
we should minimize the contribution of each node to the total
power consumption. Network don’t cares can be used to mod-
ify the function of each node to achieve this goal.

The rest of this paper is organized as follows. In section 2.
we review the model used for power estimation. In section 3.
we discuss previous work on using don’t cares to minimize the
network area and power consumption. In section 4. we present
a formal analysis of the effect of local signal probabilities on
the signal probability of other nodes in the network. In section
5. we discuss how this information is used to optimize nodes in
the network. Experimental results and concluding remarks are
presented in sections 6. and 7.

2.A power estimation model
The dynamic power consumption in a boolean network is com-
posed of two components. First is the power consumption due
to steady-state transitions at the outputs of intermediate nodes;
The second component is due to hazard/glitches at the outputs.

The power consumption due to steady-state output changes
is calculated using equation (1) whereVd is the supply voltage,
f is the input clock frequency,ci is the load seen by the node and
Ei is the switching activity of nodei.

(1)

In this paper we assume that the primary input signals are
spatially and temporally uncorrelated. We also assume a zero
(non-glitch) delay model. Given these assumptions, the
switching activity of nodeni is given by equation (2) wherepi
is signal probability of the node:

(2)

Given signal probabilities for the primary inputs of a bool-
ean network,pi is computed using the global BDD forni [9].

3.Previous work
Network don’t cares can be used for minimization of nodes

in a boolean network [1]. Once the compatible don’t cares are
computed for all nodes, each node can be optimized for area
without any concern that changes in the function of this node
might affect the function of primary outputs of the network. In
[10] a procedure is presented where observability don’t cares
[3] and image projection techniques are used to compute the
compatible local don’t cares for nodes in the network. The
compatible local don’t care for nodeni is then used to minimize
the number of literals in the function ofni.

Equation (3) [10] is used to compute the observability
don’t care (ODC) for nodeg in a boolean network:

Pi 0.5 V⋅ d
2 f ci Ei⋅

j
∑⋅ ⋅=

Ei 2 pi 1 pi−()⋅ ⋅=

Abstract

This paper describes a procedure for minimizing the power
consumption in a boolean network under the zero delay model.
Power is minimized by modifying the function of each interme-
diate node in the network such that the power consumption of
the node is decreased without increasing the power consump-
tion of the other nodes in the network. A formal analysis of how
changes in the switching activity of an intermediate node affect
the switching activity of other nodes in the network is given
first. Using this analysis, a procedure for calculating the set of
compatible power don’t cares for each node in the network is
presented. Finally it is shown how these don’t cares are used to
optimize the network for low power. These techniques have
been implemented and results show an average of 10% im-
provement in total power consumption of the network com-
pared to the results generated by the conventional network op-
timization techniques.

1.Introduction
Portability of modern digital applications places severe restric-
tions on the size and power consumption of these units. These
new applications often require real time processing capabilities
and thus demand high throughput. At the same time, with re-
ductions in the minimum feature size of VLSI designs, the
power consumption is becoming the limiting factor on the
amount of functionality that can be placed on a single chip. Ex-
ploring the trade-off between area, performance and power
during synthesis and design is thus demanding more attention.

Low power VLSI design can be achieved at various levels
of abstraction. For example, at the system level, inactive hard-
ware modules may be automatically turned off to save power.
At the architectural level, concurrency increasing and critical
path reducing transformations may be used to allow a reduc-
tion in supply voltage without degrading system throughput
[4]. At the device level, threshold voltage of MOS transistors
can be reduced to match the reduced supply voltage [6]; Very
low threshold voltages may be made possible by electrically
controlling the threshold values (against process and tempera-
ture variations) by substrate modulation [2].

Once these system level, architectural and technological
choices are made, it is the switching activity of the logic
(weighted by the capacitive loading) that determines the power
consumption of a circuit. In this paper, we will describe new
techniques for power minimization at the technology indepen-
dent phase of logic synthesis.

