
Condition Graphs for High-Quality Behavioral Synthesis

Hsiao-ping Juan, Viraphol Chaiyakul and Daniel D. Gajski

Department of Information and Computer Science

University of California, Irvine, CA 92717-3425

Abstract

Identifying mutual exclusiveness between operators dur-

ing behavioral synthesis is important in order to reduce the
required number of control steps or hardware resources. To

improve the quality of the synthesis result, we propose a

representation, the Condition Graph, and an algorithm
for identi�cation of mutually exclusive operators. Previ-

ous research e�orts have concentrated on identifying mu-

tual exclusiveness by examining language constructs such
as IF-THEN-ELSE statements. Thus, their results heavily

depend on the description styles. The proposed approach

can produce results independent of description styles and
identify more mutually exclusive operators than any pre-

vious approaches. The Condition Graph and the proposed

algorithm can be used in any scheduling or binding algo-
rithms. Experimental results on several benchmarks have

shown the e�ciency of the proposed representation and al-

gorithm.

1 Introduction
High-level synthesis is a process of producing a register-

transfer-level design from a given abstract behavioral de-
scription. In general, the major tasks of this process in-

clude scheduling the operators from the given behavioral

description into control steps and binding the scheduled
operators to appropriate resources. For example, two op-

erators in a behavioral description may be scheduled into

the same control step but executed by di�erent resources,
or they may be executed by the same resource but in di�er-

ent control steps. However, if we can identify that the

results of these two operators will never to be used

at the same time, that is, if they are mutually ex-

clusive, then they can be scheduled into the same

control step and share the same resource. Conse-
quently, the number of control steps or the hardware cost

is reduced. For example, consider the VHDL description

shown in Figure 1(a). Assuming we can not identify any
mutually exclusive operators, then simple List Schedul-

ing [4] with a hardware resource constraint of 1 adder and

1 comparator produces a design with 6 control steps as
shown in Figure 1(b). However, if we can identify that +4

and +5 are mutually exclusive because they are used in dif-

ferent conditional branches, we can schedule +4 and +5 to
the same control step. Thus, one control step is reduced as

shown in Figure 1(c). The number of control steps can be

further reduced if we can identify more mutually exclusive

operators as shown in Figure 1(d) and (e).

architecture exp of exp is
begin
 process
 variable T1: bit;
 variable T2, T3: integer;
 begin
 T1 := ((a b)<c);
 T2 := d e;
 T3 := c 1;
 if T1 then
 y <= T3 d;
 else if (not x) then
 y <= T2 d;
 end if;
 if ((not T1) and x) then
 z <= T2 e;
 end if;
 end process;
end exp;

entity exp is
 port(a, b, c, d, e: in integer;
 x: in bit;
 y, z: out integer);
end exp;

(a)

+1 >

+2

+3

+4

+5

+6

(b)

m.e. operators:
 none

+1

+2
+3

+4

+5

+6

+1 >

+2

+3

+4 +5

+6

(c)

+1

+

+

>

2

3

+4 +5 +6

(d)

+1 >

+2 +3

+4 +5 +6

(e)

m.e. operators:
 (,)

m.e. operators:
 (,)
 (,)
 (,)
 (,)

m.e. operators:
 (,)
 (,)
 (,)

+4 +5

+5

+5

+5

+5

+4+4
+4 +4+6 +6

+6+6
+2 +3

Figure 1: An example of behavioral descriptions.

Mutual exclusiveness between operators can be deter-
mined by analyzing the input descriptions. Sometimes mu-

tually exclusive operators are obvious from the use of lan-

guage constructs (such as IF-THEN-ELSE), while others
need a sophisticated data-ow analysis. For instance, oper-

ators +4 and +5 in Figure 1 are mutually exclusive because

they are in di�erent branches of the same IF-THEN-ELSE
statement. On the other hand, a data ow analysis is

needed to determine that T2 is not used when the con-

dition T1 is TRUE and T3 is used only if T1 is TRUE.
This indicates that +2 and +3 are mutually exclusive. All

possible pairs of mutually exclusive operators in example

Figure 1(a) are shown in the left most column of Figure 2.

Previous research has addressed the issue of identify-

ing mutually exclusive operators to improve scheduling re-

sults. Kim and Liu [7] proposed an algorithm which can

identify mutually exclusive operators that are obvious from

the use of language constructs. Basically, only operators in

di�erent branches of the same IF or CASE statement are
identi�ed. Wakabayashi and Yoshimura [8] used condition

vectors to identify mutually exclusive operations. Their

approach can identify the mutual exclusiveness among op-

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0170 $3.50

erators in conditional branches. In addition, a data-ow

analysis is performed on each of the conditional branches.

