A Loosely Coupled Parallel Algorithm for Standard Cell Placement

Wern-Jieh Sun and Carl Sechen
Department of Electrical Engineering
University of Washington
Seattle, Washington 98195

Abstract rithm in this paper, which is organized as follows. In Section 2 we

We present a loosely coupled parallel algorithm for the place_flrst review the previous parallel approaches developed for standard

; - e . . . cell placement. In Section 3, we very briefly touch on the ke
ment of_standard cell mt_egrated cireuts. Our algorlthm IS ad_enva_— spe%ts of the serial placement algori%lhm deyrived from simulatgd
tive of simulated annealing. The implementation of our algorithm i nnealing, from which we began the develépment of our new paral-
]Efargeted toward networks of UNIX workstations. This is the VeYel algorithm. Our new parallel placement algorithm is the subject
irst reported parallel algorithm for standard cell placement which f Section 4. We analvze the performance of the algorithm in Sec-
yields as good or better placement results than its serial version. lﬁon 5 FinaII' in Secti)(;n 6 Wep resent our results 9
addition, it is the first parallel placement algorithm reported which ' y: P)
offers nearly linear speedup, in terms of the number of processors pravious Work
(workstations) used, over the serial version. Despite using the’))
rather slow local area network as the only means of interprocessor, Among the first reported parallel algorithms for standard cell
communication, the processor utilization is quite high, up to 98°/<P|""°eolment Wer:e thdose by Rutenbla_r and KraV|tz_[14]|[20]d They plr_O-
for 2 processors and 90% for 6 processors. The new parallel algd20Se¢ htWO S are mbemO(;y mu tlpro%essor simulate da”h”ea 'Qg
rithm has yielded the best overall results ever reported for the set §90rithms. One was based on move decomposition and the other

MCNC standard cell benchmark circuits. on parallel moves. A move could be either the displacement of a
single cell or the exchange of two cells. In the first approach, a
1. Introduction move was decomposed into several sub-tasks and parallelism was

. . . xploited in these sub-tasks. This scheme was only able to exploit
Nearly ten years ago, an early implementation of simulate imited parallelism. In addition, the synchronization of these sub-

annealing for standard cell placement yielded particularly ProMiSe. o< had to be performed very carefully. In [14], a speedup of 2

ing results[23]. However, it was many times slower than previousl| ; .
known methods. Therefore, this spawned considerable researg. S repo_rted by using 3 Processors. The speedup increased only
ightly with the introduction of additional processors.

efforts into developing a parallel implementation of simulated . T .
annealing for row-based placement. These previous methods can be_ !N their parallel moves approach, serializable subset is
categorized by the type of parallel hardware employed as well £&fined as a subset of all non-interacting moves that can be carried
the interprocessor communication schemes used. These meth&¥ serially in any order. Thus, all moves in this subset can be car-
were based on: 1) a shared-memory architecture [2][3][14], 2) botf€d out in parallel and the outcome would be the same as if the
a shared-memory and dedicated communication channels architdBOVes had been executed and evaluated serially. An advantage of
ture[18][19], 3) a hypercube machine [1][8][21], 4) a massively_th's_approaCh is that the convergence beh_awor of smulated_anneal-
parallel machine[4][30], and 5) a network of workstations[9][10]. " iS the same as that for the serial version[16]. However, it turns

In every case, these previous methods failed to yield results % t that finding serializable sets is extremely difficult. In fact, the

ood as those produced by the state-of-the-art serial standard cg thors resorted to the simplest form of this approach which is
9 P et . Sdsed on attempting and evaluating a group of moves in parallel,
placement algorithm available at the time[23][24][26][27]. In fact, nd then actually performing the single move that is accepted first
the results yielded by these prior methods diverged appreciably if any) and then aborting all the other attempts. As noted in [3], this
the size of the placement problem instances grew. Worse yet, the ' '

il ; approach unfortunately puts a bias in favor of moves that required
methods generally had difficulty even handling the very large prObI'eEF; computation time.)llfturned out that this method showedqa lin-

lem instances. And it's exactly those large problems for which On%ar speedup with the number of processors for the lowest tempera-

would want to have a parallel implementation available. Anothe . .

