
Simultaneous Functional-Unit Binding and Floorplanning�

Yung-Ming Fang y and D. F. Wong z

Department of Electrical and Computer Engineering y

Department of Computer Science z

University of Texas at Austin, TX 78712

Abstract

As device feature size decreases, interconnection de-
lay becomes the dominating factor of system perfor-
mance. Thus it is important that accurate physical
information is used during high level synthesis. In
this paper, we consider the problem of simultaneously
performing functional-unit binding and oorplanning.
Experimental results indicate that our approach to
combine binding and oorplanning is superior to the
traditional approach of separating the two tasks.

1 Introduction
Existing CAD systems treat the tasks of high level

synthesis (e.g. scheduling, allocation, and binding)
and the tasks of physical design (e.g. oorplanning,
placement, and routing) independently. As device fea-
ture size decreases, interconnection delay becomes the
dominating factor of system performance. It is thus
important that accurate physical information is used
during high level synthesis (HLS) [7, 6, 2, 10, 8]. In this
paper, we consider simultaneous functional-unit bind-
ing and oorplanning for performance optimization.
Note that GB [5] and BITNET [9] also consider bind-
ing with physical information. However, GB applies
only to one dimension bit-slice design and BITNET
does not consider interconnection delay.

Fig. 1 illustrates the e�ect of di�erent binding so-
lutions on the performance of register-transfer level
(RTL) design when interconnection delay is consid-
ered. We are given a scheduled data ow graphs
(SDFG) in which there are three generic types of oper-
ators: a, b, and c, and their corresponding functional
units are A, B, and C, respectively. We also assume
that delay(A) > delay(B) > delay(C), and that inter-
connection delay is less than functional-unit delay, just
to simplify the example. Fig. 1a shows a binding of the
SDFG and a oorplan of the functional units. There
are three type-C functional units (C1, C2, C3), two
type-B functional units (B1 and B2), and one type-
A functional unit (A). Nodes sharing the same func-
tional unit are grouped together and labeled with the
name of the functional unit. It is clear that the critical
path is given by operations b1, a1 and c1 chained to-
gether in Step 1, with critical path delay = 5.5 + TFU ,

�This work was partially supported by the Texas Advanced

Research Program under Grant No. 003658459.

A

B1B2C1

C2

C3

critical path

b1

a1

c1

2
3.5

C1

B1

B2

C2

C3

A

B2

C2b1

a1

c1

c2 c3

b2

a2

c4

c5

c6

b3

b4

A

C1C2C3B1

B2

critical path

1.5

2.25
C1

B1

B2

C3

A

B2C2

b1

a1

c1

c2 c3

b2

a2

c4

c5

c6

b3

b4

C1

A

B1B2C1

C2

C3

critical path

b1

a1

c1
2

2.5

C1

B1

B2

C2

C3
A

B2

b1

a1

c1

c2 c3

b2

a2

c4

c5

c6

b3

b4

C1

(a)

(b)

(c)

step 2

step 1

step 1

step 1

step 2

step 2

Figure 1: (a)Original binding (b)New binding (c)New

binding and new oorplan

where TFU = delay(A) + delay(B) + delay(C) and in-
terconnection delay between two modules is given by
the Manhattan distance between their centers in the
oorplan. Fig. 1b shows a di�erent binding solution
(re-binded c1 to functional unit C2) with the same
oorplan of functional units. Again, b1, a1 and c1 in
Step 1 is the critical path but the critical path delay
is reduced to 4.5 + TFU due to the shorter intercon-
nection distance from A to C2. This clearly shows
the importance of considering interconnection delay
during the binding step. Finally, Fig. 1c shows fur-
ther improvement by changing the oorplan. In this
case, the critical path delay is reduced to 3.75 + TFU .
This example shows the interrelation between bind-
ing and oorplanning. In the rest of this paper, we
consider two problems on functional-unit binding us-
ing physical information, assuming a scheduled data
ow graph is given. Problem 1 addresses the binding
problem for cycle time optimization with respect to a
given �xed oorplan. This problem will be referred to

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0317 $3.50

as performance-driven binding and will be addressed
in Section 2. Section 3 considers Problem 2 which
is the problem of simultaneous binding and oorplan-
ning. As we will see in the later sections, Problem 1
is the key to the solution of Problem 2.