In order to minimize the power consumption of a network,

Multi-Level Network Optimization for Low Power*
Sasan Iman, Massoud Pedram

Department of Electrical Engineering - Systems
University of Southern California

Los Angeles, CA 90089

* This research was supported in part by the NSF’s Research Initiation
Award under contract no. MIP-9211668 and the Intel Corp.

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0372 $3.50

(3)

The procedure for minimizing the area of a boolean network
is modified in [11] to minimize the power consumption of the
network. The difference between this procedure and the proce-
dure for minimizing the network area is in the cost function
used for minimizing each node. Given the function for a node
ni and its local don’t care, the following cost function is used to
minimize the power consumption of nodeni:

(4)

In this equationc is the fount load, m is the number of prod-
uct terms in the cover,Ej is the switching activity ofj-th cube
in the cover andEk is the switching activity ofk-th local input.
The first term approximates the power consumed by each cube
of the function wherem is used to approximate the penalty in
having a large number of cubes. The second term is used to ac-
count for the loading capacitances on the fanin nodes.

This method suffers from two shortcomings. First is that the
proposed procedure does not consider how changes in the
function of an intermediate node affect the signal probability of
nodes in its transitive fanout. In general by changing the func-
tion of an intermediate node, it is possible to change the signal
probability of nodes in its transitive fanout such that the power
due to these fanout nodes is increased. The following example
demonstrates how reducing the switching activity of an inter-
mediate node might result in an increase in the total power con-
sumption of a network.

Example: Assume:
p(a) = p(b) = 0.5 and (f = a + g), (dcf = a.b)and (g = a.b).
Also assume f has 5 fanouts.Thus (dcg = dcf + a = a + b).
Before optimization:
p(f) = 3/4 => E(f) = 3/8=> P(f) = 15/8,
p(g) = 1/4 => E(f) = 3/8 => P(g) = 3/8. Total power =18/8.
After optimization:
f is not changed to keepP(f) low and setg = 0. This means

that f =a is the global function of f.
p(f) = 1/2 => E(f) = 1/2=> P(f) = 5/2,
p(g) = 0 => E(f) = 0 => P(g) = 0. Total power =5/2.

❑

The second drawback is that the cost function used for opti-
mizing nodes does not clearly reflect the power cost of the two-
level cover.

In order to accurately estimate the power consumption at
the output of a nodeni, we need to use a load valueci that more
accurately reflects the load seen by the nodeafter technology
mapping. Given a nodeni and fanin nodenj, we define the fac-
tored loadFL(nj, ni) as the number of times variablenj is used
(in positive or negative form) in the factored form expression
of nodeni. We can thereby calculate the power contribution of
a nodeni (excluding its internal power consumption) by the
following equation:

ODCg

foi∂

g∂
ODCfoi

()
foi fanoutofg∈

∏+=

c m Ej
nj cubes ni()∈

∑⋅ ⋅
 
  Ek

nk fanins ni()∈
∑

 
 +

(5)

In this paper we use this equation to estimatepower_cost
(ni), the power contribution of nodeni to the power consump-
tion of the mapped network. Experimental results show that the
power estimate computed before technology mapping using
this approach more closely reflects the actual power consump-
tion after technology mapping.

In order to account for the internal power consumption of a
node, one can augmentPi with a weighted factor of the number
of literals in the node (Ai). Thenpower_cost (ni) = Pi + α . Ai
whereα is the weighting coefficient.

4.Power don’t care analysis
The procedure for don’t care calculation as described in [10]
guarantees that the function of the network primary outputs
will not change for any condition not specified in the external
don’t cares. However as the don’t care for an intermediate node
ni is being used to optimizeni, it is possible to change the glo-
bal function of nodesnj in the transitive fanout ofni. These
changes are not important when area is being minimized since
the change in the function of each fanout node will be within
the observability don’t care calculated for that node. However
these changes may adversely affect the power consumption in
the network.