However, they cannot identify mutually exclusive oper-
ations across conditional blocks. Path-based scheduling

algorithm [2] determined the conditional usage of opera-
tors by analyzing every execution path in the control-ow

graph. Operators are mutually exclusive if they do not

appear in the same path. Furthermore, a false-path anal-
ysis [1] can identify mutual exclusiveness among operators

in the same path. However, no data-ow analysis is per-

formed. Figure 2 summarizes the result of applying previ-
ously known approaches to the example in Figure 1.

+ , +

+ , +

+ , +

+ , +

+ , +

+ , +

mutually
exclusive
operators

approaches

Kim’s Wakabayashi’s Path−based

: identified

3 5

+ , +4 5

3 6

4

32

5 6

6

2 4

Figure 2: The result of applying previous approaches to
identify mutually exclusive operators in Figure 1.

One simple solution to overcome the limitations in pre-

vious approaches is to force the users to write descriptions
using language constructs and description styles that can

be recognized by the mutual exclusiveness identi�cation

algorithm used in the synthesis system. This solution is
impractical because the users would need to acquire de-

tailed knowledge of the algorithms used in the system.

In this paper, we propose a new approach which
can identify mutually exclusive operators in a behavioral

description without resorting to language constructs or

styles. Furthermore, unlike the previous approaches, we
propose the separation of the mutual exclusiveness iden-

ti�cation from the scheduling. This separation results in

a less complex algorithm which out-performs previous ap-
proaches in the identi�cation of mutual exclusiveness. Ad-

ditionally, the algorithm can be used by any scheduling or

binding algorithms.
An overview of our approach is given in the next sec-

tion. Section 3 outlines the de�nition and representation of

the usage condition of an operator in a description. Iden-
tifying whether two operators are mutually exclusive by

evaluating their usage conditions is discussed in detail in

Section 4. Finally we present the results of our approach
on some HLSW benchmarks.

2 Overview of Our Approach
The �rst step in our approach is to convert the input

behavioral description into an Assignment Decision Dia-

gram (ADD) representation. The ADD representation can

<

a b c 1 d e

T1 T3 T2

Legend :

=condition 1

value1 value n

condition n
Assignment decision node

 z y

= Operation node=

=

Read node

Write node

x

3+

4+

2+

6+5+

1+

Figure 3: The ADD of the example description.

minimize the syntactic variances in the description due to

ordering and grouping of conditions and assignments [3].

Figure 3 shows an example of the ADD representation
which is derived from the description in Figure 1. The

fundamental concept of the ADD is to represent a given

description as a set of all possible conditional assignments
to each output port or internal storage unit. The property

of assignment values and assignment conditions is repre-

sented as a triangular assignment decision node (ADN) in
the ADD graph. It is the unique property of the ADN that

is of interest to our work. Basically, it guarantees that the

assignment values to an ADN are mutually exclusive.

The next step is to de�ne and store the usage condition
for each operator in the ADD. The usage condition of an

operator is de�ned as the condition under which the result

of the operator is to be used. Because the conditions for
assignments are explicitly shown in an ADD, the usage

conditions of operators can be easily de�ned in terms of

assignment conditions. For example, in Figure 3, the result
of +6 is assigned to z only when the condition (x ^ :(a+
b < c)) is TRUE; therefore, the usage condition of +6 is

(x ^ :(a+ b < c)). The usage conditions are represented
and stored using a graph representation called Condition

Graph (CG). The constituents and constructions of CGs

for operators in an ADD will be discussed in greater detail
in the next section.

After the CGs for all the operators in the ADD are con-

structed, the mutual exclusivity of any two operators can

be determined by evaluating their CGs. Two operators are

mutually exclusive if their CGs never evaluate to TRUE

simultaneously. For instance, +4 and +5 are mutually ex-

clusive because their CGs, which represent (a+ b < c) and
(:x ^ :(a + b < c)) respectively, would never evaluate to

TRUE at the same time.

The conversion from a behavioral description to an

ADD representation has been discussed in detail in [3].
In this paper, we shall focus on how to construct CGs for

the operators in an ADD and also how to identify mutually

exclusive operators by evaluating the CGs.

3 Condition Graphs
The condition graph (CG) is a graph used to represent

a usage condition of an operator. The usage condition for
an operator in an ADD can be written as an arithmetic

expression, which always evaluates to either TRUE or

FALSE. The variables in a usage condition can be bit vec-
tors or integers. The operators in a usage condition consist

of three types: (1) arithmetic operators such as f+;�;�g;
(2) relational operators such as f<;==;>;�;�; 6=g; and
(3) Boolean operators such as f^;_;:g. A CG consists

of two types of nodes (read nodes and operation nodes)

and edges connecting the nodes. The read nodes represent
the variables in the usage condition. The operation nodes

represent the types of operations that are performed to

compute the usage condition. Thus, a CG can be viewed
as a circuit used to evaluate a usage condition and the

output is the result of the evaluation.