problem which diminished the utility of the prior methods is that urﬁzr'r%éze %r;?lea;tnﬁi Sﬁgf?eurlr?‘g\rlggg;ew moves are accepted, but
they achieved substantially less than linear speedup as a functionSt poorty 9 P ' -

the number of processors employed. Worse still, most of these Roseet al.[18][19] proposed a method called heuristic span-

methods were only applicable to very expensive hardware. ning to replace the high temperature regime in simulated annealing.
As a consequence of these problems, no parallel implementpara”e"sm was obtained by executing a mincut algorithm with dif-

. ; . e >rent starting partitions on different processors. After collecting
tion of simulated a”“e?‘"”g has_ever been used in lr_ldustry. It WOUlt e results generated by the various processors, the one with the
therefore be of considerable interest if there existed a coarsgs

. ; h west cost is chosen to enter the low temperature annealing phase.
grained, parallel standard cell placement_ algorithm wh_lch ran on g . phase is accelerated by mapping diffrz)arent regions of t?lepchip
standard network c_>f low-cost Workstatlons_ and which yielded nto different processors. Every processor performed moves in par-
results at least equivalent to the serial version of the same alg§

rithm, and in addition, offered nearly linear speedup with the huma'el and then broadcast the new cell locations to the other proces-

sors. To avoid idle processors, asynchronous moves were exploited
r of pr r . Furthermore, the new parallel meth - -
ber of processors used. Furthermore, the new parallel met % the cost of introducing error in the wire length calculations since
would have to produce results at least as good as those ever

. . . focessors often had different views on the current position of some
;reopn?rlt\igliloé the widely adopted set of benchmark circuits availabl ortion of the cells. The processor utilization efficiency was esti-

In f isel h liel ol | mated to be 70%.
n fact, we report precisely such a paraliel placement algo- In [4] and [30] there were attempts to implement simulated

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and thetitle of the publication and
its date appear, and notice isgiven that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires afee and/or specific permission. [1994 ACM 0-89791-690-5/94/0011/0137 $3.50

annealing on a massively parallel machine, such as the Connection |t would therefore be of considerable interest if there existed a
Machine. The data structures for cells, nets and pins are distributedarse-grained, parallel standard cell placement algorithm which
over many processors. The maximum circuit size that can be prean on a standard network of low-cost workstations and which
cessed is then limited by the number of processors available. In [4lielded results at least equivalent to TimberWolfSC version 7.0,
it was reported than even on a 65,536 processor Connectiethd in addition, offered nearly linear speedup with the number of
Machine, a maximum of only 8000 cells could be handled. The proarocessors used. Furthermore, the new parallel method would have
cessor utilization was also very low. There were no experiments produce results at least as good as those ever reported for the
showing that this approach can achieve the same high qualityidely adopted set of benchmark circuits available from MCNC.
results produced by the sequential simulated annealing algorithm.)])]
Banerjee,et al. [1][8][21] presented parallel algorithms for 3. Serial Version of Simulated Annealing for

standard cell placement on a hypercube multiprocessor. The cells to Standard Cell Placement
be placed are mapped onto all of the processors in the hypercube. e felt that we could develop the most effective loosely cou-
The mapping was either done in grid-like fashion[1][8] or in row- jeq parallel algorithm for standard cell placement by basing it on
based fashion [21]. Due to the hypercube structure, only processgfg most effective serial algorithm available, name TimberWolfSC
with a particular address pattern are allowed to perform cell intery o |n this section we review the key aspects of this algorithm.
changes. This rather restricts cell movement. To avoid error accu- | - :

n [26][27] a new approach to simulated annealing and a new

mulation[21], sets of non-interacting cells are identified and only . hical algorithm f | .
cells in the same sets are allowed to be exchanged. This furt jprarchical algorithm for row-based placement was described.
: is implementation obtained the best results ever reported for the

impeded cell movement. This algorithm performed and evaluate A X . 0
moves in parallel on all processors. After each move, the new ce%Fetrgf gf;ﬁi’:\?egegg;m:rﬂg dCI\C\(,:iltJrI]tSﬁgglgr\?\/r;?srgd\ljgt(l)on; ug dtdoititi/o
position was broadcast to all processors. The global synchroniz&f. comp . i S
(Elp area reductions up to 21% were achieved while consuming up

tion scheme was rather expensive. In [21], the expected speedfj 7.5 times less CPU time in comparison to TimberWolfSC v6.0.

was 11-21 using 64 progessors. .) . The new approach produced lower total wire length by an average
Oof a[l the parallel |mplementat|0ns of simulated anneallng,of 8% than Gordian/Domino[5][6][11][25], 11% lower wire length

those which perform moves in parallel attract the most attentiogygn Ritual/Tiger [22], while using comparable run time.

