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Abstract

In high level synthesis each node of a synchronous data-
flow graph (DFG) is scheduled to a specific time and al-
located to a processor. In this paper we present new in-
teger linear programming (ILP) models which generate a
blocked schedule for a DFG with implicit retiming, pipelin-
ing, and unfolding while performing module selection and
data format conversion. A blocked schedule is a schedule
which overlaps multiple iterations of the DFG to guaran-
tee a minimum number of processors. Component modules
are selected from a library of processors to minimize cost.
Furthermore, we include data format converters between
processors of different data formats. In addition, we mini-
mi ze the unfolding factor of the blocked schedule.

1 Introduction

In high-level synthesis a synchronous data-flow graph
(DFG) ismapped onto a set of modules, registers, and inter-
connections[1]. An example of aDFG isshownin Fig. 1.
The data-flow graph represents an iterative algorithm such
asadigital signal processing algorithm. A DFG can be non-
recursive or recursive. A recursive DFG contains feedback
loops (or cycles) and therefore has an inherent lower bound
onitsiteration period called theiteration bound[2, 3]. High
level synthesis consists of scheduling and resource aloca
tion where the goal is to assign an operation in the DFG to
an execution time on a particular processor. In this paper
we consider time-constrained scheduling where required
resources are minimized while satisfying the iteration pe-
riod specification.

Finding an optimal schedule during synthesis of aDFG
is an NP-complete problem [4]. Therefore, many heuris-
tic schedulers have been proposed [1][5]-[8]. While these
schedulers generate reasonable schedules in short CPU
time, the optimality of the schedule may not be guaran-
teed. Integer linear programming (ILP) solutions have
been proposed to solve the scheduling problem during high
level VLS| synthesis of DSP agorithms [9]-[15]. The ILP
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Fig. 1. Data-Flow Graph. (Node execution times are in parenthe-
ses.)

model in [15] operates on the origina DFG and gener-
ates a blocked schedule which automatically retimes [16],
pipelines [17], and unfolds [3] the DFG. The ILP formu-
lation is attractive because of the solution optimality and
the ease of adding additional constraints to the scheduling
problem.

In this paper we extend the ILP model of [15] to solve
the problem of modul e selection while scheduling. The ob-
jective of module selection is automatic allocation of each
operation to a library of processors to synthesize a system
using lesssilicon area and lower power. The module selec-
tion during scheduling has been addressed in [18]-[20] in
the context of heuristic scheduling and in [14] for schedul-
ing large-grain signal processing algorithms by ILP. In this
paper we support fine-grain signal processing algorithms.
One common way to build alibrary of componentsistoin-
clude bit-serial and bit-parallel units[21]. If both types of
units are used and must communicate, then it is essential to
include aserial to parallel (or parallel to serial) dataformat
converter. Thus, we include support for cost and computa-
tional latency of data format conver sion which has not been
considered before.

This paper isorganized asfollows. In section 2, blocked
scheduling and unfolding are discussed. Module selection
and data format conversion are demonstrated in section 3.
Thetime assignment |LP model with module selection and
data format conversion is presented in section 4. Section
5 contains the processor allocation |LP model with support
for unfolding factor minimization. In section 6 scheduling
results of several benchmarks are presented.

2 Blocked schedules

Fig. 2(a) shows a critical path method (CPM) schedule
[1, 5] of the DFG in Fig.1. In this schedule a single itera-
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tion does not overlap subsequent iterations. The minimum
possible iteration period for a CPM scheduler is equa to
the critical path length of the DFG. There are many cases
where it is not possible to reduce the critical path time to
the iteration bound through DFG transformations such as
retiming and pipelining [16, 22]. For example, no matter
how the DFG in Fig. 1 is retimed, the critical path will al-
ways be greater than the iteration bound of 4 u.t. (units of
time).

Thislimitation isovercome by schedulerswhich overlap
multiple iterations [6]-{9][23]. These schedulers schedule
asingleiteration of the DFG but allow subsequent iterations
to overlap the first. In an overlapped schedule, each node
computation isfolded into 7, equivalence classes and exe-
cuted every T,. u.t. where T;. is the iteration period. This
is sometimes referred to as loop unrolling or functional
pipelining [6, 23]. An overlapping schedule automatically
supportsretiming and functional pipelining. The minimum
possible iteration period for an overlapping scheduler is
limited by thelongest execution time of asingle node or the
iteration bound, whichever is largest. Moreover, the pro-
cessor utilization may not be optimal in overlapped sched-
ulesas shown in Fig. 2(b).