1

2

n

op i
opi

ei

(a) (b) (c) (d) (e)

w

ei

ac

1

2

n

ei

ei
 e

 e

 e
 e

 e
 e

Figure 4: De�ning usage conditions.

Let OCi denote the usage condition of an operator opi
and ECi denote the usage condition of an edge ei. The

usage condition of any operator in ADD can be de�ned by

the following axioms:

Axiom 1 Let fe1; e2; � � � ; eng be the set of edges out-going
from an operator opi (Figure 4(a)), then

OCi = EC1 _EC2 _ � � � _ECn.

The usage condition of an edge can be de�ned by either
one of the following axioms according to the types of its

destination:

Axiom 2 If the destination of an edge ei is an operator

opi (Figure 4(b)), then
ECi = OCi.

Axiom 3 If the destination of an edge ei is an ADN, then

(1) if ei is an assignment condition edge of the ADN (Fig-

ure 4(c)), then
ECi = TRUE;

(2) if ei is an assignment value edge of the ADN

and its corresponding assignment condition is ac, let
fe1; e2; � � � ; eng be the set of output edges of the ADN (Fig-

ure 4(d)), then

ECi = ac ^ (EC1 _EC2 _ � � � _ECn).

Axiom 4 If the destination of an edge ei is a write node

w (Figure 4(e)), then

ECi = TRUE.

+

<

ABC16 8

*

<

===

C1C2C3

*

+ +

W1 W2

*

R1 R2 R3 R4 R5

op1

op2 op3

Cond

4e 5e

3e

2e
1e

1ac

2ac
3ac

4ac

Figure 5: An example of ADD.

The usage condition of an operator can be obtained

through a series of applications of the above axioms. For
example, consider the operator op1 in the ADD shown in

Figure 5. According to Axiom 1, OC1 = EC1 _EC2 . To

obtain EC1, Axiom 3 and 4 can be applied as follows:

EC1=ac2 ^EC4 (Axiom3)
=((A �B + C < 8)^ (Cond == C1)) ^ TRUE:(Axiom4)

Similarly, EC2 can be derived as follows:

EC2=OC3 (Axiom2)

=EC3 (Axiom1)
=ac3 ^EC5 (Axiom3)
=((16 < A �B + C) ^ (Cond == C1))^ TRUE:(Axiom4)

Therefore,

OC1=(((A �B + C < 8)^ (Cond == C1))^ TRUE)
_(((16< A �B + C) ^ (Cond == C1))^ TRUE):

The CG which represents OC1 is shown in Figure 6.

+

<

16

*

<

=

C1 Cond TRUEC 8

1

B A

: read node

: operation node

OC

Figure 6: The CG for OC1.

4 Identifying Mutual Exclusiveness
To identify that two operators, op1 and op2, are mu-

tually exclusive we have to show that the corresponding

usage conditions, OC1 and OC2, of the two operators will

never evaluate to TRUE at the same time. One simple

approach is to convert OC1 and OC2, which could consist

of arithmetic sub-expressions, into boolean equations, then

prove that OC1 ^OC2 is a tautology. However, such an

approach is impractical since it requires exponential time

and exponential space.

Thus, for practicality, we have constructed a set of lem-

mas and theorems for identifying sets of mutually exclusive

operators that are commonly found in a behavioral descrip-
tion. In addition, we have developed an algorithm to apply

the lemmas and theorems to the usage conditions, which
are represented in CG, of any two given operators in order

to determine whether or not they are mutually exclusive.

The main idea of the algorithm is to \pessimistically" as-
sume that the operators are NOT mutually exclusive UN-

LESS the mutual exclusion can be proved by the lemmas or

theorems. This is essential for synthesis because by \pes-
simistically" identifying two operators as NOT mutually

exclusive, even if they are in fact mutually exclusive, the

algorithm will only degrade the optimization rather than
produce an incorrectly synthesized design. In this section,

we shall introduce the set of lemmas and theorems. The

proofs of the lemmas and theorems are provided in [6].
Given two operators op1 and op2, and thier usage con-

ditions OC1 and OC2, op1 is mutually exclusive to op2 if

and only if OC1
 OC2 = TRUE, where \
" represents
the tautology statement OC1 ^OC2 = TRUE. The re-

sults of
 can be determined by the following lemmas and

theorems:

Lemma 1 If OC1 and OC2 are conditions of the same as-

signment decision node (ADN), then OC1
OC2 = TRUE.