2 Performance-Driven Binding
Assume that we are given a SDFG and a set of al-

located modules (functional units and registers) with
speci�cation of area, delay, and geometric informa-
tion. Geometric information speci�es the minimum
and maximum aspect ratio of a module, representing
the exibility of its implementation during the oor-
planning stage. (Note that if the minimum and max-
imum aspect ratios are equal, the module has been
completely designed.) Each functional unit is mod-
eled as a 2-input 1-output combinational circuits and
each register is modeled as a 1-input 1-output circuits.
Interconnection topology is multiplexor-based point-
to-point interconnection.

+

−*

*

+

*

*

1

2

3

4

1

2

+

−*

*

+

*

*
R1 R2 R3

R4 R5

R6 R7 R8 R9 R10 R11 R12

1

2

1

2

3

4

R1 R2 R3 R4 R5

functional unit

interconnection

delay

−
*

+

+

−

*

5

10

15

20

critical path

+

−*
*

+

*
*

R1 R2 R3

R4 R5

R6 R7 R8 R9 R10 R11 R12

0

0

0
0

0

0

0 0

10

10 10
5

5

15

10

10 10
10

10

1

2

3

4

1

2

(a) (b)

(c)

(d)

step 1 step 2

step 2

step 1

step 1

step 2

Figure 2: (a)SDFG. (b)Extended SDFG. (c)Path delay of

extended SDFG. (d)Extended SDFG annotated by total
slack.

To capture the physical meaning of data transfer, a
SDFG is transformed into an extended SDFG such that
each node of the extended SDFG is either a functional
unit (internal node) or a register (external node). In
a SDFG, we de�ne crossing edge as an edge joining
two nodes scheduled at two di�erent control steps and
boundary edge as an edge incident with either the be-

ginning of the �rst control step or the end of the last
control step. A SDFG can be transformed into an
extended SDFG by inserting new nodes representing
registers at the crossing edges and boundary edges.
Crossing edges originating from the same node share
the same register node. If an edge crosses more than
one control steps, a new node is added only at the
smallest control step. See Fig. 2a and Fig. 2b for an
example. In the rest of this paper, SDFG will be re-
ferred to as extended SDFG unless mentioned other-
wise.

The cycle time of a SDFG is the maximum path
delay among all control steps where each path delay is
given by the total functional and interconnection de-
lay along the path. For example, the cycle time of the
SDFG in Fig. 2b is shown in Fig. 2c with and without
counting interconnection delay. The horizontal dotted
line gives the cycle time if we only consider functional
unit delay. The horizontal dashed line gives the cycle
time if both interconnection and functional delay are
counted. Note that the height of the shaded area be-
tween the two lines can be reduced by using shorter
interconnections and hence improving cycle time. This
shows that with the schedule �xed and modules allo-
cated under a given technology, the performance can
be further improved by shortening the interconnection
in the critical paths.

2.1 Critical Path Analysis

Slack [4] calculation is used to analyze the criti-
cal paths of SDFG. It assigns each edge of SDFG a
number called total slack (TS), and the smaller the
TS is, the more critical the edge becomes. Especially,
for the edges with zero TS, they are in the critical
paths. Thus, the edges of SDFG can be partitioned
into groups with di�erent demand on interconnection
resource. By binding the edges with smaller TS to
closer modules �rst, the interconnection delay in the
critical paths can be minimized. For a given SDFG,
the delay of a node is determined by the module al-
located for the node, and the delay of an edge is de-
termined by the locations of module assigned to the
nodes. With no binding information available, the
edge delay is set to zero. Let us de�ne ESij , EFij,
LSij , LFij as Estimated Start time, Estimated Fin-
ished time, Latest Start time, and Latest Finished time
of signal propagation pij from node i to node j. The
following equations are used to compute the slack of
internal nodes and the slack of external nodes. For
internal node i with delay di, and its immediate pre-
decessors and successors indexed by k and j,

ESij = maxfEFkig+ di:
EFij = ESij + pij:
LSij = LFij � pij:

LFki = minfLSijg � di:
TSij = LFij � EFij.