Unfolding [3] and cyclo-static techniques [24] can be
used to guarantee a rate-optimal and processor-optimal
schedule even when there exists a node whose computation
time exceeds the iteration bound. Both of these techniques
require scheduling multiple iterations of the DFG. We call
amultipleiteration schedule a blocked schedule. While an
iteration is repeated in a non-blocked schedule, a block of
iterations is repeated in a blocked schedule. An example
of a blocked schedule for the DFG in Fig. 1 is shown in
Fig. 2(c). In this case, a schedule of 12 u.t., representing
three iterations of the iteration period of 4 u.t., is repeated
in every processor. Here the processor utilization is opti-
mized since the number of processorsis reduced from 4 in
Fig. 2(b) to 3inFig. 2(c). Theblocked schedule can always
achieve the iteration bound of the DFG with optimal pro-
cessor utilization. An apparent disadvantage of unfolding
is the need to schedule multiple executions of each node.

Theblocked scheduler proposed in [15] generates an ab-
stracted blocked schedul e of the original DFG, likethe ones
shown in Fig. 2(e) and in Fig. 2(f), without explicitly un-
folding the original DFG. The complete blocked schedule
can be generated from the abstracted schedule by simply
repeating the schedule while exchanging processor assign-
ments such that an iteration of any nodeisexecutedinasin-
gleprocessor. For example, while expanding the abstracted
schedule of Fig. 2(e) to generate the complete schedule in
Fig. 2(c), the allocations of P3 and P2 must be exchanged
so that B2 is completed in processor P3. Thusit is pos-
sible to generate the abstracted schedule by scheduling the
original DFG without considering multipleiterations.
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Fig. 2. Several schedulesfor the DFG in Fig. 1. () Critical path
schedule with T, = 10 u.t. (b) Overlapped schedule with T, = 4
u.t. (c) Blocked schedule with T,, = 4 u.t. (d) Blocked schedule
with minimized unfolding factors. (7 = 4 ut.) (e) Abstracted
version of the blocked schedule of (c). (f) Abstracted version of
the blocked schedule of (d).

L et the unfolding factor of a processor be defined asthe
length of one period of the blocked schedule of the proces-
sor divided by theiteration period. Inthe processor-optimal
blocked schedule shown in Fig. 2(c), all the unfolding fac-
tor of each processor is 3. It isimportant to note that the
unfolding factors of processors need not be identical. For
examplein the blocked schedule shown in Fig. 2(d) which
is also processor-optimal, the unfolding factors of proces-
sors P1, P2, and P3are2, 2, and 1, respectively. From the
viewpoint of control circuit cost, smaler unfolding factors
are preferable since the cost of the control circuit could be
proportional to the length of the iteration period and there-
fore proportional to the sum of the processor unfolding fac-
tors. Thus, the schedulein Fig. 2(d) is superior to the sched-
ulein Fig. 2(c) since the sum of processor unfolding factors
is5for Fig. 2(d) and 9 for Fig. 2(c).

Generating a blocked schedule by a single complicated
ILP model requires a long solution time. In our approach,
ablocked schedule is generated by two ILP models to im-
prove the solution time without degrading the optimality.
First the time assignment ILP model finds the start times
for each node by folding the nodes into equivalent time
partitions as in an overlapping scheduler. Module selec-
tion and data format conversion are also performed by this
ILP model. Then the processor allocation ILP model finds



Tablel Library of Processor Types (wordlength = 16)

Table2 Converter Types

| type [ processor |ClL][m ] I] O] type | conversion [ C | L [ m
Ay, | Bit-parallel adder 1] 1] 53[bp]|bp Vbp,hp | DP—HP o) 113
Anp | Half-word parallel adder 12| 19 hp| hp Vbp.ds | DPp—ds 0] 3| 4
Ay, | 4-bit digit-serial adder 1] 4| 6] ds|ds Vhop,bp EP—’gp é % g
My, | Bit-parallel multiplier 5] 1331 [bp|bp e | e | 3| 3| 4
My, | Half-word paralld multiplier | 6 | 2 | 173 | hp | hp ,Uds’hp ds—hp >l 2| 3
Mg, | 4-bit digit-seria multiplier 9 5| 8 | ds | ds 2P