because they have the most potential for appreciable speedups. Par- '

allelism can be highly exploited by performing moves on all of the 1. randomly select cedl

processors at the same time. All of the previous methods require 2. randomly select rowand locatiorx in r

frequent application of some form of global synchronization. They 3. /*xinr is within the range limiter window span faf24] */

either broadcast new information after each move or after fewe 4. if (addingator doesn’'t exceed length limit foy then

than 10 moves. This rather high communication cost restricted it 5. computeAC for movinga to locationx in r

application to only special parallel architectures that can provid 6. else

high communication throughput in the form of either shared mem 7. /* now consider an exchangeandb */

ory, a hypercube interconnection network or other dedicated harc 8. note celb covering locatiorxinr

ware. 9. if (length limit of neither row is exceedetien
There has been a small amount of previous work on develoy 10- compute\C for exchanging: andb

ing standard cell placement implementations for loosely couple 11. else .

parallel processing environments, in particular, consisting of net12. ~ gotoline 1

works of low-cost workstations. Mohaat al, [17] presented a 13. if (accep(AC)) then

placement approach based on the genetic algorithm. Also, kting, 14. eliminate overlaps for the row(s)aandb
al., [12] presented a method based on simulated evolution. Hov 15. update estimation model foandb
ever, neither of these approaches were shown to be comparable Figure 1 New State Generator

terms of placement quality with the state-of-the-art serial imple- Figure 1 shows the algorithm used by TimberWolfSC 7.0 for
mentation of simulated annealing. Finally, Banerjeeal, have generating new placement configurations. First,a&l randomly
developed a parallel version of simulated annealing for this looselyelected. A single cell move is attempted if the target row’s length
coupled environment[9][10]. They based their approach, whichimit is not exceeded. Otherwise, a delivhich covers the target
they called PrOperPLACE, on TimberWolfSC version 6.0. Unfortu-|ocation is noted and an interchangmajndb is attempted if no
nately, the results produced by ProperPLACE diverged badly as cifow length limits are violated. The length limit is set to be the
cuit sizes increased in comparison to TimberWolfSC 6.0. Insmaller of one percent of the average row length or one average
addition, the speedup as a function of the number of processors Waandard cell width. If a limit was violated, the new state generator
far from linear. begins anew. If a single cell or interchange move is feasible, then
As a consequence of the limitations of the previous approachele change in cost is computed. The probability of accepting the
to parallel placement, particularly parallel implementations of simnew configuration is one iAC<0 ; otherwise, it is equal to
ulated annealing, none of these methods has ever been useddfT®C/ D | whereT is the temperature. If the new configuration is
industry. However, by no means does this imply that faster placexccepted, the cells in the affected rows are shifted to avoid any cell
ment isn't badly needed. Although the state-of-the-art serial versioaverlapping. Every new configuration thus generated is legal and
of simulated annealing for standard cells (TimberWolf 7.0 [26][27])physically feasible.
was reported to be dramatically faster than the previous version AC = AW+ AW, 1)
(6.0), in fact, seven to ten times faster for larger circuits, the compu- . s) .
tation time on a state-of-the-art workstation can still approach 24 ~ The incremental cost function used by TimberWolfSC 7.0 is
hours for a 200,000-cell gate array. No other serial algorithm hagiven in (1).AW is the change in the net lengths for those nets con-

been reported which can yield comparable results in less computaécted to the cell (or two cells) participating in the single cell (or
tion time. exchange) moveAWg represents the change in the net lengths for

those nets connected to the cells in the affected rows which must be

shifted to avoid the creation of cell overlapping. When a new cell igides a top-down view, from the course grain of the higher levels to
inserted into a row, other cells in this row generally need to behe fine grain of the lower levels. Timing requirements are satisfied
shifted to accommodate the new cell. An effective and efficientn all stages[29]. The right hand side of figure 2 shows some typical
method for estimatingWg , the change in the net lengths for thosgalues.

nets connected to the shifted cells are given in [26][27]. The clustering technique is based on graph connectivity. It
When a cell moves from one row to another, the overall movgroduces clusters with about the same size, and emphasizes nets
distance will consist of two components, ¥eisplacement and the = with small fan-out. The technique was shown to yield good results
y displacement. When a cell moves within the same row, there willsing a linear (in terms of the number of cells) time implementa-
only be arx displacement. The value ofyalisplacement will be at tjon.
least the distance between the rows. On the other hand,dike A
placement can be as small as one grid size. In a typical circuit, the 1 g+
distance between the rows is usually tens or hundreds of grid sizes.
Hence they displacement is generally several times larger than the
x displacement. This phenomenon cajA&$ forird@r-row
move, which has botk andy components, to generally be several

acceptance ratél

times larger than for aintra-row move, which has only ancom- 0.44
ponent.