4.1.Analysis for tree networks
Consider nodesf andg where function of nodef is expressed
in terms of variable g(Figure 1). By definition:ODCf

g = ∂f/∂g,
andODCg = ODCfg + ODCf => ODCfg ⊆ ODCg. Also note
thatg ∩ ODCg ≠ Ø.

 Figure 1
We can write the following relations forf andg wherefg is

the cofactor off with respect to variableg.
fg: global conditions whereg = 1 andf = 1
fg: global conditions whereg = 0 andf = 1
fg: global conditions whereg = 1 andf = 0
fg: global conditions whereg = 0 andf = 0

Now define the following:
∂f+/ ∂g = fg. fg ∂f−/ ∂g =fg. fg.

From this definition∂f+/ ∂g gives all global conditions for
which the values for both f andg evaluate the same and∂f−/ ∂g

Pi FL nj ni,() Ej⋅
nj fanins ni()∈

∑=

FL ni nk,() Ei⋅
nk fanouts ni()∈

∑+

g

f ODCf
g

ODCg

g

gives all global conditions for whichf andg evaluate to oppo-
site values. Note that∂f / ∂g = ∂f+/ ∂g + ∂f−/ ∂g which is the
difference equation.

 Figure 2
Figure 2 shows how the global space of the primary inputs

is partitioned with respect to global functionsf andg. The re-
gion specified byODCf

g specifies all points of the global space
where changes ingwill not affect the global function off. Re-
gion∂f+/ ∂g specifies all points in the global space which if
included ing will also be included inf. Region∂f−/ ∂g speci-
fies all the points in the global space which if included ingwill
be removed fromf. Figure 2 also shows the relationship be-
tween∂f−/ ∂g and∂f+/ ∂g and the global function of nodeg
where points inside the inner circle are on-set points of func-
tion g andODCfg ⊆ ODCg.

Don’t care conditions for nodeg (see region above line
ODCg) can be partitioned into six regions described below
wherevi is a minterm in regioni.
g f
↑ Ο : region 1: including v1 in g will not change f,

↑ ↑ : region 2: including v2 in g will increase p(f) by p(v2),

↑ ↓ : region 3: including v3 in g will decrease p(f) by p(v3),

↓ Ο : region 4: removing v4 in g will not change f,

↓ ↑ : region 5: removing v5 in g will increase p(f) by p(v5),

↓ ↓ : region 6: removing v6 in g will decrease p(f) by p(v6).

In a tree network, most nodes have more than one node in
their transitive fanouts. This means that while optimizing a
nodeni, it is necessary to consider the effect of changes in the
function ofni on all nodes in its transitive fanout. For a nodeni
with k nodes in its transitive fanout, the number of don’t care
regions is given by4k+2.

In order to minimize the contribution of nodeg to the power
consumption of the network we need to minimize the switch-
ing activity ofg and all its fanouts. By using don’t care regions
for nodeg and nodes in its transitive fanout, we can analyze the
effect of changes in the function ofg in the signal probability
of these fanout nodes. However this would be very difficult as
a case-by-case analysis of each don’t care region is required.

There are other drawbacks in using the don’t care regions to
minimize the switching activity of a node and its transitive
fanout nodes. The first drawback is that in optimizing node g,
we will need information on all don’t care regions correspond-
ing to its transitive fanouts and this analysis quickly becomes
computationally expensive. A second problem is that contra-
dictory decisions as to increase or decrease the signal probabil-

∂f+/ ∂g

∂f−/ ∂g 3 5 6 2

ODCf
g

ODCg

g

1 4

ity of a nodef can be made while optimizing different nodes in
its transitive fanin. This means that even if all the optimization
problems are solved, it is still possible to obtain no improve-
ment because of increasing the signal probability of a node at
one step and decreasing it in another step of the procedure.

The complexity of power optimization procedure can be re-
duced if a decision is made as to increase or decrease the signal
probability of a function after it has been optimized. This
means that while optimizing nodes in its transitive fanin, alter-
nating decisions cannot be made regarding the new signal
probability of this node.

The following two theorems can be used to reduce the com-
plexity of the power optimization procedure.

