
Module Selection and Data Format Conversion for Cost-Optimal DSP Synthesisy

Kazuhito Ito Lori E. Lucke Keshab K. Parhi

Department of Electrical Engineering
University of Minnesota
Minneapolis, MN 55455

Abstract

In high level synthesis each node of a synchronous data-
flow graph (DFG) is scheduled to a specific time and al-
located to a processor. In this paper we present new in-
teger linear programming (ILP) models which generate a
blocked schedule for a DFG with implicit retiming, pipelin-
ing, and unfolding while performing module selection and
data format conversion. A blocked schedule is a schedule
which overlaps multiple iterations of the DFG to guaran-
tee a minimum number of processors. Component modules
are selected from a library of processors to minimize cost.
Furthermore, we include data format converters between
processors of different data formats. In addition, we mini-
mize the unfolding factor of the blocked schedule.

1 Introduction

In high-level synthesis a synchronous data-flow graph
(DFG) is mapped onto a set of modules, registers, and inter-
connections [1]. An example of a DFG is shown in Fig. 1.
The data-flow graph represents an iterative algorithm such
as a digital signal processing algorithm. A DFG can be non-
recursive or recursive. A recursive DFG contains feedback
loops (or cycles) and therefore has an inherent lower bound
on its iteration period called the iteration bound [2, 3]. High
level synthesis consists of scheduling and resource alloca-
tion where the goal is to assign an operation in the DFG to
an execution time on a particular processor. In this paper
we consider time-constrained scheduling where required
resources are minimized while satisfying the iteration pe-
riod specification.

Finding an optimal schedule during synthesis of a DFG
is an NP-complete problem [4]. Therefore, many heuris-
tic schedulers have been proposed [1][5]-[8]. While these
schedulers generate reasonable schedules in short CPU
time, the optimality of the schedule may not be guaran-
teed. Integer linear programming (ILP) solutions have
been proposed to solve the scheduling problem during high
level VLSI synthesis of DSP algorithms [9]-[15]. The ILP
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Fig. 1. Data-Flow Graph. (Node execution times are in parenthe-
ses.)

model in [15] operates on the original DFG and gener-
ates a blocked schedule which automatically retimes [16],
pipelines [17], and unfolds [3] the DFG. The ILP formu-
lation is attractive because of the solution optimality and
the ease of adding additional constraints to the scheduling
problem.

In this paper we extend the ILP model of [15] to solve
the problem of module selection while scheduling. The ob-
jective of module selection is automatic allocation of each
operation to a library of processors to synthesize a system
using less silicon area and lower power. The module selec-
tion during scheduling has been addressed in [18]-[20] in
the context of heuristic scheduling and in [14] for schedul-
ing large-grain signal processing algorithms by ILP. In this
paper we support fine-grain signal processing algorithms.
One common way to build a library of components is to in-
clude bit-serial and bit-parallel units [21]. If both types of
units are used and must communicate, then it is essential to
include a serial to parallel (or parallel to serial) data format
converter. Thus, we include support for cost and computa-
tional latency of data format conversion which has not been
considered before.

This paper is organized as follows. In section 2, blocked
scheduling and unfolding are discussed. Module selection
and data format conversion are demonstrated in section 3.
The time assignment ILP model with module selection and
data format conversion is presented in section 4. Section
5 contains the processor allocation ILP model with support
for unfolding factor minimization. In section 6 scheduling
results of several benchmarks are presented.

2 Blocked schedules

Fig. 2(a) shows a critical path method (CPM) schedule
[1, 5] of the DFG in Fig.1. In this schedule a single itera-
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tion does not overlap subsequent iterations. The minimum
possible iteration period for a CPM scheduler is equal to
the critical path length of the DFG. There are many cases
where it is not possible to reduce the critical path time to
the iteration bound through DFG transformations such as
retiming and pipelining [16, 22]. For example, no matter
how the DFG in Fig. 1 is retimed, the critical path will al-
ways be greater than the iteration bound of 4 u.t. (units of
time).