0 1 .2 3 4 5 6Tr

[ 4 [ 3 ] [2 Anmp

Ads

L 5 [ 7 [ 8 | Mp

| 6 | Mds
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Fig. 3. Time-constrained schedule for abiquad filter. (a) Data-flow graph with arequired iteration period of 7 u.t. (b) The schedule where
only onetype of processor for each operation typeisavailable. (c) The assignment of nodes to processor types and insertion of converters
when more than one types of processor for each operation type are available. (d) The schedule corresponding to (c).

the processor alocation for each of the nodes in the DFG.
Thetime assignment is implicitly unfolded and the sum of
unfolding factors of the processors is minimized.

3 Extension to support module selection and
data format conversion

In the scheduling examples discussed in Fig. 2, we as-
sume a node has a predetermined computation time. We
extend the DFG as follows to support module selection.
First consider alibrary of processorswith varying processor
typesasshownin Table 1. These processors are derived as-
suming the use of 16 bit wordlength fixed point arithmetic.
The computational latency, C, represents the time from an
input to its associated output. The pipeline period, L, rep-
resents the time between successive operations. The cost,
m, represents the cost in terms of area (i.e., the equivalent
number of full adders) of each processor. The input and
output data formats, I and O, represent the digit-size or the
number of bits processed in every clock cyclein each pro-
cessor. A 4-bit digit-serial architecture processes the data4
bitsat atime. These architectures may be derived using the
techniques described in [21].

Each node in the DFG can be assigned to one of the pro-
cessors in the library. For example, the DFG in Fig. 3(a)
represents a biquad filter. Nodes 1, 2, 3, and 4 can be as-
signed to any of the adders, Ay, Anp, OF Ags, in Table 1.
Similarly, nodes 5, 6, 7, and 8 can be assigned to any of the
multipliers, My,, My, Or My, in Table 1. Furthermore
to support data format conversion, we include alibrary of
dataformat converters which convert between all possible
dataformats listed in the library of processors. The library
of processorsin Table 1 requires data format converters as

shown in Table 2. Each of the data format converters is
classified according to its conversion type, its conversion
latency, C, its pipeline period, L, and its cost, m. The con-
version latency is the time between input of the first digit
and the output of the first digit of converted data. For ex-
ample, it is O for a bit-parallel to half-word parallel con-
verter (vpp,1np) Since thefirst half-word is available as soon
as ahit-parallel dataisinput. The conversion latency for a
4-hit digit-serial to bit-parallel parallel converter (vqs pp) IS
3 sinceit takes 3 u.t. to input and store three digits and the
converted datais output when the last digit isinput.

When the processor library islimited to just two proces-
sors, Ay, and My, in Table 1, then a blocked schedule of
the DFG of Fig. 3(a) can be obtained as shown in Fig. 3(b).
This schedule requires two Ay, adders and two My, mul-
tipliers with atotal cost of 384 units. When the processor
library is expanded to include all the processors and data
format convertersin Tables 1 and 2, then nodes are assigned
to processors and data format conversions are inserted as
shown in Fig. 3(c). Fig. 3(d) shows the abstracted blocked
schedule. Nodes 1 and 6 are assigned to slower and less ex-
pensive processors. Data format conversions, symbolized
by abox in Fig. 3(c), are necessary between nodes 2 and 6,
and 1 and 2. One converts from half-word parallel to 4-bit
digit-serial and the other converts from 4-bit digit-serial to
half-word parallel. The blocked schedule with module se-
lection and data format conversion has a total cost of only
290 units compared to the original cost of 384.

4 1LP mode for time assignment

We define a time assignment ILP model to derive the
cost optimal architecture for the given DFG. The time as-



signment model assignsastart time to each node within the

DFG so asto satisfy precedence constraints, while perform-

ing module selection and data format conversion.
The following terminology is used.

e TheDFGisdefinedas (NN, F). N isthe set of nodesand
FE isthe set of edges. W, is the number of delays on
edgee € E.

e T, isthe given iteration period.

e PROC isthelibrary of available processors.

e F; denotesthesubset of processors F; C PROC, capable
of executing node: € N.

e Each processor, t € PROC, has computational latency
C4, pipeline period L;, and cost m;.

o A binary variable z; j = 1 means that node : starts at
time j on a processor of type .

e FORM isthe set of all the formats.

e I(t) and O(t) are respectively the input and output data
formats of a processor of type¢.

e CONV isthelibrary of available converters.