Theorem 1:
Given nodesf andg (Figure 2), regions 3 and 6 are empty

sets and regions 2 and 5 are maximal ifODCg is expressed as:
ODCg = f. ODCf + ODCf

g.

Theorem 2:
Given nodes f and g (Figure 2), regions 2 and 5 are empty

sets and regions 3 and 6 are maximal ifODCg is expressed as:
ODCg = f. ODCf + ODCf

g.
Theorems 1 and 2 can be used as follows. Assume that after

optimizing a nodef, we decide that as other nodes in the net-
work are optimized we do not want the signal probability of
this node to decrease below its current value. This is, for exam-
ple, desirable when the signal probability off after it is opti-
mized, is more than 0.5. This aforesaid condition will thus dis-
allow any increase in the switching activity of the node. There-
fore we must only use don’t care regions 1, 2, 4 and 5 in Figure
4 while optimizing a nodeg in the transitive fanin off. Using
theorem 1 we can computeODCg such that regions 3 and 6 are
empty sets and regions 2 and 5 are maximal. Theorem 2 is used
when we do not want the signal probability of nodef to in-
crease above its current value as other nodes in the network are
optimized.

Theorems 1 and 2 are thus used as don’t care filters while
calculating the ODCg for a nodeg in the network.ODCg for a
nodeg with fanoutf is calculated using Equation (6).

(6)

After ODCg is used to optimize the function of nodeg,
PODCg is calculated using the procedure in Figure 3. PODCg
is then stored at nodeg to be used in computing the don’t care
for fanin nodes ofg.

 Figure 3
The procedure presented above guarantees that after net-

ODCg ODCg
f PODCf+=

function find_power_odc(g, odc)
g is the node function
odc is the observability don’t care;

begin
if (p(g) > 0.5) then

PODCg = g . ODCg.
else

PODCg = g . ODCg.
end if

end

work optimization the switching activity of each node in the
network is less than or equal to its switching activity right after
is was optimized. This however means that while optimizing
different nodes in the transitive fanin of a nodef, it is possible
to increase or decrease the switching activity off. However,
this new value is always no larger than what it was when node
f was optimized.

4.2.Analysis for general networks
The approach used to analyze a tree network can be directly

used to analyze a general boolean network. However since the
observability don’t care relations for trees do not hold in a
DAG, the number of don’t care regions for a node is much larg-
er than the number of don’t cares regions for trees. Indeed the
number of don’t care regions for a nodeg in a DAG is given by

 wheren is the number of transitive fanouts of g.
The power compatible don’t care is also calculated by using

the following equation:

(7)

Once theODC is computed for nodeg, PODC can be com-
puted using thefind_power_odc procedure. ODCg as given in
equation (7) can be used to optimize the function of node g
with the knowledge that any use of this don’t care will only re-
sult in an improvement of the current partial solution.

5.Node optimization
In the past, node optimization using don’t cares has been main-
ly used to minimize the area of boolean networks. Programs
such as Espresso and MINI have been developed to optimize
the two level representation of boolean functions by reducing
the number of cubes in the cover of the function. However the
cost functions used in these programs cannot directly be used
to minimize the power consumed by the circuit implementing
a given two level boolean equation. This means that a new pro-
cedure needs to be developed which targets minimizing the
power consumption of the node rather than its area.

In calculating the total power consumption of a network, the
switching activity of each node is multiplied by the load seen
at the output. This means that if any fanin is removed from the
function of a node, the load seen at the output of this fanin and
hence the power consumption is reduced.

Given an incompletely specified functionff, it is often pos-
sible to implementff using different variables as the support. A
variable support is said to be minimal if it is not a proper subset
of any other variable support. The set of minimal variable sup-
ports for a function contains all its minimal supports. For ex-
ample letF = a.b andDF = a ⊕ b. This function can be sim-
plified to F = a or F = b. Then set{{a}, {b}} is the set of all
minimal variable supports for nodeF.