This limitation is overcome by schedulers which overlap
multiple iterations [6]–[9][23]. These schedulers schedule
a single iteration of the DFG but allow subsequent iterations
to overlap the first. In an overlapped schedule, each node
computation is folded into Tr equivalence classes and exe-
cuted every Tr u.t. where Tr is the iteration period. This
is sometimes referred to as loop unrolling or functional
pipelining [6, 23]. An overlapping schedule automatically
supports retiming and functional pipelining. The minimum
possible iteration period for an overlapping scheduler is
limited by the longest execution time of a single node or the
iteration bound, whichever is largest. Moreover, the pro-
cessor utilization may not be optimal in overlapped sched-
ules as shown in Fig. 2(b).

Unfolding [3] and cyclo-static techniques [24] can be
used to guarantee a rate-optimal and processor-optimal
schedule even when there exists a node whose computation
time exceeds the iteration bound. Both of these techniques
require scheduling multiple iterations of the DFG. We call
a multiple iteration schedule a blocked schedule. While an
iteration is repeated in a non-blocked schedule, a block of
iterations is repeated in a blocked schedule. An example
of a blocked schedule for the DFG in Fig. 1 is shown in
Fig. 2(c). In this case, a schedule of 12 u.t., representing
three iterations of the iteration period of 4 u.t., is repeated
in every processor. Here the processor utilization is opti-
mized since the number of processors is reduced from 4 in
Fig. 2(b) to 3 in Fig. 2(c). The blocked schedule can always
achieve the iteration bound of the DFG with optimal pro-
cessor utilization. An apparent disadvantage of unfolding
is the need to schedule multiple executions of each node.

The blocked scheduler proposed in [15] generates an ab-
stracted blocked schedule of the original DFG, like the ones
shown in Fig. 2(e) and in Fig. 2(f), without explicitly un-
folding the original DFG. The complete blocked schedule
can be generated from the abstracted schedule by simply
repeating the schedule while exchanging processor assign-
ments such that an iteration of any node is executed in a sin-
gle processor. For example, while expanding the abstracted
schedule of Fig. 2(e) to generate the complete schedule in
Fig. 2(c), the allocations of P3 and P2 must be exchanged
so that B2 is completed in processor P3. Thus it is pos-
sible to generate the abstracted schedule by scheduling the
original DFG without considering multiple iterations.
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Fig. 2. Several schedules for the DFG in Fig. 1. (a) Critical path
schedule with Tr = 10 u.t. (b) Overlapped schedule with Tr = 4
u.t. (c) Blocked schedule with Tr = 4 u.t. (d) Blocked schedule
with minimized unfolding factors. (Tr = 4 u.t.) (e) Abstracted
version of the blocked schedule of (c). (f) Abstracted version of
the blocked schedule of (d).

Let the unfolding factor of a processor be defined as the
length of one period of the blocked schedule of the proces-
sor divided by the iteration period. In the processor-optimal
blocked schedule shown in Fig. 2(c), all the unfolding fac-
tor of each processor is 3. It is important to note that the
unfolding factors of processors need not be identical. For
example in the blocked schedule shown in Fig. 2(d) which
is also processor-optimal, the unfolding factors of proces-
sors P1, P2, and P3 are 2, 2, and 1, respectively. From the
viewpoint of control circuit cost, smaller unfolding factors
are preferable since the cost of the control circuit could be
proportional to the length of the iteration period and there-
fore proportional to the sum of the processor unfolding fac-
tors. Thus, the schedule in Fig. 2(d) is superior to the sched-
ule in Fig. 2(c) since the sum of processor unfolding factors
is 5 for Fig. 2(d) and 9 for Fig. 2(c).

Generating a blocked schedule by a single complicated
ILP model requires a long solution time. In our approach,
a blocked schedule is generated by two ILP models to im-
prove the solution time without degrading the optimality.
First the time assignment ILP model finds the start times
for each node by folding the nodes into equivalent time
partitions as in an overlapping scheduler. Module selec-
tion and data format conversion are also performed by this
ILP model. Then the processor allocation ILP model finds



Table 1 Library of Processor Types (wordlength = 16)
type processor C L m I O

Abp Bit-parallel adder 1 1 53 bp bp
Ahp Half-word parallel adder 1 2 19 hp hp
Ads 4-bit digit-serial adder 1 4 6 ds ds

Mbp Bit-parallel multiplier 5 1 331 bp bp
Mhp Half-word parallel multiplier 6 2 173 hp hp
Mds 4-bit digit-serial multiplier 9 5 86 ds ds