When the simulated annealing acceptance criterion is used to % of total moves
evaluate moves, those moves that generate higher cost changes will >

15 5

enerally have a much higher chance of being rejected. Thus, inter- 0 70 100
?ow m0\>/es, which genera?te higher changes i% C(iSt, are much more . ' stage >l stage 2l < stage $P
likely to be rejected than intra-row moves at a given temperature. | 19Uré 3 Annealing Schedule in Hierarchical Mode
This was found to be especially severe when the temperature is low; As stated above, the first level netlist is placed in the higher
primarily only intra-row moves were being accepted. This greatltemperature regime. This first stage comprises the first 50% of the
hampered the search ability of simulated annealing since inter-rotetal annealing schedule as shown in figure 3. The second place-
moves were not adequately exploited. When only inter-row movegient stage starts at 50% and ends at 70% of the total annealing
were included in calculating the acceptance rate, the annealirgghedule as shown in figure 3. The constituent cells belonging to a

schedule described in [26][27] yielded much better results. cluster are randomly placed within the confines of the location of
the bounding rectangle of the cluster as determined in the previous
< Second Level Netlist)Placement RHeigr?lt =4§ fO\n/ ?Piigft\t stage. The third stage starts at 70% of the total annealing schedule.
ougnly 49 celisiclustg, The restarting temperatufieof the second (and third) placement

stage is given by (2), whe®®W is the average net lengtlmand is

i Decompose
CIustermgT l P / 1st level clusters the target acceptance rate.

; ; Height = 1 row height w
First Level Netlist)Placement Roughly 6 cells/clustey T = _|ogg 2)
Clustering Tl Decompose \ The total number of moves (tkeaxis in figure 3) is divided
into 150iterations Eachiteration consists of a number of moves

equal to the total number divided by 150. The total number of
moves,m, is given by (3), whera is the number of cells in the cir-
Figure 2 Hierarchical Placement cuit.

Figure 2 shows the hierarchical placement methodology
described in [26][27], which combined a new clustering technique m = = 125?]01 1 n< 500
with the new approach to simulated annealing. The original netlist BZSn (==)3 n>500 (3)
is hierarchically clustered into various levels of netlists. Then the 500
new approach to simulated annealing is used to place those various
levels of netlists. 4. The New Parallel Placement Algorithm

In the clustering stages, the original netlist is condensed int .
the first and then the second level netlists. The produced clusters%r'l1 Introduction
the higher level netlists have similar size, which greatly aids the Given that our parallel processing hardware consists of a net-
annealing placement stages. In the placement stages, the condengesk of workstations, our objective was to achieve near linear
second level netlist is placed using simulated annealing at thgpeedup with the number of processors (workstations). There are
higher temperatures. Then the second level netlist is decomposbio main obstacles: 1) how to absolutely minimize interprocessor
back to the first level netlist. Cells of the lower level netlist are rancommunication since the local area network is quite slow, and 2)
domly placed within the range of the cluster to which they belong igiven that moves will be generated and evaluated in parallel, how to
the higher level netlist. At the new lower level, these cells may thegxecute (generate and evaluate) these moves effectively in the pres-
move outside the bounds of the higher level cluster. The first leveince of erroneous information on the location of some portion of
netlist is then placed at the middle temperatures. Next, the first levéhie cells.
netlist is decomposed back to the original netlist, and the original Communication between the processors can be reduced to
netlist is placed at the lower temperatures. There are two clusteringro by dividing the chip intan non-overlapping regions and
stages and three placement stages. This combined clustering aisbigning each of theprocessors to a unique region. Each proces-
simulated annealing methodology can be viewed as a combinegr then optimizes the locations of the cells which were initially
bottom-up and top-down approach, where the two clustering staggsaced in its region. There are several critical problems with this
provide bottom-up perspectives and the three placement stages papproach. First, it is virtually impossible to initially assign all of the