Lemma 2 If OCi can be statically evaluated to FALSE
then we can remove OCi and its corresponding assignment

value from the ADD.

Lemma 3 If OC1 can be statically evaluated to TRUE

and OC2 can not be statically computed, then OC1
OC2 =

FALSE.

Lemma 4 OC1 � OC2 (equivalent) if and only if the CG
sub-graph representingOC1 is identical (isomorphic) to the

CG sub-graph representing OC2.

In our application, isomorphism between two CG sub-

graphs is identi�ed in linear time by a one-to-one compar-

ison of the CG without any transformations.

Theorem 1 If OC1 � OC2 then OC1
OC2 = FALSE.

Theorem 2 If OC1 � :OC2 then OC1
OC2 = TRUE.

Theorem 3 Given OC1 and OC2 such that,

OC1 = OC11 Rop1 OC12,

OC2 = OC21 Rop2 OC22,

where fRop1, Rop2 2 f<;�;==; 6=;>;�gg, and
OC11 � OC21,

OC12 � OC22, then
OC1
OC2 = TRUE if (Rop1, Rop2) 2 f(<;>),(<;�),(�
;>),(==;<),(==;>),(==; 6=)g.

For example, if OC1 is a condition (x+y < z) and OC2

is a condition (x+ y > z) (ie., OC11 = x+ y, OC12 = z,

OC21 = x + y, OC22 = z, Rop1 is < and Rop2 is >) then

OC1 and OC2 are mutually exclusive.

Theorem 4 Given OC1 and OC2 such that,
OC1 = OC11 Rop1 OC12,

OC2 = OC21 Rop2 OC22,
where fRop1, Rop2 2 f<;�;==; 6=;>;�gg, and

OC11 � OC21,
OC12 6= OC22, but OC12 and OC22 can be evaluated to

constant values, then

OC1
 OC2 = TRUE if (Rop1, Rop2, Rc) 2 f(<
;>;�),(<;�;�),(�;>;�), (�;�;<),(==;<;�),(==;�
;>),(==;�;<),(==; 6=;==),(==;==; 6=)g where Rc is a

relation between OC12 and OC22.

For example, if OC1 is a condition (x == 1) and OC2

is (x == 2) (ie., OC11 = x, OC12 = 1, OC21 = x, OC22 =
2, Rop1 = \==", Rop2 = \==" and Rc = \6="), then
OC1
 OC2 = TRUE.

In the case where the usage conditions are complex
boolean expressions, the mutual exclusion of the condi-

tions can be proven by decomposing the conditions into

sub-conditions and proving the exclusion on the decom-
posed sub-parts. The decomposition rules are as follows:

Theorem 5 if OC1 � OC11 ^OC12, then

(OC11 ^OC12)
 OC2 = (OC11
 OC2) _ (OC12
OC2).

Theorem 6 if OC1 � OC11 _OC12, then

(OC11 _OC12)
 OC2 = (OC11
 OC2) ^ (OC12
OC2).

To demonstrate the use of these lemmas and theorems,

consider the usage conditions of op2 and op3 from Figure 5:

OC2=(Cond == C2)

OC3=(A �B + C > 16)^ (Cond == C1)

Determining the mutual exclusion between op2 and op3
can be accomplished as follows:

OC2
OC3=(Cond == C2)
 ((A �B + C > 16)^

(Cond == C1))
=((Cond == C2)
 (A �B + C > 16))_

((Cond == C2)
 (Cond == C1)) (Theorem5)
=((Cond == C2)
 (A �B + C > 16))
_1 (Theorem4)

=1

5 Algorithm and Results
Given two nodes from CGs, oi and oj, each of which

represents a usage condition of an operator node, we can

determine the mutual exclusiveness between the two con-
ditions by using the algorithm QueryMuEx shown in Fig-

ure 7.

Basically, QueryMuEx is a recursive procedure. Each

time it is called, it checks whether any of the lemmas
can be used to determine the mutual exclusiveness of oi
and oj. If none of the lemmas is applicable, then Query-

MuEx calls Decompose to decompose the oi and/or oj and
then recursively applies QueryMuEx to the decomposed

sub-expression. The decomposition is performed until the

mutual exclusiveness of the expressions can be determined.