Table 2 Converter Types
type conversion C L m

vbp;hp bp!hp 0 1 3
vbp;ds bp!ds 0 3 4
vhp;bp hp!bp 1 1 3
vhp;ds hp!ds 0 2 3
vds;bp ds!bp 3 3 4
vds;hp ds!hp 2 2 3
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Fig. 3. Time-constrained schedule for a biquad filter. (a) Data-flow graph with a required iteration period of 7 u.t. (b) The schedule where
only one type of processor for each operation type is available. (c) The assignment of nodes to processor types and insertion of converters
when more than one types of processor for each operation type are available. (d) The schedule corresponding to (c).

the processor allocation for each of the nodes in the DFG.
The time assignment is implicitly unfolded and the sum of
unfolding factors of the processors is minimized.

3 Extension to support module selection and
data format conversion

In the scheduling examples discussed in Fig. 2, we as-
sume a node has a predetermined computation time. We
extend the DFG as follows to support module selection.
First consider a library of processors with varying processor
types as shown in Table 1. These processors are derived as-
suming the use of 16 bit wordlength fixed point arithmetic.
The computational latency, C, represents the time from an
input to its associated output. The pipeline period, L, rep-
resents the time between successive operations. The cost,
m, represents the cost in terms of area (i.e., the equivalent
number of full adders) of each processor. The input and
output data formats, I andO, represent the digit-size or the
number of bits processed in every clock cycle in each pro-
cessor. A 4-bit digit-serial architecture processes the data 4
bits at a time. These architectures may be derived using the
techniques described in [21].

Each node in the DFG can be assigned to one of the pro-
cessors in the library. For example, the DFG in Fig. 3(a)
represents a biquad filter. Nodes 1, 2, 3, and 4 can be as-
signed to any of the adders, Abp, Ahp, or Ads, in Table 1.
Similarly, nodes 5, 6, 7, and 8 can be assigned to any of the
multipliers, Mbp, Mhp, or Mds, in Table 1. Furthermore
to support data format conversion, we include a library of
data format converters which convert between all possible
data formats listed in the library of processors. The library
of processors in Table 1 requires data format converters as

shown in Table 2. Each of the data format converters is
classified according to its conversion type, its conversion
latency, C , its pipeline period, L, and its cost,m. The con-
version latency is the time between input of the first digit
and the output of the first digit of converted data. For ex-
ample, it is 0 for a bit-parallel to half-word parallel con-
verter (vbp;hp) since the first half-word is available as soon
as a bit-parallel data is input. The conversion latency for a
4-bit digit-serial to bit-parallel parallel converter (vds;bp) is
3 since it takes 3 u.t. to input and store three digits and the
converted data is output when the last digit is input.

When the processor library is limited to just two proces-
sors, Ahp and Mhp in Table 1, then a blocked schedule of
the DFG of Fig. 3(a) can be obtained as shown in Fig. 3(b).
This schedule requires two Ahp adders and two Mhp mul-
tipliers with a total cost of 384 units. When the processor
library is expanded to include all the processors and data
format converters in Tables 1 and 2, then nodes are assigned
to processors and data format conversions are inserted as
shown in Fig. 3(c). Fig. 3(d) shows the abstracted blocked
schedule. Nodes 1 and 6 are assigned to slower and less ex-
pensive processors. Data format conversions, symbolized
by a box in Fig. 3(c), are necessary between nodes 2 and 6,
and 1 and 2. One converts from half-word parallel to 4-bit
digit-serial and the other converts from 4-bit digit-serial to
half-word parallel. The blocked schedule with module se-
lection and data format conversion has a total cost of only
290 units compared to the original cost of 384.

4 ILP model for time assignment

We define a time assignment ILP model to derive the
cost optimal architecture for the given DFG. The time as-



signment model assigns a start time to each node within the
DFG so as to satisfy precedence constraints, while perform-
ing module selection and data format conversion.

The following terminology is used.
� The DFG is defined as (N;E). N is the set of nodes and
E is the set of edges. We is the number of delays on
edge e 2 E.

� Tr is the given iteration period.
� PROC is the library of available processors.
� Fi denotes the subset of processorsFi � PROC, capable

of executing node i 2 N .
� Each processor, t 2 PROC, has computational latency
Ct, pipeline period Lt, and cost mt.

