register classes: ¢
broad categorization for overall function, and a small
categorization for special purpose functions.

As explained in [4], micro-instruction patterns have

Note that in Figure 3 Ex. ¢ has an empty candidate inter-
section which indicates that a register move is needed.
Necessary register moves are determined after pattern
matching and covering and inserted before scheduling.
The insertion point for the move is determined heuristi-

. . .~ 2 *cally by a combination of the size of the register classes
been annotated W'.th reg|ster.classes which Indlcatassociated with the ReadRegister nodes and the lifetime
where data can reside for the input(s) and output(s) Cof the variable.
each instruction. This has aided in the selection of mi After a candidate register list is made for each data-
pro-instructions as well as providing the allowable "®Yflow connection between operations, assignment begins.
ister sets for assignment. The approach is greedy in nature and based upon the
left-edge algorithm [12] with improvements. The gener-
al procedure is as follows:

We begin with one or several general Control/Data-1, Assignment begins at intersection points which have
flow Graphs (CDFGs) corresponding to the source ap  register classes containing only one member register.
plication. As shown in Figure 1, the graph has been pap  assignment for the intersection points in Step 1. are
tern-matched and covered to instructions of the targe  grgered based upon lifetime and number of reads.
then coarsely scheduled prior to register assignment. Assignment begins with the shortest lifetime and

Between operations that transfer data between regi:  fewest number of reads.

ters, behavioural ReadRegister and WriteRegister node3 steps 1 and 2 can lead to register assignment con-

4.2 Assignment Process

are inserted carrying register classes which have be¢
annotated on the in/out terminals of the patterns. An e

ample is shown in Figure 2. The directed segments o4

the right of the diagram indicate control-steps, with the

flicts which are handled by greedily inserting register
moves.

The remaining candidate intersections are assigned
by a left-edge algorithm, inserting spills to memory

dotted lines showing the execution of operations or  \yhen there are no available registers to be assigned.

each step. This data-flow portion of the CDFG has beethjs approach is geared towards giving priority to regis-
scheduled for a one ALU processor. ters dedicated to specific tasks.

Figure 2 Insertion of Read/WriteRegister
Behavioural Nodes

% ® 4.3 Assignment of classes with a single member
DataCal ' . . . .
acgnst ReadRegister nodes having a register class containing
only one member register (termed single ReadRegisters)
Bgfaar;!g\r/]v Y are assigned first. Figure 4 shows an example in yvhich
Writevariable\ |0 2ca DataCalc | | the DataStoreand theDataToMemAddclasses contain
Operation DataCalc only one register each (See Figure 1).
geadenstam y ) i DataCalc ataCalc
peration £\ WriteRegister DataCal
L \WiiteRegister D ataStord O ReadRegiste
O ReadRegister Y MemAddr - R6
DataCal [ —— DataSTore - R1 DataCalc DataStore - R1
 / Figure 4 Assigning ReadRegister nodes with
single member classes.

Having assigned the single ReadRegisters, an attempt



is made to assign all those WriteRegisters which fanoipriority for assignment in other classes. This increases
to (or feed) these nodes. Difficulties can arise througlthe likelihood of the ability to spill values to memory.
two sources: As the number of dedicated classes increase, measures
1. The physical register is in use (has been previousisuch as these become less effective.
assigned). For a variable with multiple reads, an inserted spill
If the physical register is in use, the algorithm finds theconsists of a store to memory followed by a separate
WriteRegister(a) which is currently using the phyisicalload for each read. It is possible to reduce the number of
register and determines if it occurs before the subjedoads depending on the number of live variables at this
WriteRegister(b). If so, a move is inserted after Writ-critical point. This is an area for future enhancement.
eRegister(a). A move consists of a ReadRegister feedir
a DataMove operation feeding a WriteRegister inserte: © Results
directly after the original WriteRegister. Note that the \ye were unable to find a compiler which could suc-
DataMove operation must later be matched and coverécessfully and consistently generate correct code for the
with an instruction-set pattern. style of ASIP described in Section 3.1 (that is what mo-
2. A WriteRegister may fanout to more than onetyated this work!). Therefore, having no scale for
ReadRegister, where each ReadRegister may or Mipenchmarks and since this paper describes just one part
not be assigned to a different register. of code generatioin we have opted to show results
In this case, the nearest ReadRegisters to the WriteRethrough a detailed example. The following is a full ex-
ister are assigned first, t_hen thg rest are r_esolved inample of the CodeSyn code generation process with em-
greedy manner by inserting register to register MOVephasis on the register assignment procedure. The source
Heuristically, moves like thessavethe scarce resource ¢ code and corresponding CDFG are shown in Figure 5.
of register classes with just a single member. ~ gome extensions to ANSI C have been adopted for spe-
Following this procedure and in the same fashion, singjg| features. Theegister storage class has been used
gle WriteRegisters are assigned indiscriminately. Unashea\,”y with the@ symbol to indicate a specific physi-
signed ReadRegisters which fanout from (feed off) an\cg register. Notice that two graph rewrites have been
assigned WriteRegisters are attempted to be assignégone to the CDFG. Thié condition has been rewritten
Again difficulties arise in the same manner as previoustg g subtract followed by a compare to zewhich al-
ly. These are resolved heuristically regarding lifetimesgyys matching to &ranch on negativénstruction; and,
and regarding single member register classes with priothe divide by 16has been rewritten to right shift by
Ity. four. These are rule-based rewrites based on the specific
It is possible to reverse the two tasks described abo‘capabilities of the architecture. Also, registeris re-
by assigning single WriteRegisters before singlegarded as a temporary value and replaced by pure data-
ReadRegisters. Results are dependent on the numkfiow in the CDFG.
and functionality of the special purpose registers in th
architecture. It is also dependent on the applications fa
which code is being generated.

