
Abstract

Application Specific Instruction-Set Processors (ASIPs) offer
designers the ability for high-speed data and control
processing with the added flexibility needed for late design
specifications, accomodation of design errors, and product
evolution. However, code generation for ASIPs is a complex
problem and new techniques are needed for its success. The
register assignment task can be a critical phase, since often in
ASIPs, the number and functionality of available registers is
limited, as the designer has opted for simplicity, speed, and low
area. Intelligent use of register files is critical to the program
execution time, program memory usage and data memory
usage. This paper describes a methodology utilizing register
classes as a basis for assignment for a particular style of ASIP
architectures. The approach gives preference to special
purpose registers which are the scarce resources. This
naturally leads to the objectives of high speed and low
program memory usage. The approach has been implemented
in a system called CodeSyn [1] and used on custom ASIP
architectures.

 1  Introduction

The Application Specific Instruction-Set Processor
(ASIP) has recently emerged as a new hardware design
solution taking the best of two worlds: flexibility
through programmability from the general purpose pro-
cessor and high-speed, low power, and low area through
dedicated circuitry from the Application Specific Inte-
grated Circuit (ASIC). Much as synthesis has struggled
to keep up with the rate of advances in process technolo-
gy, now code generation is challenged by the new de-
sign styles in ASIPs.

Register assignment for ASIPs can be a difficult task
due to the small number and restricted functionality of
physical register files. Limitations on the availabilty of
registers is usually motivated through the designer’s will
for high speed and low area through the reduction of
busses and multiplexers. Also, a simple design reduces
the possibility of errors and allows fine tuning to an ap-
plication area.

In this paper, we present an effective approach for the
register assignment task in code synthesis for ASIPs. An

overlapping classification of register function has been
employed to guide the algorithm. The concept of regis-
ter classes is not new [2][3]; however, they are used in
our approach in a unique manner. The methods are par-
ticularly effective with a specific ASIP design style, but
we anticipate that many of the methods are applicable to
other ASIP and DSP design styles.

This approach works in conjunction with the instruc-
tion-set matching and selection methodology outlined in
[4], and is part of the code generation system called
CodeSyn [1]. CodeSyn is one of the tools in the embed-
ded systems development environment, FlexWare [1],
which also includes a retargetable VHDL-based instruc-
tion-set simulator, Insulin [5].

The complete code generation system also contains a
source-level parser, a graph rewrite module, an instruc-
tion-set pattern matcher/selector, and a scheduler, which
are used prior to register assignment. The back end con-
tains a compactor, assembler and linker. The process is
shown in Figure 1 and the steps are outlined in [1]. The
current source language is C.

Figure 1  CodeSyn code generation process

This paper is organized as follows. Section 2 outlines
related work in this area. Section 3 describes the ASIP
design style to which we have targeted this approach
and a formulation of the problem. Section 4 describes
the register assignment approach. Section 5 describes a
full code generation example and results. Section 6 pro-
vides a summary and conclusion.
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Figure 1  Register connectivity and classification
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 2  Related Work

In high-level synthesis, register allocation has tradi-
tionally been defined as the determination of the number
of registers needed to store values between time-steps
for a given application. The required number of registers
are created or drawn from a library. Work in this area
has been successfully addressed through techniques
such as rule-based systems[6], branch and bound meth-
ods [7], linear programming [8], and iterative approach-
es[9].

In contrast to this, register assignment in code genera-
tion involves finding the best use of afixedset of regis-
ters among hardware constraints. A popular technique
for register assignment is graph coloring [10][11]. The
procedure has been formulated as follows. An interfer-
ence graph is constructed with nodes representing regis-
ters and connecting edges representing conflicting
assignments. Adjoining nodes are given different colors,
then each color is related to a physical register . While
this technique can give good results for architectures
with regular register files, it does not address dedicated
architectures with special purpose registers. In addition,
coloring techniques do not naturally address the concept
of variable lifetimes in a procedural control context.

Register assignment has also been solved through
greedy approaches such as that taken from the routing
problem in microchip mask layout [12]. Theleft-edge
algorithm is applicable to both hardware synthesis and
code generation. It offers optimal assignment for a regu-
lar and fixed register file within a control-flow block
boundary. We have built upon this algorithm and modi-
fied it to use functional classes of registers for one part
of our approach for application-specific processors.