For external node i with delay di,
ESij = di at forward pass.
LFki = Tcycle � di at backward pass.

where Tcycle is the cycle time of SDFG, forward pass
is the signal propagation from primary input to pri-
mary output, and the backward pass is the propa-

SG TS Edges
1 0 (R4,�3) (�3,+2) (+2,R6) (+2,R1)

(R2,�2) (�2,+1) (+1,R10) (+1 ,R11)
2 5 (R3,�) (�,+1)

(R1,�1) (�1,R7) (�1,R8)
3 10 (�2,R9) (�3,R2)

(R5,�4) (�4,R2) (�4,R3)
4 15 (�,R12)

Figure 3: An SDFG partitioned by total slack.

−

+

R1

* 1

* 2

Rn

−

+

R1

* 1

* 2

Rn

(a) (b)

Figure 4: (a) G. (b) Qx for edge x of type (*,+).

gation from primary output to primary input. The
SDFG in Fig. 2b is used as an example to illustrate
the slack computation. It is re-drawn in Fig. 2d with
nodes annotated with delay and edges labeled with
TS. The critical path is shown in dash line. Sorted by
the TS assigned, the edges can be partitioned into four
groups with TS values: 0, 5, 10 and 15 (see Fig. 3).

2.2 Functional Unit Binding

We �rst construct a weighted complete graph G to
capture all the interconnection resources in the given
oorplan. Each vertex in G corresponds to a module
and the weight of an edge represents the interconnec-
tion delay between the two modules. For each edge x
in the SDFG, we can identify the set Qx of all edges y
in G that are of the same \type" (in the sense that
the two nodes of x in the SDFG and the two end
vertices of y in G represent the same types of oper-
ations/registers). We pre-compute Qx for all x and
they will be used later during the binding stage. Note
that if two edges x and z in the SDFG are of the same
\type", Qx and Qz are the same and we only need to
store one of them. Qx represents the set of all possible
interconnection resources for the edge x. During bind-
ing, the actual set of interconnection resources for an
edge x is only a subset of Qx (see Fig. 4)

Because it is possible to have two links created be-
tween the output of a source module and both the in-
put ports of a destination module, the concept of port
assignment is introduced to model the hardware cost
at the destination module. In Fig. 5, a 4-cycle 2-input
port assignment at a destination module is shown as
a 4 by 2 table. Each entry of the table speci�es a con-
nection made by a source module at a speci�c cycle.
By counting the number of di�erent entries at each
column as the number of communication links, and
thus the required 2-to-1 MUXs, we can measure the
hardware cost of this port assignment table. For ex-
ample, we need four links and three 2-to-1 MUXs at
the left input, and three links and two 2-to-1 MUXs at
the right input. However, we can see entry a and entry
c are duplicated at both columns. For a commutative
functional unit, cost can be reduced by swapping if

a

b

c

d

e

a b
c b

ec
da

L R
a

b

c

d

e

left

right
a b
c b

e c
d a

L R

1
2
3
4

coloring

Figure 5: Port assignment by graph coloring.

they only appear once in both columns. A graph is
constructed for such purpose: a node is created for
each distinct entry in the table and an edge is cre-
ated between the entries of the same row in the table.
Then we color the graph with left and right to indicate
the port assignment for each distinct entry. For nodes
colored as left but located at the right port, they are
interchanged with their left-port siblings. Using this
scheme, we are able to reduce the cost of our example
from seven links and �ve MUXs to �ve links and two
MUXs by swapping entry a with entry d at the third
cycle and entry c with entry e at the fourth cycle.

We can now describe our algorithm for functional-
unit binding.

Step 1: Select an unbound edge with the smallest TS
in the sorted list.

Step 2: Construct the interconnection resource of the
edge. Weight each interconnection by its potential in-
crement of links over the current RTL design. Select
the shortest interconnection (a pair of modules) from
the group with the lowest communication cost.

Step 3: Select a set of edges from the sorted list to be
bound together with the selected edge and modules.
All of them are scheduled in di�erent control steps and
are executable by the selected modules.

Step 4: Bind the selected edges to the selected source
and destination functional units: 1) assign the node of
the edges to its associated functional unit at its sched-
uled cycle; 2) assign the source functional unit to the
left or right input port of the destination functional
unit; 3) adjust the assignment of ports at the desti-
nation functional unit by graph coloring [3] to reduce
the communication cost.

Step 5: Repeat the above steps until all edges are
bound.