Algorithm QueryMuEx(oi; oj)
begin Algorithm

if (ApplyLemmas(oi; oj) = unknown) then
return(Decompose(oi ; oj));

else return ApplyLemmas(oi ; oj);
end if;

end Algorithm

Algorithm Decompose(oi; oj)
begin Algorithm

if (oi = ^) then
return (QueryMuEx(oj; LeftPred(oi))_

QueryMuEx(oj; RightPred(oi)));
else if (oi = _) then

return (QueryMuEx(oj; LeftPred(oi))^
QueryMuEx(oj; RightPred(oi)));

else return FALSE;
end if

end Algorithm

Figure 7: Algorithm QueryMuEx.

Then results from the last recursion is returned to the pre-

vious level until the top-most call.

We have tested our algorithm on several benchmarks

from the High-Level Synthesis Workshop [5] and previ-
ous publications: Wakabayashi's example [8], Kim's exam-

ple [7], AMD2901, and AMD2910. For each benchmark we

wrote three di�erent VHDL behavioral descriptions. Each
of the descriptions di�ers in the use of language construct

(eg. IF-THEN-ELSE, and CASE statements) and descrip-

tion style (eg., grouping of conditional assignments). For
example, description 1, 2 and 3 are behavioral descriptions

of AMD2901 written in di�erent styles.

For each description, we manually compute the number

of operators and the total number of pairs of operators
that are mutually exclusive. These numbers are given in

the # of operators and total # of m.e. pairs columns,

respectively. It should be noted that even though the to-
tal number of mutually exclusive operators are computed

manually, the computation process is NOT trivial and it

is time consuming.

Subsequently, we invoke di�erent algorithms on each

description to �nd all possible pairs of operators that are

mutually exclusive for that example. The result of this

experiment is reported in terms of the percentage of op-

erator pairs that are found by the algorithm as compared

to the number found manually (total # of m.e. pairs).

Figure 8 shows results obtained using Kim's approach [7],
Wakabayashi's approach [8], path-based scheduling ap-

proach [2], and our approach.

The results show that our approach can completely

identify all possible pairs of mutually exclusive operators.
On the other hand, Kim's, Wakabayashi's and path-based

approach can identify all possible pairs only for certain

description styles.

Kim’s path−based ours
of operators

6

6

6

16

16

14

25

25

25

27

27

25

12

12

12

45

45

140

140

338

338

total # of
m.e. pairs

21

140

286

% of m.e. pairs detected

100 %

0 %

50 %

100 %

26.7 %

76.2 %

0 %

100 %

68.5 %

100 %

0.9 %

85.3 %

100 %

0 %

50 %

100 %

26.7 %

100 %

0 %

100 %

100 %

100 %

0.9 %

100 %

100 %

100 %

100 %

100 %

100 %

76.2 %

100 %

100 %

68.5 %

100 %

100 %

85.3 %

100 %

100 %

100 %

100 %

100 %

100 %

100 %

100 %

100 %

100 %

100 %

100 %

Description 1

Description 2

Description 4

Description 5

Description 6

Description 7

Description 8

Description 9

Description 11

Description 10

Description 12

Wakabayashi’s

Description 3

example

Figure 8: Experiment results using di�erent approaches.

6 Conclusion
We demonstrated quality of the proposed approach on

several benchmarks of the High-level Synthesis Workshop.

The results show that the proposed approach can identify
all possible mutual exclusive operators in the benchmarks

used, and out-perform all previously known approaches.

In addition, unlike previous approaches, the proposed ap-
proach is independent of language constructs and modeling

styles used in the description.

7 References
[1] R.A. Bergamaschi, \The E�ects of False Paths in High-

Level Synthesis," Proc. ICCAD 91, 1991.
[2] R. Camposano, \Path-Based Scheduling for Synthe-

sis," IEEE Trans. CAD, Vol.10, no.1, Jan. 1991.

[3] V. Chaiyakul, D.D. Gajski and L. Ramachandran,
\High-level Transformations for Minimizing Syntactic

Variances," Proc. 30th DAC, 1993.

[4] D.D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level
Synthesis: Introduction to Chip and System Design,

Kluwer Academic Publishers, 1992.

[5] Benchmarks for the Sixth International Workshop on

High-Level Synthesis, 1992.

[6] H.P. Juan, V. Chaiyakul, and D.D. Gajski, \Condition

Graphs for High-Quality Behavioral Synthesis," Tech-

nical Report #94-32, Dept. of ICS, UC Irvine., 1994.

[7] T. Kim, J.W.S. Liu, and C.L. Liu, \A Scheduling Al-

gorithm For Conditional Resource Sharing," Proc. IC-
CAD 91, 1991.

[8] K. Wakabayashi and T. Yoshimura, \Global Schedul-

ing Independent of Control Dependencies Based on
Condition Vectors," Proc. 29th DAC, 1992.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