As processor architectures become more application
specific in nature, new approaches [13][14] are emerg-
ing which regard the heavy interdependence between
scheduling of instructions and register allocation. For

effective code generation, methods such as these will
become important precursors to register assignment ap-
proaches, such as the one presented here.

 3  Problem Domain

 3.1 Target ASIP Architecture

The target architecture-style for this approach has
been described in [4] and is repeated here for clarity.
The registers and allowable data movement is depicted
in Figure 1. Specific registers must be used for particular
tasks, motivated by the designer’s desire for speed and
area improvements. This figure shows that R0 is always
a constant 0 source as well as a bottomless sink, R1 is
the only register with write access to data memory, R6 is
the only data register through which data can be moved
from the ALU to the address register, and R7 is the only
register which can hold a constant from program memo-
ry and serve as a multiplicand in the multiply-adder of
the ALU.

 3.2 Problem Formulation

We approach register assignment as an isolated prob-
lem following selection of instructions which can exe-
cute the main operations of the source algorithm, and
coarse scheduling of these operations. A coarse sched-
ule gives the general ordering of instructions without re-
gard to the details of parallelism. The task is to
determine specific physical registers as the input and
output operands of the instructions. Conflicting uses of
registers can only be resolved by moves to available
registers and spills to memory. In this style of architec-
ture register to register moves are less expensive than
spills to memory, as addresses have to be set up for the
later. It is rare but possible to have the converse.



 4  Assignment Approach

 4.1 Register Classification

We have adopted a methodology whereby we define a
number of overlappingregister classes for the given ar-
chitecture. These classes group a set of registers by
function. For example, in Figure 1 the register class,
DataCalc, contains eight physical registers (R0, R1, R2,
R3, R4, R5, R6, R7). Data calculation functions can be
performed on any of these registers. Similarly, the regis-
ter class,DataStore, contains one physical register (R1),
the only register with write access to the data memory.
There are typically two levels of register classes: a
broad categorization for overall function, and a small
categorization for special purpose functions.

As explained in [4], micro-instruction patterns have
been annotated with register classes which indicate
where data can reside for the input(s) and output(s) of
each instruction. This has aided in the selection of mi-
cro-instructions as well as providing the allowable reg-
ister sets for assignment.

 4.2 Assignment Process

We begin with one or several general Control/Data-
flow Graphs (CDFGs) corresponding to the source ap-
plication. As shown in Figure 1, the graph has been pat-
tern-matched and covered to instructions of the target,
then coarsely scheduled prior to register assignment.

Between operations that transfer data between regis-
ters, behavioural ReadRegister and WriteRegister nodes
are inserted carrying register classes which have been
annotated on the in/out terminals of the patterns. An ex-
ample is shown in Figure 2. The directed segments on
the right of the diagram indicate control-steps, with the
dotted lines showing the execution of operations on
each step. This data-flow portion of the CDFG has been
scheduled for a one ALU processor.

Figure 2  Insertion of Read/WriteRegister
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Candidate register sets are calculated for the data-flow
between operations from the intersection of the registers
in each register class (the register allocation phase of the
algorithm). Three examples are shown in Figure 3.

Figure 3  Calculating Intersect Candidate Registers

Note that in Figure 3 Ex. c has an empty candidate inter-
section which indicates that a register move is needed.
Necessary register moves are determined after pattern
matching and covering and inserted before scheduling.
The insertion point for the move is determined heuristi-
cally by a combination of the size of the register classes
associated with the ReadRegister nodes and the lifetime
of the variable.

After a candidate register list is made for each data-
flow connection between operations, assignment begins.
The approach is greedy in nature and based upon the
left-edge algorithm [12] with improvements. The gener-
al procedure is as follows:

1. Assignment begins at intersection points which have
register classes containing only one member register.

2. Assignment for the intersection points in Step 1. are
ordered based upon lifetime and number of reads.
Assignment begins with the shortest lifetime and
fewest number of reads.

3. Steps 1 and 2 can lead to register assignment con-
flicts which are handled by greedily inserting register
moves.

4. The remaining candidate intersections are assigned
by a left-edge algorithm, inserting spills to memory
when there are no available registers to be assigned.

This approach is geared towards giving priority to regis-
ters dedicated to specific tasks.

 4.3 Assignment of classes with a single member

ReadRegister nodes having a register class containing
only one member register (termed single ReadRegisters)
are assigned first. Figure 4 shows an example in which
the DataStore and theDataToMemAddrclasses contain
only one register each (See Figure 1).