� A binary variable xi;j;t = 1 means that node i starts at
time j on a processor of type t.

� FORM is the set of all the formats.
� I(t) and O(t) are respectively the input and output data

formats of a processor of type t.
� CONV is the library of available converters.
� vqr denotes a data format converter which converts data

from format q to format r. Each data format converter,
v, has conversion latency Cv , pipeline period Lv, and
cost mv.

� A binary variable yi;j;v = 1 means that a data format
converter of type v is used and the conversion for the
output data of node i starts at time j.

� LBi and UBi are the lower bound and the upper bound
of the time at which the computation of node i can start.
LBi

v and UBi
v are the lower bound and the upper bound

of the time at which a converter of type v could start
converting the data output from node i. These bounds
determine the scheduling range of node i and are calcu-
lated as in [7, 15], assuming nodes are executed on the
fastest processor available.

� Ri (Ri
v) denotes the scheduling range of node i (con-

verter v), which is the closed time interval [LBi; LBi +
1; . . . ; UBi] ([LBi

v ; LB
i
v + 1; . . . ; UBi

v]). Ri + k is de-
fined to denote a closed time interval [LBi+k; . . . ; UBi+
k] where k is an integer.

� Mt and Mv are integer variables respectively indicating
the number of processors of type t and the number of
converters of type v.
We describe the ILP model as follows. The model min-

imizes the total cost of processors and converters (1) while
satisfying the constraints (2)–(8).

Minimize COST =
X

t2PROC

mtMt +
X

v2CONV

mvMv (1)

The node assignment constraint (2) ensures that node i
has one start time and is assigned to one processor. The
converter assignment constraint (3) ensures that a data for-
mat converter of type vqr is used if an edge (a; b) exists and
node a is assigned to a processor whose output data format

is q and node b is assigned to a processor whose input data
format is r.

In the precedence constraint from processor to proces-
sor (4), the data format conversion time is taken into ac-
count. If an edge e = (a; b) exists, the computation of node
b must start at least Cta +CvO(ta);I(tb) �WeTr u.t. later than
the computation of node a starts since the computation of
node a takes Cta u.t. and the data format conversion takes
CvO(ta);I(tb) u.t. If O(ta) = I(tb), no data format conversion
is performed since Cvrr = 0 for r 2 FORM.

Inequalities (5) and (6) ensure the precedence con-
straints from processor to converter and from converter to
processor, respectively. In the case that the output format of
the converter and the input format of the processor are dif-
ferent, there is no need to constrain the precedence relation
between them. In that case, inequality (6) is automatically
satisfied.

Inequalities (7) and (8) are used to count the number of
processors and the number of converters of each type. In an
overlapped schedule with an iteration period of Tr, there are
Tr time partitions. Each time unit, j0, belongs to the time

partition denoted by j0�

j
j0

Tr

k
Tr, or j0 mod Tr, and nodes

assigned to a time belonging to the same time partition are
executed concurrently. Such nodes must be assigned to dif-
ferent processors. The parameter k1 in constraint (7) is used
to fold a time into its time partition. The parameter p is
used to handle structural pipelining. When a node is as-
signed to a processor whose pipeline period is longer than
the iteration period, the processor must be counted multi-

ple times,
j
Lt�1
Tr

k
, since the node occupies the processor

for more than one iteration period. This accounts for the
second term in constraint (7). The same applies to (8).

5 ILP model for processor allocation

The processor allocation model allocates node compu-
tations to processors to support unfolding using the start
times and module selection provided by the time assign-
ment model. Allocating data format conversions to data
format converters can be performed in the same way as al-
locating node computations to processors. Therefore, only
the allocation of node computations to processors is con-
sidered here. The goal of the allocation is to minimize the
unfolding factor while supporting blocked schedules.

5.1 Precise calculation of unfolding factor

As discussed in section 2, the processor allocation in
Fig. 2(e) is preferable to that in Fig. 2(d) since the sum of
the processor unfolding factors in Fig. 2(d) is less than that
of Fig. 2(c). For the purpose of calculating unfolding fac-
tors, we only need to consider the allocation of nodes whose
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Fig. 4. Dividing computation of a node. (a) Division into head
and tail. (b) Division into head, bodies, and tail.

computation crosses a multiple of the original iteration pe-
riod Tr. For example, the computations of nodes B and C
in Figs. 2(e) and (f) cross the iteration period.