¢ v,, denotes adata format converter which converts data
from format ¢ to format r. Each data format converter,
v, has conversion latency C,, pipeline period L,, and
cost m,.

e A binary variable y; ;, = 1 means that a data format
converter of type v is used and the conversion for the
output data of node i starts at time 7.

e L B; and U B; are the lower bound and the upper bound
of the time at which the computation of node i can start.
LBi and UB;, arethe lower bound and the upper bound
of the time at which a converter of type v could start
converting the data output from node 7. These bounds
determine the scheduling range of node : and are calcu-
lated asin [7, 15], assuming nodes are executed on the
fastest processor available.

e R; (R!) denotes the scheduling range of node i (con-
verter v), whichisthe closed timeinterval [LB;, LB; +

1,...,UB]] ((LB!,LB! +1,...,UB!]). R; + k isde-
finedto denoteaclosedtimeinterval [LB;+k, ..., U B;+
k] where k isan integer.

e M; and M, areinteger variables respectively indicating
the number of processors of type ¢ and the number of
converters of type v.

We describe the ILP model as follows. The model min-
imizesthe total cost of processors and converters (1) while

satisfying the constraints (2)—(8).

Minimize COST = Z my M, + Z my,M, (1)
tePROC veCONV

The node assignment constraint (2) ensures that node 3
has one start time and is assigned to one processor. The
converter assignment constraint (3) ensures that a data for-
mat converter of type v, isusedif an edge (a, b) existsand
node a is assigned to a processor whose output data format

isq and node b is assigned to a processor whose input data
format isr.

In the precedence constraint from processor to proces-
sor (4), the data format conversion time is taken into ac-
count. If an edge e = (a, b) exists, the computation of node
bmust start at least Cy, + Cyr0y 1) — WeTr ULL. later than
the computation of node a starts since the computation of
node a takes C;,, u.t. and the data format conversion takes
Coopay.ran Ut 1T O(ts) = I(tp), no dataformat conversion
is performed since C,,., = 0for r € FORM.

Inequalities (5) and (6) ensure the precedence con-
straints from processor to converter and from converter to
processor, respectively. Inthe case that the output format of
the converter and the input format of the processor are dif-
ferent, there is no need to constrain the precedence relation
between them. In that case, inequality (6) is automatically
satisfied.

Inequalities (7) and (8) are used to count the number of
processors and the number of converters of eachtype. Inan
overlapped schedulewith aniteration period of T, thereare
T. time partitions. Each time unit, jo, belongs to the time
partition denoted by jo — [%—"J T, or jo mod 7)., and nodes
assigned to atime belonging to the same time partition are
executed concurrently. Such nodes must be assigned to dif-
ferent processors. The parameter &, in constraint (7) isused
to fold a time into its time partition. The parameter p is
used to handle structura pipelining. When a node is as-
signed to a processor whose pipeline period is longer than
the iteration period, the processor must be counted muilti-
ple times, [LfT:lJ , since the node occupies the processor
for more than one iteration period. This accounts for the
second term in constraint (7). The same appliesto (8).

5 [ILP model for processor allocation

The processor allocation model allocates node compu-
tations to processors to support unfolding using the start
times and module selection provided by the time assign-
ment model. Allocating data format conversions to data
format converters can be performed in the same way as al-
locating node computations to processors. Therefore, only
the allocation of node computations to processors is con-
sidered here. The goal of the alocation is to minimize the
unfolding factor while supporting blocked schedules.

5.1 Precisecalculation of unfolding factor

As discussed in section 2, the processor allocation in
Fig. 2(e) is preferable to that in Fig. 2(d) since the sum of
the processor unfolding factorsin Fig. 2(d) islessthan that
of Fig. 2(c). For the purpose of calculating unfolding fac-
tors, weonly need to consider the all ocation of nodeswhose
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Fig. 4. Dividing computation of a node. (&) Division into head
and tail. (b) Division into head, bodies, and tail.

computation crosses a multiple of the original iteration pe-
riod T,.. For example, the computations of nodes B and C
in Figs. 2(e) and (f) cross the iteration period.