In order to choose the best possible variable support for a
noden, it is necessary to compute the set of minimal variable
supports forn. A procedure presented in [5] is used to compute
the set of minimal variable supports for a functionf. The diffi-
culty with this method is that it requires a cover of the on-set

2 3n 1+()

ODCg

foi∂

g∂
PODCfoi

()
foi fanoutofg∈

∏+=

and off-set of the function. This operation is computation ex-
pensive and the resulting off-set might have an exponential
size. A more efficient method [7] uses reduced off-sets [8] to
compute the set of minimal variable supports of a functionf.

Once the set of minimal variable supports for a function is
computed, a decision has to be made as to which set of vari-
ables to use in implementing the function. A simple cost func-
tion is to count the number of variables in the variable support.
The drawback with this cost function is that it does not consid-
er the switching activity of fanin variables that constitute the
support variables. A better cost function is to choose a variable
support where the sum of the switching activities for all the
variables in the support is minimum. We refer to this procedure
as the “minimal switching activity support” procedure. Once
the new variable support for a node is determined, the new
function of the node can be computed by dropping variables
not in the support [5].

 Figure 4
When a variable support is selected for the function, a part

of the don’t care is assigned to eliminate the variables not in the
selected support of the node. This operation results in a new
function fintermediate. However a subset of the don’t care can
still be used to minimize the cover of fnew. This subset of the
don’t care is called“residual don’t care” dcresidual. Figure 4.a
shows the on-set and don’t care for a functionf. Figure 4.b
shows the don’t care assignment that is used to eliminate vari-
ablex from the support to obtainfintermediate and Figure 4.c
shows the residual don’t care for functionf after variablex is
eliminated from the k-map. Usingdcresidual for this node, one
product term can be removed from the on-set of the functionf.

Given a cubev representing the variables removed from the
on-set of a functionf and don’t care for functionf, the reduced
don’t care forf is given byCv(dc)whereCv(dc) = dcv.dcv.

This procedure will provide a low area implementation
which has the lowest sum of switching activity on the immedi-
ate fanins of the node. However it is possible for a variable sup-
port with a higher switching activity support cost to have a
smaller factored form and hence have a lower power. In order
to select a variable support which also reduces the node’s pow-
er estimate as much as possible, we compare the power esti-
mate for the node implementation of thek lowest cost variable
supports wherek is a user defined parameter. Given a node
function f and its don’t caredc, the procedure in Figure 5 is
used to select the lowest power cost implementation off. The

1

X X

1X

X

1

1 X

1

1
1

1

X

1

X

1X

1

1

a) f anddcf b) fintermediate c) dcresidual

X

X X

XX

X

1

1 X

1

1

1

1

X

uw
xyz

uw
xyz

uw
yz

procedure in Figure 6 is then used for minimizing the power
consumption of a boolean network.

 Figure 5

 Figure 6

6.Results
The procedures presented in this paper were implemented in a
program calledpower_full_simplifyand the results for both
multi-level and two-level examples were compared to those of
thefull_simplify command in theSIS package.

Table 1. shows the results of the optimization after running
the script.rugged script on two level examples. Column 1
gives the number of literals in the factored form., Columns 2
and 3 show the estimated power for the intermediate nodes
and network primary inputs after the optimization process.
Note that the sum of these two columns gives the total power
estimate before mapping. Circuits were mapped and the net-
work power was calculated under a zero delay model. Column
4 and 5 give the area and power of the mapped networks.

The results in Table 2: are generated by replacing the
full_simplify command in thescript.rugged with the
power_full_simplify command. All results are normalized
with respect to results in Table 1. As results show, on average
we were able to obtain 11% improvement in terms of power
and 7% improvement in terms of area.