3 Binding and Floorplanning
Our approach to combine binding with oorplan-

ning is to repeatedly use the performance-driven bind-
ing algorithm presented in Section 2 as part of the
cost function evaluation procedure in a well known
simulated annealing based oorplanner by Wong and
Liu [11]. So that the solution space can be searched
e�ectively , their algorithm embodies two key ideas: a
special solution representation and a novel neighbor-
hood structure de�ned by a set of three moves that
bring a solution to its neighboring solutions. The al-
gorithm in [11] only considers slicing oorplans. A
slicing oorplan for n modules is a oorplan that can
be obtained by recursively cutting a rectangle by ei-
ther a vertical line or a horizontal line into n smaller
rectangular regions. A slicing oorplan can be repre-

*

+ *

+ +

*

6
2

4

7
53

1

1 6

3 5

2 7 4

Figure 6: Slicing tree representation of a slicing oorplan.

sented by an oriented rooted binary tree, called slic-
ing tree. Each internal node of the tree is labeled
either * or +, corresponding to either a vertical cut
or a horizontal cut. A postorder traversal of a slic-
ing tree, gives a Polish expression which is a string
representation of the slicing oorplan. Essentially,
[11] uses Polish expressions to represent oorplans.
Fig. 6 shows shows a slicing oorplan and its slicing
tree. The Polish expression representation of the oor-
plan is 16+35*2+74+**. Floorplan transformation is
achieved by using three types of moves (M1, M2, and
M3) to transform a Polish expression into another one.
See [11] for the de�nitions of the moves. Fig. 7 shows
a series of oorplan transformations. Each oorplan
considered by the algorithm in [11] during the sim-
ulated annealing process is evaluated based on area
(A) and wire length (W) using a cost function of the
formA+�W. We modify the cost function evaluation
procedure as follows: First we apply our performance-
driven binding algorithm to obtain a binding which is
suitable for the current oorplan. Then, in addition
to computing the A and W, we also compute the crit-
ical path interconnection delay D and use a new cost
function of the form A+�W+D.

5

3
4

1 2

5

3
4

1 2

4 5

3

1 2

1 2

3

4
5

1 2

4
3

5

1

2

4
5
3

2

1

3 5

4

1 2 * 3 + 4 * 5 +

1 2 * 4 + 3 * 5 +

1 2 * 4 + 3 5 * +

1 2 * 4 3 + 5 * +

1 2 * 4 3 5 + * +

1 2 + 4 3 5 * + *

1 2 + 4 3 5 + * +

M1

M3

M3

M3

M2

M2

Figure 7: Floorplan Transformation.

4 Experiments and Results
Computation of interconnection delay depends on

the electrical parameters derived from a given process

technology. The following equations [1] are used to cal-
culate electrical parameters and interconnection delay.

Rint = � lint

WintHint

Cint = �ox

�
1:15

�
Wint

tox

�
+ 2:8

�
Hint

tox

�0:222�

T = RintCint+ 2:3(RtrCint + RtrCL +RintCL)
where Rint and Cint are the total resistance and total
capacitance of a wire segment; Rtr is the equivalent
resistance of transistor at the driving end of the wire,
and CL is the load capacitance at the receiving end;
�, resistivity of the wire material, �ox, dielectric con-
stant of silicon dioxide, tox, thickness of oxide, lint,
wire length, Wint, wire width, and Hint, wire height,
are all process-related parameters.

For simplicity, we have the following assumptions:
First, AluminumAl is used as the major inter-module
wiring material, and the values of Rtr and CL are both
�xed at corresponding nominal values [12]. Second, for
di�erent technologies, the wiring geometry is �xed as
the following: Hint = 1=3Wint and tox = 1=2Wint.
Under these assumptions, the corresponding parame-
ters of process 1.6 �m, 1.2 �m, and 1.0 �m are com-
puted accordingly. Functional unit libraries used in
the experiments are listed in Table 1, where adder and
multiplier are from 3D [10] and register is estimated
relative to adder. Note that in Table 1 the unit of
delay and area are shown in nano second and square
micron, respectively. Two SDFGs are used in our

Library 1
Fabrication 16-bit Adder 16-bit Multiplier 16-bit Register
Technology area delay area delay area delay
1:6�m 746875 18 8711250 200 597500 3
1:2�m 420000 13 4900000 150 336000 3

Library 2
Fabrication 8-bit Adder 8-bit Multiplier 8-bit Register
Technology area delay area delay area delay
1:2�m 46875 13 564375 32 37500 2
1:0�m 21250 12 261875 30 17000 1.5

Table 1: Libraries.
experiments: FIR2 (Fig. 8a) is a 2-step 16-point FIR,
and FIR3 (Fig. 8b) is a 3-step 16-point FIR. Informa-
tion of the corresponding extended SDFGs are shown
in Table 2.