Figure 4  Assigning ReadRegister nodes with
single member classes.
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is made to assign all those WriteRegisters which fanout
to (or feed) these nodes. Difficulties can arise through
two sources:

1. The physical register is in use (has been previously
assigned).

If the physical register is in use, the algorithm finds the
WriteRegister(a) which is currently using the phyisical
register and determines if it occurs before the subject
WriteRegister(b). If so, a move is inserted after Writ-
eRegister(a). A move consists of a ReadRegister feeding
a DataMove operation feeding a WriteRegister inserted
directly after the original WriteRegister. Note that the
DataMove operation must later be matched and covered
with an instruction-set pattern.
2. A WriteRegister may fanout to more than one

ReadRegister, where each ReadRegister may or may
not be assigned to a different register.

In this case, the nearest ReadRegisters to the WriteReg-
ister are assigned first, then the rest are resolved in a
greedy manner by inserting register to register moves.
Heuristically, moves like thesesave the scarce resource
of register classes with just a single member.

Following this procedure and in the same fashion, sin-
gle WriteRegisters are assigned indiscriminately. Unas-
signed ReadRegisters which fanout from (feed off) any
assigned WriteRegisters are attempted to be assigned.
Again difficulties arise in the same manner as previous-
ly. These are resolved heuristically regarding lifetimes
and regarding single member register classes with prior-
ity.

It is possible to reverse the two tasks described above
by assigning single WriteRegisters before single
ReadRegisters. Results are dependent on the number
and functionality of the special purpose registers in the
architecture. It is also dependent on the applications for
which code is being generated.

 4.4 Assignment of the remaining Read/Write
Registers.

In our approach, the greedy left-edge algorithm is for-
mulated as follows. Starting at the top of the program
flow and traversing towards the bottom, each WriteReg-
ister which is visited is assigned to the first available
register and marked in use until all fanouts to ReadReg-
isters are complete. Pre-calculated intersect sets makes
this procedure easy.

At points where there are no available registers, spills
to memory are inserted. This is nontrivial since the
DataStore class is needed and it may be a dedicated reg-
ister (R1) in some architectures (Section 3.1 ). We have
resolved this problem by placing priority assignment or-
ders on the registers in each class. In this case we have
ensured that the DataStore members are regarded as low

priority for assignment in other classes. This increases
the likelihood of the ability to spill values to memory.
As the number of dedicated classes increase, measures
such as these become less effective.

For a variable with multiple reads, an inserted spill
consists of a store to memory followed by a separate
load for each read. It is possible to reduce the number of
loads depending on the number of live variables at this
critical point. This is an area for future enhancement.

 5  Results

We were unable to find a compiler which could suc-
cessfully and consistently generate correct code for the
style of ASIP described in Section 3.1 (that is what mo-
tivated this work!). Therefore, having no scale for
benchmarks and since this paper describes just one part
of code generatioin we have opted to show results
through a detailed example. The following is a full ex-
ample of the CodeSyn code generation process with em-
phasis on the register assignment procedure. The source
C code and corresponding CDFG are shown in Figure 5.
Some extensions to ANSI C have been adopted for spe-
cial features. Theregister storage class has been used
heavily with the@ symbol to indicate a specific physi-
cal register. Notice that two graph rewrites have been
done to the CDFG. Theif condition has been rewritten
to a subtract followed by a compare to zero, which al-
lows matching to abranch on negative instruction; and,
the divide by 16 has been rewritten to aright shift by
four. These are rule-based rewrites based on the specific
capabilities of the architecture. Also, registerrx is re-
garded as a temporary value and replaced by pure data-
flow in the CDFG.

Figure 5  Example - Source C code and CDFG
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}
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Figure 6  Example - Covered CDFG with Read/
WriteRegister Nodes

Figure 6 shows the example after pattern matching
and covering to the architecture instruction set. Notice
that the pattern matcher has found instructions which
maximize the number of operations executed together.
Between the operations, behavioral Read/WriteRegister
nodes have been inserted. These nodes have been anno-
tated with register classes corresponding to those found
on the input/ouput terminals of the matched patterns.
Notice that two ReadRegister nodes (BR and R5) have
previously been assigned by the user (Figure 5). At this
point, these physical registers are checked for inclusion
in the annotated register class.

Figure 7  Example - Scheduled CDFG - Single
member reads assigned
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Figure 7 shows the same CDFG focussing on the
Read/WriteRegister operations. The CDFG has been
coarsely scheduled based on list methods. Single
ReadRegister nodes (register class with one member)
are shown assigned to physical registers (i.e. MemoryS-
tore - R1 ; DataToMemAddr - R6), as well as those
which have been assigned by the user.