Table 3. and Table 4. show the same analysis for multi-
level examples. We were able to obtain 10% improvement in
terms of power and 1% improvement in terms of area.

function node_power_optimize(f, dc)
f is the function anddc is the don’t care of node;

begin
fnew = espresso(f, dc).
V = find_k_min_switching_activity_sup(f, dc).
for each v∈ V do

p= cube representing eliminated variables
fintermediate = function_elim_variables(f, p)
dcresidual = Cp(dc)
ftmp = espresso(fintermediate, dcresidual)
if power_cost(ftmp) < power_cost(fnew) then

fnew = ftmp
endif

endfor
return fnew.

end

function
 optimize(G)

G(V, E) isa DAG for a boolean network;
begin

for noden ∈ G in reverse depth first order do
ComputeODCn
fnew = node_pow_optimize(fn, ODCn)
PODCn = find_power_odc(fnew, ODCn)
storePODCn at noden to computeODCj

where j is fanin ofn
endfor

We expect to obtain better results if external don’t cares are
given for the circuits under consideration. The circuits we used
had no external don’t cares; consequently, theODC for these
networks were usually small.

7.Concluding Remarks
In this paper a method is presented that allows us to minimize
the power consumption of a network. Using the techniques
presented here it is possible to guarantee that local node opti-
mization will not increase the power consumption in the tran-
sitive fanout nodes. This means that local nodes can be opti-
mized without concern for how changes in the function of the
current node affect the power consumption in the rest of the
network. Future work includes the development of low power
equivalents of other technology independent logic operations.

8.References
[1] K. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R.

Morrison, R. L. Rudell, A. Sangiovanni-Vincentelli, and A. R.
Wang. Multi-level logic minimization using implicit don’t
cares. InIEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, volume 7, pages 723–740, June
1988.

[2] J. B. Burr. Stanford ultra low power CMOS. InProceedings of
Hot Chips Symposium V, pages 583–588, June 1993.

[3] E. Cerny. An approach to unified methodology of combinational
switching circuits.IEEE International Conference on CAD,
27:8, August 1977.

[4] A. P. Chandrakasan, S. S. Scheng, and R. W. Broderson. Low
power CMOS digital design.IEEE Journal of Solid State Cir-
cuits, 27(4):473–483, April 1992.

[5] C. Halatsis and N. Gaitanis. Irredundant normal forms and min-
imal dependence sets of a boolean function.IEEE Transaction
on Computers, pages 1064–1068, November 1978.

[6] D. Liu and C. Svensson. Trading speed for low power by choice
of supply and threshold voltages.IEEE Journal of Solid State
Circuits, 28(1):10–17, January 1993.

[7] S. Iman, M. Pedram, C. Fabian and J. Cong. Finding uni-direc-
tional cuts based on physical partitioning and logic restructur-
ing. In Proc. the 4th ACM/IEEE Physical Design Workshop,
April 1993.

[8] Abdul A. Malik, Robert K. Brayton, A. Richard Newton, and Al-
berto L. Sangiovanni-Vincentelli. A modified approach to two-
level logic minimization. InProceedings of theIEEE Interna-
tional Conference on Computer Aided Design, Nov. 1988.

[9] F. Najm. Transition density, a stochastic measure of activity in
digital circuits. InProceedings of the 28th Design Automation
Conference, pages 644–649, June 1991.

[10] H. Savoj.Don’t Cares in Multi-Level Network Optimization.
PhD thesis, University of California, Berkeley, 1992.

[11] A. A. Shen, A. Ghosh, S. Devadas, and K. Keutzer. On average
power dissipation and random pattern testability of CMOS
combinational logic networks. InProceedings of theIEEE In-
ternational Conference on Computer Aided Design, November
1992.