First we calculate the unfolding factors assuming there
are no nodes with a computation time (pipeline period)
longer than the iteration period. Then we modify our calcu-
lations to include nodes with computation times longer than
the iteration period. Let a computation of a node be divided
at a multiple of the original iteration period as illustrated in
Fig. 4(a). Let the first portion be called the head of the node
and the second portion be called the tail of the node. The
head is assigned to the end of an iteration cycle and the tail
is assigned to the beginning of an iteration cycle as shown
in Fig. 4(a).

The head and the tail of a node are allocated either to an
identical processor or to two distinct processors. Nodes are

divided into node groups depending on their allocation as
follows.

[Definition: Node group]
A node group is the set of nodes such that either the
head or tail of a node in a node group is allocated to
a processor to which the tail or head of another node
in the same node group is allocated.

There may exist at most one node in a node group whose
head is allocated to a processor to which no tail is allocated.
When this occurs we say a head is allocated alone.

The schedule is unfolded by a factor such that all the
computations of nodes in the node group are executed one
after another on an identical processor. In the processor al-
location in Fig. 2(f), there are two node groups: one consists
of node B and the other consists of node C. The head of node
B is allocated alone to processorP1. Since the head and the
tail of node C are allocated to the identical processor, P3,
the schedule is not unfolded and the unfolding factor for
P3 is 1. On the other hand, the head and tail of node B
are allocated to distinct processors P1 and P2. The sched-
ules of these processors must be unfolded twice so that the
head and the tail of node B are executed consecutively on
an identical processor.

In the processor allocation in Fig. 2(e), there is only one
node group consisting of nodes B and C. The head of node
B is allocated alone. In this case, the schedules of these



processors must be unfolded 3 times as shown in Fig. 2(c)
so that the head and the tail of node B are executed con-
secutively on an identical processor, the head of node C is
executed on the same processor as the tail of node B, and the
head and the tail of node C are executed consecutively on
an identical processor. Consequently, the unfolding factor
of a processor which executes the computations of nodes in
a node group is equal to the number of nodes in the node
group plus one.

We can calculate the unfolding factors more precisely
as follows. Let a binary variable gi1;i2 = 1 if node i1 and
node i2 are in the same node group, otherwise gi1;i2 = 0.
By definition, gi;i = 1 since node i is always in the same
node group as node i. Then,

P
k gi;k gives the number of

nodes in the node group to which node i belongs. Let i be
defined as follows:

i =

8>><
>>:

X
k

gi;k + 1 if head of node i is
allocated alone,X

k

gi;k otherwise:
(9)

Let �i be the unfolding factor for a processor on which the
head of node i is allocated. Then �i is calculated as

�i = max
i1

gi;i1=1

i1: (10)

The ’max’ operation guarantees that the unfolding factors
for all the nodes in each node group will be the same.

When the computation of a node is greater than the iter-
ation period, the node must be divided into bodies as well
as a head and tail as illustrated in Fig. 4(b). In this case, the
unfolding factor is increased by the number of bodies of the
node. Therefore, i is redefined as

i =

8>><
>>:

X
k

(wk + 1)gi;k + 1 if head of node i is
allocated alone,X

k

(wk + 1)gi;k otherwise
(11)

where wk is the number of bodies of node k. �i can be
calculated as in (10).

5.2 ILP model for processor allocation with un-
folding factor minimization

First we identify those nodes, in the original set of nodes,
whose computation times cross a multiple of the iteration
period. LetN1 denote the set of such nodes. TheN1 nodes
are divided into heads, bodies, and tails as discussed above.
Let S2, S3, and S4 denote the set of heads, the set of tails,
and the set of bodies, respectively. The allocation model
operates on the set of nodes M = (N�N1)[S2[S3[S4
where N is the original set of nodes.

The following terminology is used.

� A binary variable yd;p = 1 if d 2 M is allocated to
processor p, otherwise yd;p = 0.