First we calculate the unfolding factors assuming there
are no nodes with a computation time (pipeline period)
longer than theiteration period. Then we modify our calcu-
lationsto include nodes with computati on times|onger than
theiteration period. Let acomputation of anode be divided
at amultiple of the original iteration period asillustrated in
Fig. 4(a). Let thefirst portion be called the head of the node
and the second portion be called the tail of the node. The
head is assigned to the end of an iteration cycle and the tail
is assigned to the beginning of an iteration cycle as shown
inFig. 4(a).

The head and the tail of anode are alocated either to an
identical processor or to two distinct processors. Nodes are

Vf € FORM, e = (a,b) € E, (6)
j € (U(qu,, +C - 1)) N (Rb + WeTr)

Vgr

J > @ijap <M, Vje[0,T,—1],tePROC (7)
J1ER;

> Yijiw p <M, Vj€[0,T,—1],v€CONV (8)

J1ERE

divided into node groups depending on their allocation as
follows.

[Definition: Node group]

A node group is the set of nodes such that either the

head or tail of anode in a node group is alocated to

aprocessor to which the tail or head of another node

in the same node group is alocated.

There may exist at most one node in a node group whose
head isallocated to a processor to which notail isallocated.
When this occurs we say a head is allocated alone.

The schedule is unfolded by a factor such that all the
computations of nodes in the node group are executed one
after another on an identical processor. In the processor al-
locationinFig. 2(f), therearetwo node groups. one consists
of node B and the other consists of node C. Thehead of node
B isallocated aloneto processor P1. Sincethe head and the
tail of node C are allocated to the identical processor, P3,
the schedule is not unfolded and the unfolding factor for
P3is1. On the other hand, the head and tail of node B
are allocated to distinct processors P1 and P2. The sched-
ules of these processors must be unfolded twice so that the
head and the tail of node B are executed consecutively on
an identical processor.

In the processor allocation in Fig. 2(e), thereisonly one
node group consisting of nodes B and C. The head of node
B is dlocated alone. In this case, the schedules of these



processors must be unfolded 3 times as shown in Fig. 2(c)
so that the head and the tail of node B are executed con-
secutively on an identical processor, the head of node C is
executed on the same processor asthetail of node B, and the
head and the tail of node C are executed consecutively on
an identical processor. Consequently, the unfolding factor
of aprocessor which executes the computations of nodesin
anode group is equal to the number of nodes in the node
group plus one.

We can calculate the unfolding factors more precisely
asfollows. Let abinary variable g;1 ;> = 1if node 41 and
node ¢2 are in the same node group, otherwise g;1 2 = 0.
By definition, g; ; = 1 since node ¢ is always in the same
node group as node . Then, 3", g;.x gives the number of
nodesin the node group to which node i belongs. Let «; be
defined as follows:

Zg' Ll if head of node: is
— 7" alocated alone,

otherwise.

Y S g
k

Let 5; be the unfolding factor for a processor on which the
head of node i is alocated. Then 3; is calculated as

()

Bi = max iz. (10)
1
gi,i1=1

The 'max’ operation guarantees that the unfolding factors
for all the nodes in each node group will be the same.

When the computation of anodeis greater than theiter-
ation period, the node must be divided into bodies as well
asahead and tail asillustrated in Fig. 4(b). In thiscase, the
unfolding factor isincreased by the number of bodies of the
node. Therefore, «; isredefined as

Z(wk +1)gip +1 if head of nodei is
k

alocated alone,
Z(wk +1)g; 1 otherwise
k

vi = (11

where wy, is the number of bodies of node k. 3; can be
calculated asin (10).

5.2 1LP model for processor allocation with un-
folding factor minimization

First weidentify those nodes, inthe original set of nodes,
whose computation times cross a multiple of the iteration
period. Let N1 denotetheset of such nodes. The N1 nodes
aredivided into heads, bodies, and tails as discussed above.
Let 52, 53, and 5S4 denote the set of heads, the set of tails,
and the set of bodies, respectively. The alocation model
operateson the set of nodes M = (V — N1)U 52U S3U 54
where N isthe original set of nodes.