SDFG nodes edges cycles modules function units slack group
FIR2 54 53 2 13 36 8
FIR3 59 58 3 9 32 8

Table 2: States of two benchmarks.

Three experiments are conducted. In Experiment
1, we test the e�ectiveness of our performance-driven
binding algorithm. We �rst obtain a binding solution
for the SDFG using a classical binding algorithm. We
then generate a large number of oorplans and apply
our performance-driven binder to each of them and
compare the new binding solution with the original
one (in terms of performance and cost). In Exper-
iment 2, we apply our performance-driven binder to
improve solutions obtained by the traditional design
approach of separating HLS and physical design. First
we use standard HLS algorithms and the oorplanner
in [11]. Then we apply our performance-driven binder

+

x

+ + + ++ ++

x xx xx x x

+ + + ++ ++

+

x

+ + + ++ ++

x xx xx x x

+ + + ++ ++

step 1

step 2

step 3

step 1

step 2

(a)

(b)

Figure 8: (a) FIR2: 2-step 16-point FIR �lter (b) FIR3:

3-step 16-point FIR �lter.

to obtain a binding solution which is more suitable
to the �nal oorplan. Again, comparisons are made
based on performance and cost. Finally, in Experi-
ment 3, we test our approach of simultaneous binding
and oorplanning. We apply the algorithm in Section
3 to the same set of benchmarks used in Experiment
2 and compare the results with those obtained in Ex-
periment 2. The performance is measured as the

test tech link mux crit path wlength topologies
FIR2 1.6�m +4.17% +5.85% -40.64% +6.75% 5070
LIB1 1.2�m +4.04% +5.47% -44.39% +3.44% 4940
FIR2 1.2�m +2.62% +1.19% -40.68% +4.47% 5200
LIB2 1.0�m +2.46% +0.72% -46.22% +5.34% 4940
FIR3 1.6�m +1.89% +1.51% -23.81% +5.39% 3420
LIB1 1.2�m +1.77% +2.55% -30.10% +2.26% 3420
FIR3 1.2�m +0.92% +4.42% -15.36% +7.21% 3330
LIB2 1.0�m +1.18% +4.87% -16.57% +6.94% 3330

Table 3: Experiment 1.

test tech link mux wlength(mm) crit path(ns)
�m t p1 d t p1 d t p1 % t p1 %

FIR2 1.6 45 47 2 15 16 1 185.6 204.5 +10.21 38.74 24.93 -35.65
LIB1 1.2 45 47 2 15 16 1 172.4 192.7 +11.78 31.21 24.22 -22.39
FIR2 1.2 45 47 2 15 16 1 48.4 58.3 +20.25 12.44 6.36 -48.88
LIB2 1.0 45 46 1 15 15 0 33.9 35.4 +4.57 11.17 5.76 -48.38
FIR3 1.6 45 45 0 22 21 -1 179.7 196.3 +9.25 26.78 21.4 -20.10
LIB1 1.2 45 44 -1 22 21 -1 142.5 158.2 +11.01 24.95 16.84 -32.51
FIR3 1.2 45 45 0 22 22 0 46.1 53.9 +16.94 10.20 6.84 -32.99
LIB2 1.0 45 46 1 22 23 1 33.0 34.3 +3.97 4.16 3.53 -15.27

Table 4: Experiment 2.

interconnection delay along the critical path, denoted
as `crit path'. The cost has two major categories: the
structure cost to measure the quality of RTL design
and the physical cost to measure the quality of oor-
plan. For structure cost, the number of communica-
tion links and the number of 2-to-1 MUXs are used as
the quality indication of RTL, denoted as `link' and
`mux'. For physical cost, the area of oorplan and the
total wire length of the �nal circuits are used as the
quality indication of oorplan, denoted as `area' and
`wlength'. `test' and `tech' indicate the experiment
con�guration. `topologies' is the number of randomly
generated oorplans. `t' , `p1', and `p2' represent the
traditional approach, the approach to Problem 1, and
the approach to Problem 2.