Figure 8  Example - Register assignment complete

Figure 8 shows the CDFG at completion of register
assignment. Notice that a conflict move has been insert-
ed to resolve the two ReadRegisters which have been
assigned to special purpose registers (R1 and R6), and
are written by a common WriteRegister. At this point,
the CDFG is completely mapped to the instruction-set
of the architecture. Assembly code instructions which
have been associated with the patterns are emitted along
with the assigned registers. This is shown in Figure 9.

Figure 9  Example - Sequential assembly code
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.segment _toplevel_code

.global _toplevel
_toplevel:
immd_to_ar _c
ld R2
immd_to_r7 17,R7
sub R2,R7,R0,0,0
immd_to_ar _toplevel_L1
bneg
immd_to_ar _k
ld R1
immd_to_ar _z
st R1
add R1,R0,R6,0,0
r6_plus_br_to_arR6
ld R2
add R5,R2,R1,2,4
immd_to_ar _a+3
st R1

_toplevel_L1:
ret
.segment reg_example_code_data,memtype=1,wordsize=16
.global _a

_a:
.bss 3
.global _c

_c:
.zero 1
.global _k

_k:
.zero 1
.global _z

_z:



This code can run directly on the machine; however,
since the processor allows parallelism, it is possible to
compact the code based on the resources used by each
micro-operation. The compacted code is shown in Fig-
ure 10.

Figure 10  Example - Compacted assembly code

For this example, we were hard-pressed to write more
efficient hand-code than CodeSyn had produced.

We have run a number of representative benchmarks
through the CodeSyn code generation system. For archi-
tectures of the design style described earlier, we were
able to generate code within 20% of hand-coded quality
on average [4].

 6  Conclusion

This paper has introduced a register assignment ap-
proach for code generation targeting a style of ASIP ar-
chitectures with heavy dependence on special purpose
registers. The methodology has been proven effective in
the code generation system, CodeSyn. Early attempts to
retarget a commercial code generation system to the
style of architecture described in Section 3 were only
partially successful. The solution was to disallow the
compiler to use any registers needed for a dedicated
function. This made the general data calculation register
set severely limited, and so, in many cases code genera-
tion was unsuccessful due to lack of registers. Thus, the
greatest contribution of this work has been to provide
the capability of code generation for this ASIP design-
style.

Directions for future work include
instruction scheduling with regards to register class us-
age, and improvements to conflict resolutions. As the
organization of registers for ASIP and DSP architectures
varies greatly in style, we will be striving for register as-
signment methods which will be general enough to en-
compass all varieties. In a recently studied target for
CodeSyn, the instruction set shows register class restric-
tions based upon the limited instruction word length.
These restrictions are difficult to manage, and corre-
spond theoretically todynamic register classes. This
poses a huge challenge on current register assignment
approaches.

Other promising avenues may be in the area of memo-
ry management techniques to make best use of available

/*0x0000*/ CONT ; NOP ; NOP ; NOP ; I_TO_AR #0x003
/*0x0001*/ CONT ; NOP ; LD R2; MV #0x011,R7; NOP
/*0x0002*/ CONT ; SUB R2,R7,#0,R0,#0 ; NOP ; NOP ; I_TO_AR #0x00B
/*0x0003*/ BNEG ; NOP ; ST R5; NOP ; NOP
/*0x0004*/ CONT ; NOP ; NOP ; NOP ; I_TO_AR #0x004
/*0x0005*/ CONT ; NOP ; LD R1; NOP ;  I_TO_AR #0x005
/*0x0006*/ CONT ; ADD R1,R0,#0,R6,#0 ; ST R1; NOP ; NOP
/*0x0007*/ CONT ; NOP ; NOP ; NOP ; BR_PLS_R6
/*0x0008*/ CONT ; NOP ; LD R2; NOP ; I_TO_AR #0x003
/*0x0009*/ CONT ; ADD R5,R2,#2,R1,#4 ; NOP ; NOP ; NOP
/*0x000a*/ CONT ; NOP ; ST R1; NOP ; NOP
/*0x000b*/ RET ; NOP ; NOP ; NOP ; NOP
 SUSP ; SUSP ; SUSP ; SUSP ; SUSP
END.

resources before detailed register assignment. Some
work in this area has already been investigated [15][16].
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