The following terminology is used.

e A binary variable yg, = 1if d € M is allocated to
processor p, otherwise yq p, = 0.

e jisatimestep.

e tg is the type of processor to which computation d is
assigned.

e tl; isthetail of node:.

Pt is the processor to which the head of node i is alo-

cated.

w; isthe number of bodies of node .

T, isthe time at which computation d starts.

cq isthetime duration of computation d.

1I; isthe set of computations which are assigned to apro-

cessor of typet.

PS; is the set of M; processors of typet.

e K isasufficiently large positive integer.

Since al the heads are allocated at the end of the iter-
ation cycle, they would never be allocated to an identical
processor. Therefore, we can fix the allocation of heads
prior to the solution of the processor allocation ILP model.
The parameter P? denotes the processor to which the head
of node i is alocated. This simplifies the computation of
node groups, i.e., the values of g;1 ;o.

We minimize the sum of the unfolding factors (12) sub-
ject to the following constraints (13)—(21).

Minimize COST = Y~ ((w; +1)B; +8]) (12

i€EN1

> wap=1 Vde (N -N1)US2US3U 54 (13)
PEPS;

Z Yd,p S 1 (14)

del,
Tq mod T <j<(Tgmod T )+cq

Vj €0, T, — 1], p € PS, t € PROC

9ili2 2= Y, P2 (15)
gili2 = Uty P (16)
Gili2 > Gili v Yy, pie — Vi€ N1 (17)
gili2 2> 9ili * Y, pi — 1Vi€ N1 (18)
Vil,i2 € N1
Bi > > (p+Dgir+1— Y y,.pi (19)
kEN1 kEN1
Vie N1
Bi > Br—K@A-gix) VkeN1 (20

Bi>Bi—1-K > w,.pi
keN1

Constraint (13) ensures that each computation is alo-

cated to one processor. Constraint (14) prevents more than

one computation from being all ocated to the same processor

during the same time class. Constraints (15) to (18) com-

pute the value of g;1 ;2. The right-hand side of constraint

Vi e N1 (21)



Table3  Solution Comparison for the EWF Example

Our solutions Solutionsin [11]
T, |« +|xp +|x +|xp +
62 3|1 3|2 3|1 3
7|2 2|1 2|2 2|2 2
82 2|1 2 1 2
911 2|1 2|1 2
28|11 1|1 1

(19) isequa to +y;, sincethelast term becomes O if the head
of node i is alocated alone and 1 otherwise. Constraints
(19) and (20) find the maximum 3 over al the nodesin the
same node group. If there exists anode group where a head
isallocated alone, then there must exist atail whichisallo-
cated to aprocessor to which no head is allocated. 5! isthe
unfolding factor of the processor to which atail would be
allocated alone. It is computed by (21). The cost function
(12) is minimized by minimizing the sum of 3;, w;3;, and
Bt. These represent the unfolding factors of the head, body,
and tail of anode respectively.

6 Results

We simulated several DFGs to prove the effectiveness
of our models. All the ILP models were solved using the
ILP solver GAMS/OSL [25] on a SparcStation 2. To show
that our model is able to derive optimal solutions, it is ap-
plied to the scheduling of the 5th order elliptic wave filter
(EWF) which has been used in [5][7]-[13]. In this case, a
single processor type is assumed for each operation type,
i.e., either nonpipelined multiplier and adder (symbolized
as '+’ and ‘+') or pipelined multiplier and adder (‘xp’ and
‘+"). The specification of these processors are the same as
in[11]. The number of processorsrequired in each case are
equal to or better than those in [11]. Shown in Table 3 are
the numbers of processorsin the solution for each iteration
period, T;., which comparesto the latency f asdescribed in
[11]. Though [11] shows the result of resource-constrained
scheduling, our model derived the same results for most
cases and abetter result for one case. With 1 pipelined mul-
tiplier and 2 adders, the approach in [11] required 18 units
for theiteration period while our approach requires 17 units
of time for the iteration period for the same resource con-
straints.