Table 2.power_full_simp for two-level examples

Pre-Map PostMap

ex 1 2 3 4 5

5xp1 1.01 0.69 0.97 0.95 0.91

9sym 0.91 0.18 1.53 0.65 0.81

Z5xp1 0.97 0.67 0.79 0.87 0.83

Z9sym 1.00 1.02 0.98 0.99 1.01

b12 0.92 1.06 0.84 0.93 0.89

bw 0.96 0.99 0.86 0.97 0.93

clip 0.99 0.99 0.88 0.95 0.94

duke2 1.00 1.07 0.93 0.99 0.98

e64 1.00 1.33 0.51 0.80 0.34

inc 0.98 1.10 0.88 0.98 0.98

misex1 0.96 1.11 0.78 0.93 0.93

misex2 1.01 1.16 0.83 0.99 0.90

misex3c 1.01 1.02 1.00 1.02 1.01

rd84 0.92 0.87 0.91 0.84 0.85

sao2 0.99 1.13 0.86 0.98 0.94

spla.esp 0.98 1.12 0.80 1.02 0.97

squar5 0.89 0.88 0.82 0.86 0.84

vg2 0.99 1.00 0.97 0.99 0.97

Avg 0.97 0.97 0.90 0.93 0.89

Table 4.power_full_simp for Multi-level examples

Pre-Map Post-Map

ex 1 2 3 4 5

9symml 1.20 0.56 1.56 0.79 0.90

apex6 0.99 0.99 0.96 0.98 0.97

apex7 1.00 1.06 0.94 1.00 0.95

cm138a 1.06 1.24 0.62 1.27 0.71

cm42a 1.06 1.52 0.55 1.15 0.90

cm85a 1.00 1.49 0.78 0.98 0.88

decod 1.00 1.16 0.62 0.92 0.77

des 1.01 0.99 0.99 0.99 0.99

f51m 1.10 0.79 0.93 0.87 0.80

frg2 1.00 0.96 0.99 1.00 0.95

i6 1.00 0.96 1.00 0.87 0.90

i7 1.00 0.96 0.99 1.00 0.93

k2 1.00 1.07 0.78 0.97 0.88

lal 1.00 1.04 0.97 0.99 0.97

pm1 1.00 1.17 0.84 1.00 0.92

term1 1.05 0.97 0.98 0.98 0.95

ttt2 0.99 1.03 0.90 0.98 0.95

vda 1.00 1.05 0.84 1.00 0.97

Avg 1.03 1.06 0.90 0.99 0.90

Table 3.full_simp for multi-level examples

Pre-Map Post-Map

ex 1 2 3 4 5

9symml 184 18.2 25.7 157 28.4

apex6 745 62.1 106 632 93.3

apex7 244 21.3 37.0 214 32.5

cm138a 31 0.81 5.25 24.1 3.01

cm42a 34 2.84 5.50 24.5 3.66

cm85a 46 1.57 9.25 41.7 6.58

decod 52 5.98 4.00 57.5 5.27

des 3483 469 261 2893 406

f51m 91 11.9 11.2 83.0 14.5

frg2 893 92.6 96.7 702 106

i6 458 55.4 54.0 423 63.8

i7 589 65.5 71.0 497 77.7

k2 1135 47.6 66.5 1005 62.0

lal 104 6.58 16.7 88.1 11.9

pm1 49 4.05 7.75 46.4 6.02

term1 168 13.8 23.0 145 21.4

ttt2 215 20.3 30.7 187 29.2

vda 615 40.4 26.2 532 38.3

Table 1.full_simp for two-level examples

Pre-Map PostMap

ex 1 2 3 4 5

5xp1 114 13.7 15.2 101 17.3

9sym 211 22.4 24.7 183 29.8

Z5xp1 116 14.7 14.5 105 18.0

Z9sym 202 21.5 23.7 179 28.8

b12 84 6.10 14.5 76.6 13.0

bw 160 25.4 14.0 136 21.2

clip 132 15.3 15.0 120 19.3

duke2 446 26.7 44.5 397 40.5

e64 253 1.25 32.7 293 20.8

inc 101 8.94 14.0 91.4 13.8

misex1 52 5.25 8.00 46.4 7.37

misex2 103 4.25 16.0 92.8 11.2

misex3c 451 45.4 60.0 379 61.8

rd84 145 18.3 13.2 131 20.4

sao2 129 8.62 20.2 117 18.8

spla 424 29.1 41.2 365 37.6

squar5 56 6.77 8.25 49.2 8.86

vg2 88 3.53 18.2 85.4 14.1

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