� j is a time step.
� td is the type of processor to which computation d is

assigned.
� tli is the tail of node i.
� P i is the processor to which the head of node i is allo-

cated.
� wi is the number of bodies of node i.
� Td is the time at which computation d starts.
� cd is the time duration of computation d.
� It is the set of computations which are assigned to a pro-

cessor of type t.
� PSt is the set of Mt processors of type t.
� K is a sufficiently large positive integer.

Since all the heads are allocated at the end of the iter-
ation cycle, they would never be allocated to an identical
processor. Therefore, we can fix the allocation of heads
prior to the solution of the processor allocation ILP model.
The parameter P i denotes the processor to which the head
of node i is allocated. This simplifies the computation of
node groups, i.e., the values of gi1;i2.

We minimize the sum of the unfolding factors (12) sub-
ject to the following constraints (13)–(21).

Minimize COST =
X
i2N1

((wi + 1)�i + �ti ) (12)

X
p2PStd

yd;p = 1 8d 2 (N �N1) [ S2 [ S3 [ S4 (13)

X
d2It

Td modTr�j<(TdmodTr )+cd

yd;p � 1 (14)

8j 2 [0; Tr � 1]; p 2 PSt; t 2 PROC

gi1;i2 � ytli1;P i2 (15)

gi1;i2 � ytli2;P i1 (16)

gi1;i2 � gi1;i + ytli;P i2 � 18i 2 N1 (17)

gi1;i2 � gi1;i + ytli2;P i � 18i 2 N1 (18)

8i1; i2 2 N1

�i �
X
k2N1

(wk + 1)gi;k + 1�
X
k2N1

ytlk;P i (19)

8i 2 N1

�i � �k �K(1� gi;k) 8k 2 N1 (20)

�ti � �i � 1�K
X
k2N1

ytlk;P i 8i 2 N1: (21)

Constraint (13) ensures that each computation is allo-
cated to one processor. Constraint (14) prevents more than
one computation from being allocated to the same processor
during the same time class. Constraints (15) to (18) com-
pute the value of gi1;i2. The right-hand side of constraint



Table 3 Solution Comparison for the EWF Example
Our solutions Solutions in [11]

Tr � + �p + � + �p +
16 2 3 1 3 2 3 1 3
17 2 2 1 2 2 2 2 2
18 2 2 1 2 1 2
19 1 2 1 2 1 2
28 1 1 1 1

(19) is equal to i, since the last term becomes 0 if the head
of node i is allocated alone and 1 otherwise. Constraints
(19) and (20) find the maximum � over all the nodes in the
same node group. If there exists a node group where a head
is allocated alone, then there must exist a tail which is allo-
cated to a processor to which no head is allocated. �t

i is the
unfolding factor of the processor to which a tail would be
allocated alone. It is computed by (21). The cost function
(12) is minimized by minimizing the sum of �i, wi�i, and
�t
i . These represent the unfolding factors of the head, body,

and tail of a node respectively.

6 Results

We simulated several DFGs to prove the effectiveness
of our models. All the ILP models were solved using the
ILP solver GAMS/OSL [25] on a SparcStation 2. To show
that our model is able to derive optimal solutions, it is ap-
plied to the scheduling of the 5th order elliptic wave filter
(EWF) which has been used in [5][7]-[13]. In this case, a
single processor type is assumed for each operation type,
i.e., either nonpipelined multiplier and adder (symbolized
as ‘�’ and ‘+’) or pipelined multiplier and adder (‘�p’ and
‘+’). The specification of these processors are the same as
in [11]. The number of processors required in each case are
equal to or better than those in [11]. Shown in Table 3 are
the numbers of processors in the solution for each iteration
period, Tr, which compares to the latency f as described in
[11]. Though [11] shows the result of resource-constrained
scheduling, our model derived the same results for most
cases and a better result for one case. With 1 pipelined mul-
tiplier and 2 adders, the approach in [11] required 18 units
for the iteration period while our approach requires 17 units
of time for the iteration period for the same resource con-
straints.