We scheduled several benchmarks using our models for
agiven iteration period with the components shown in Ta-
bles1and 2. The4th order lattice and Jaumann filter bench-
marks have been used in [7], the 4 stage pipelined lattice
filter benchmark has been used in [8], and the 16 point FIR
filter benchmark has been used in [5]-[8]. Table 4 contains:
the specified iteration period; the number of processors of
each type obtained by our solution; the cost of each solu-
tion; and the CPU timein secondsrequired to cal culate each
solution. For example, in the case of the 4 stage pipelined

Table4 Time Assignment Benchmarks

| T: | Architecture | Cost | CPU |
4th Order Lattice Filter
T4 | 34y, 20y, 821 | 158
15 | 244y, My, 437 | 315
16 Abp, Ahp, Mbp, Vbp,hps Vhp,bp 409 18.0
17 | App, My, 384 | 21.2
18 Ahp, Ads, Mhp, Vhp,dss Vds,hp 223 11.9
5th Order Wave Elliptic Filter
25 | 34,,, Mo, 490 | 3.16
26 | 24y, My, 437 | 262
27 Abp, 2Ahp, Mbp, Vbp,hpr Vhp,bp 428 658
28 Abp, Ahp, Mbp, Vbp,hps Vhp,bp 409 417
4th Order Jaumann Filter
16 | 24,,, Moy 437 | 149
17 | Avp, M, 384 | 143
18 | App, My, 384 | 399
19 | 2Anp, Mpyp 211 | 247
20 | 2Anp, My 211 | 486
4 stage Pipelined Lattice Filter
3 [ 244y, TAds, 5Myy, 6Ubp.ds 1827 | 236
4 | 2Any, TAgs, AMyy, 1440 | 58.2
2vbp,hpy Gvbp,dsy Vhp,bps Vhp,ds
5 | 9A4s, 3Mpp, Yvpp,ds, 204s,bp 1091 | 40.6
6 | 8445, 2Msyp, Mpp, 917 | 77.2
6’pr,clm Vhp,dss Vds,bps Vds,hp
7 | TAgs, 2Myyp, Mas, Gvbp,ds, Vds,bp 818 105
16 Point FIR Filter
T [ 6044, 8Moyp, 2805p.a2, 28025 5 3200 | 353
2 | 30445, 4Msp, 120pp,ds, 12045 1600 | 5.65
3 | 20A4s, 3Mpyp, Bvpp,ds, SVas,bp 1177 | 7.85
4 | 154ds, 2Myy, 6vsy. s, 6Vds bp 800 | 7.25
5 | 12445, Myp, 3Mas, 3vbp,ds, ds,bp 685 | 204

lattice filter with a given iteration period 7. = 3, the syn-
thesized architecture consists of two Ay, adders, seven A
adders, five My, multipliers, and six v, 45 CONverters.

Table 5 contains the results of the processor alocation
ILP model. This table shows the minimum unfolding fac-
tor necessary to achieve the processor allocation and the
CPU time required to solve the ILP model. B is the sum
of unfolding factors of all the processors and max 3 is the
maximum unfolding factor. Bars(‘—") in both of these two
columns mean that the processor allocation isobvioussince
the number of processors and the number of converters are
1. A bar inthe column of max 8 meansthere exists no node
computation which crossesamultiple of theiteration period
and therefore B is 0.

7 Conclusion

We have proposed two new ILP models for the time-
constrained scheduling problem. Our models perform mod-
ule selection and data format conversion while automati-
cally retiming, pipelining, and unfolding the DFG inanim-
plicit manner. We have run several benchmarks to prove
the utility of these models. The ILP model is very attrac-



Table5 Processor Allocation Benchmarks

[ DFG | T, | B | maxp3 | CPUTime |
4th Order 14 0 — 0.57
Lattice Filter 15 0 — 0.86

16 | — — —
17 | — — —
18 | — — —
5th Order 25 0 — 0.70
Wave Elliptic 26| 0 — 0.57
Filter 27 0 — 0.83
28 | — — —
4th Order 16 0 — 0.75
Jaumann Filter | 17 | — — —
18 | — — —
19 0 — 0.57
20 0 — 0.83
4 stage 3 30 4 2.83
Pipelined 4 18 3 412
Lattice Filter 5 57 4 25.36
6 15 2 2.24
7 31 3 24.31
16 Point 1|34 4 —
FIR Filter 2 | 126 5 804.71
3 87 4 233.46
4 45 3 9.03
5 64 4 52.35

tive because we can easily add additional constraintsto our
models to impose new requirements such as minimum la-
tency, minimum interprocessor communications, minimum
registers, and low power.
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