test tech link mux wlength(mm) area(mm
2) crit path(ns)

�m p1 p2 p1 p2 p1 p2 % p1 p2 % p1 p2 %
FIR2 1.6 47 47 16 16 204 214 +4.6 55.3 55.8 +0.9 24.9 22.4 -10
LIB1 1.2 47 46 16 15 192 145 -24.7 32.2 31.7 -1.6 24.2 19.5 -19.5
FIR2 1.2 47 47 16 16 58 58 -0.4 3.6 3.8 +7.4 6.4 6.3 -1.7
LIB2 1.0 46 46 15 15 35 29 -16 1.7 1.7 +4.2 5.8 4.0 -30.6
FIR3 1.6 45 44 21 20 196 224 +14.4 46.5 44.7 -3.7 21.4 15.9 -25.9
LIB1 1.2 44 46 21 24 158 154 -2.6 25.9 25.1 -2.8 16.8 12.0 -28.5
FIR3 1.2 45 44 22 21 54 52 -3.9 2.9 2.9 +0.1 6.8 5.5 -20
LIB2 1.0 46 44 23 21 34 30 -12.5 1.3 1.3 -0.7 3.5 3.4 -3

Table 5: Experiment 3.

Results of Experiment 1 (Table 3) show that on
average the proposed approach improves the perfor-
mance by up to 32% while only increasing the cost
(structure and physical) by less than 6%. Results of
Experiment 2 (Table 4) show that on average the pro-
posed performance-driven binding improves the per-
formance by up to 32% with only 10% increase of
wiring. Results of Experiment 3 (Table 5) show that
on average the simultaneous functional-unit binding
and oorplanning further improves the performance
by up to 17% with almost no increase of area and
even 5% decrease of wiring.

References

[1] H. B. Bakoglu, \Circuits, Interconnections and Pack-
aging for VLSI," pp. 194-225, 1990.

[2] F. Brewer and D. Gajski, \Chippe: A System for Con-
straint Driven Behavioral Synthesis," IEEE Trans. on

CAD, Vol. 9, No. 7, pp. 681-695, 1990.
[3] Michael R. Garey and David S. Johnson, \Graph K-

Colorability," Computers and Intractability, A Guide
to the Theory of NP-Completeness, 1979.

[4] M. S. Hecht, \Flow Analysis of Computer Programs,"
North-Holland, 1977.

[5] Hyuk-Jae Jang and Barry M. Pangrle, \A Grid-Based
Approach for Connectivity Binding with Geometric
Costs," Proc. of ICCAD, pp. 94-99, 1993.

[6] David W. Knapp, \Fasolt: A Program for Feedback-
Driven Data-Path Optimization," IEEE Trans. on

CAD, Vol. 11, No. 6, pp. 677-695, 1992.
[7] Michael C. McFarland, \Using Bottom-Up Design

Techniques in the Synthesis of Digital Hardware from
Abstract Behavioral Descriptions," Proc. of 23rd DAC,

pp. 474-480, 1986.
[8] Vasily G. Moshnyaga, Hiroshi Mori, Hidetoshi On-

odera, Keikichi Tamary, \Layout-Driven Module Se-
lection for Register-Transfer Synthesis of Sub-micron
ASIC's," Proc. of ICCAD, pp. 100-103, 1993.

[9] Ashutosh Mujumdar, Minjoong Rim, Rajiv Jain, and
Renato De Leone \BITNET: An Algorithm for Solving
The Binding Problem," 7th International Conference

on VLSI Design, pp. 163-168, 1994.
[10] Jen-Pin Weng and Alice C. Parker, \3D Schedul-

ing: High-Level Synthesis with Floorplanning," Proc.

of 28th DAC, pp. 668-673, 1991.
[11] D. F. Wong and C. L. Liu, \A New Algorithm for

Floorplan Design," Proc. of 23rd DAC, pp. 101-107,
1986.

[12] Dian Zhou, Franco P. Preparata and S. M. Kang, \In-
terconnection Delay in Very High-Speed VLSI," IEEE

Trans. on Circuits and Systems, Vol 38, No. 7, pp.
779-790, 1991.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