We scheduled several benchmarks using our models for
a given iteration period with the components shown in Ta-
bles 1 and 2. The 4th order lattice and Jaumann filter bench-
marks have been used in [7], the 4 stage pipelined lattice
filter benchmark has been used in [8], and the 16 point FIR
filter benchmark has been used in [5]-[8]. Table 4 contains:
the specified iteration period; the number of processors of
each type obtained by our solution; the cost of each solu-
tion; and the CPU time in seconds required to calculate each
solution. For example, in the case of the 4 stage pipelined

Table 4 Time Assignment Benchmarks
Tr Architecture Cost CPU

4th Order Lattice Filter
14 3Abp, 2Mbp 821 1.58
15 2Abp, Mbp 437 3.15
16 Abp, Ahp, Mbp, vbp;hp, vhp;bp 409 18.0
17 Abp, Mbp 384 21.2
18 Ahp, Ads, Mhp, vhp;ds, vds;hp 223 11.9

5th Order Wave Elliptic Filter
25 3Abp, Mbp 490 3.16
26 2Abp, Mbp 437 26.2
27 Abp, 2Ahp, Mbp, vbp;hp, vhp;bp 428 658
28 Abp, Ahp, Mbp, vbp;hp, vhp;bp 409 417

4th Order Jaumann Filter
16 2Abp, Mbp 437 14.9
17 Abp, Mbp 384 14.3
18 Abp, Mbp 384 39.9
19 2Ahp, Mhp 211 24.7
20 2Ahp, Mhp 211 48.6

4 stage Pipelined Lattice Filter
3 2Abp, 7Ads, 5Mbp, 6vbp;ds 1827 23.6
4 2Ahp, 7Ads, 4Mbp, 1440 58.2

2vbp;hp, 6vbp;ds, vhp;bp, vhp;ds
5 9Ads, 3Mbp, 9vbp;ds, 2vds;bp 1091 40.6
6 8Ads, 2Mbp, Mhp, 917 77.2

6vbp;ds, vhp;ds, vds;bp, vds;hp
7 7Ads, 2Mbp, Mds, 6vbp;ds, vds;bp 818 105

16 Point FIR Filter
1 60Ads, 8Mbp, 24vbp;ds, 24vds;bp 3200 3.53
2 30Ads, 4Mbp, 12vbp;ds, 12vds;bp 1600 5.65
3 20Ads, 3Mbp, 8vbp;ds, 8vds;bp 1177 7.85
4 15Ads, 2Mbp, 6vbp;ds, 6vds;bp 800 7.25
5 12Ads, Mbp, 3Mds, 3vbp;ds, 3vds;bp 685 20.4

lattice filter with a given iteration period Tr = 3, the syn-
thesized architecture consists of twoAbp adders, sevenAds

adders, five Mbp multipliers, and six vbp;ds converters.
Table 5 contains the results of the processor allocation

ILP model. This table shows the minimum unfolding fac-
tor necessary to achieve the processor allocation and the
CPU time required to solve the ILP model. B is the sum
of unfolding factors of all the processors and max� is the
maximum unfolding factor. Bars (‘—’) in both of these two
columns mean that the processor allocation is obvious since
the number of processors and the number of converters are
1. A bar in the column of max� means there exists no node
computation which crosses a multiple of the iteration period
and therefore B is 0.

7 Conclusion

We have proposed two new ILP models for the time-
constrained scheduling problem. Our models perform mod-
ule selection and data format conversion while automati-
cally retiming, pipelining, and unfolding the DFG in an im-
plicit manner. We have run several benchmarks to prove
the utility of these models. The ILP model is very attrac-



Table 5 Processor Allocation Benchmarks
DFG Tr B max � CPU Time

4th Order 14 0 — 0.57
Lattice Filter 15 0 — 0.86

16 — — —
17 — — —
18 — — —

5th Order 25 0 — 0.70
Wave Elliptic 26 0 — 0.57
Filter 27 0 — 0.83

28 — — —
4th Order 16 0 — 0.75
Jaumann Filter 17 — — —

18 — — —
19 0 — 0.57
20 0 — 0.83

4 stage 3 30 4 2.83
Pipelined 4 18 3 4.12
Lattice Filter 5 57 4 25.36

6 15 2 2.24
7 31 3 24.31

16 Point 1 344 4 —
FIR Filter 2 126 5 804.71

3 87 4 233.46
4 45 3 9.03
5 64 4 52.35

tive because we can easily add additional constraints to our
models to impose new requirements such as minimum la-
tency, minimum interprocessor communications, minimum
registers, and low power.
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