C'source 1
inta[3], c, k, z;
register int 15 @ R5;
register int *br @ BR;

toplevel()

4.4 Assignment of the remaining Read/Write register int nx;
Registers. if(c <= 17)
In our approach, the greedy left-edge algorithm is for fx[::]k€5+/(bl%k] <<2);
a =rX N

mulated as follows. Starting at the top of the progran| ;
flow and traversing towards the bottom, each WriteReg !

ister which is visited is assigned to the first available 8%5;;}%
register and marked in use until all fanouts to ReadReg Readvariable
isters are complete. Pre-calculated intersect sets mak Wp.era“o_”

i riteVariable
this procedure easy. Operation

At points where there are no available registers, spill Rt
to memory are inserted. This is nontrivial since the Bﬁ%‘ﬂaﬁ%ﬂtar

DataStore class is needed and it may be a dedicated re
ister (R1) in some architectures (Section 3.1 ). We hav
resolved this problem by placing priority assignment or
ders on the registers in each class. In this case we ha

WriteVariableArray
Operation

£\ WriteRegister

O ReadRegister

ensured that the DataStore members are regarded as IFigure 5 Example - Source C code and CDFG




ReadVariable
Matched Operation

WriteVariable
Matched Operation

ReadConstant
Matched Operation

WriteVariableArray
Matched Operation

£\ WriteRegister
O ReadRegister

Figure 6 Example - Covered CDFG with Read/
WriteRegister Nodes

Figure 6 shows the example after pattern matchiny
and covering to the architecture instruction set. Notice
that the pattern matcher has found instructions whicl
maximize the number of operations executed togethe
Between the operations, behavioral Read/WriteRegiste
nodes have been inserted. These nodes have been an
tated with register classes corresponding to those four
on the input/ouput terminals of the matched patterns
Notice that two ReadRegister nodes (BR and R5) hav
previously been assigned by the user (Figure 5). At thi
point, these physical registers are checked for inclusio
in the annotated register class.

I
cDataCalc éDataCa

C

emoryLoad

@Memor Storgf
R1 Y E/I:etr?&%dr cggseAddres

| rRe BR
£ \MemorylLoad

/
cggtacméDataCal

QDataCalc

£\ WriteRegister Ul&/lfmoryswre
O ReadRegister

Figure 7 Example - Scheduled CDFG - Single
member reads assigned

Figure 7 shows the same CDFG focussing on the
Read/WriteRegister operations. The CDFG has been
coarsely scheduled based on list methods. Single
ReadRegister nodes (register class with one member)
are shown assigned to physical registers (i.e. MemoryS-
tore - R1 ; DataToMemAddr - R6), as well as those
which have been assigned by the user.

O DataTo

'\R"gmA dr cggseAddress

; ggmoryLoad
/
batacal& DataCalg
R5 R2
DataCalc
OR1
£ WriteRegister
O ReadRegister cllx?ﬂfmorysmre

Figure 8 Example - Register assignment complete

Figure 8 shows the CDFG at completion of register
assignment. Notice that a conflict move has been insert-
ed to resolve the two ReadRegisters which have been
assigned to special purpose registers (R1 and R6), and
are written by a common WriteRegister. At this point,
the CDFG is completely mapped to the instruction-set
of the architecture. Assembly code instructions which
have been associated with the patterns are emitted along
with the assigned registers. This is shown in Figure 9.

.segment  _toplevel_code

.global _toplevel
_toplevel:

immd_to_ar _c

Id R2

immd_to_r7 17,R7

sub R2,R7,R0,0,0

immd_to_ar _toplevel L1

bneg

immd_to_ar _k
Id R1

immd_to_ar _z
st R1

add R1,R0,R6,0,0
r6_plus_br_to_arR6

Id

R2
add R5,R2,R1,2,4
immd_to_ar _a+3

R1

st
_toplevel_L1:
ret
.segment  reg_example_code_data,memtype=1,wordsize=16
.global _a
_a
.bss 3
.global _c
_c
.zero 1
.global _k
k:

“.zero 1
.global _z
z:

Figl_Jre 9 Example - Sequential assembly code



This code can run directly on the machine; howeverresources before detailed register assignment. Some
since the processor allows parallelism, it is possible twork in this area has already been investigated [15][16].
compact the code based on the resources used by e:
micro-operation. The compacted code is shown in Fig 7 References
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