Original Netlist Placement

cells into their proper region. Partitioning algorithms which havecapable of generating and evaluating both long distance and short
been proposed to date have not been shown to be effective for thikstance moves. We were able to satisfy these criteria with the fol-
problem. Second, given that some cells will therefore not be in theiswing scheme. At the beginning of each odd numbered iteration,
optimal regions, there is no way for the cells to move betweeghe chip area is divided into equal-size regions which consist of
regions and to therefore improve their region assignment. Thirdsertical slices as illustrated on the left-hand side of figure 4. At the
when optimizing the placement of the cells within its region, thestart of each even numbered iteration, division of the chip area into
processor has almost no idea of where the cells are in other regionsn-overlapping equal-size regions (now consisting of horizontal
Given that there can be more than 10,000 cells in a region and thglices) takes place as shown on the right-hand side of figure 4. In
there can be a similar number of inter-region nets connecting theséther case, regiainis the active region for processor
cells, this will be a very serious source of error when computing Note that this scheme permits a cell to move from its current
total wire lengths (the basic cost function in annealing-based p""‘c%bsition to anywhere else on the chip in at most two iterations. This
ment algorithms). is illustrated in figure 5, where céllis currently in the upper left

In summary, a parallel implementation based on no interproeorner of the chip but should move to the lower right corner to max-
cessor communication can be characterized as having virtually linmally reduce the total wire length. During the current iteration
ear speedup with the number of processors, but will not yield statgteft-hand side of figure 5 can move to the bottom of its region
of-the-art results because of the confinement of the cells to the origind then during the next iteration (right-hand side of figure 5) it can
inal regions and because of the uncertainty in the positions of th@ove to the extreme right of its region.
cells outside of a given processor’s region. In our new parallel algo-
rithm, we retain the main advantage of the no-interprocessor-com- A=
munication technique (virtually linear speedup) while avoiding its
key disadvantages: 1) by permitting a small (almost negligible) —
amount of inter-processor communication and 2) by using a new
dynamic region generation scheme.

X =—p X
Figure 5 Cell Movement

4.2 Interprocessor Communication

In our approach, each processor maintains its own copy of the
complete data structures for the entire placement problem. At th&.4 New Parallel Placement Algorithm
start of each iteration, the entire chip area is divided into a union ¢ “1. determine initial temperature
non-overlapping regions. Each processor is assigned to a uniq 2. set range limiter dimensions equal to chip dimensions
region and this region will be termed thetiveregion for that pro- 3. start with a random initial placement of the cells
cessor. All other regions are termigctive with respect to that 4. for each iteratiomlo
processor. A processor will only move those cells that are initially 5. /* given n processors */
(i.e. at the start of the iteration) in its active region. It will never 6 divide chip inton distinct regions
move a cell outside of its active region. Furthermore, a process: 7 /* vertical slices on odd iterations */
assumes that the positions of the cells in its inactive regions rema 8. /* horizontal slices on even iterations */
as they were at the beginning of the iteration. In the next sectionw 9. /* a processor can only move cells in its region */

will address the impact of this error. 10. for each processor in its active regim
Interprocessor communication only takes place at the end (11. generate a move

each iteration (that is, 150 times during a placement run). Each pr12. determine whether to accept/reject

cessor broadcasts the positions of only those cells in its activ13. I* see figure 1 for details */

region which have changed since the end of the previous iteratio 14. periodically adjust the temperature

Each processor also receives new position information for onl 15. [* for each processor, force the actual acceptance
those cells in itsnactive regions which have moved since the last 16. /* rate to track the target rate shown in figure 3 */
iteration. 17. until the iteration is complete

1 18. [*an iteration consists of a fixed no. of moves */

19. /*aniteration is terminated for all processors as
20. /*soon as one processor completes the iteration */
1 . 21. each processor broadcasts its cell position changes
: . reduce range limiter window dimensions
23. settemperature to average temperature over all regions
n 24. until all iterations have been completed
Figure 6 Parallel Placement Algorithm

Figure 4 Dividing Chip Area

; ; ; Figure 6 shows the overall pseudo code for our new parallel
4.3 Dyhamlc Region Generfitlon.) ,standa?d cell placement algorithﬁw. Line 14 implies that eagh pro-

_ During the course of an iteration, the cells in a processor'gessor manipulates its own value of the temperature so that its
active region are not permitted to move outside that region. Therge,| acceptance rate follows the target rate shown in figure 3. The
fore, badly misplaced cells (cells assigned to non-optimal regionsmperature is updated about every ten moves; it can be raised or
can seriously degrade the quality of the final placement. We foundyered as necessary. Since each processors maintain its own tem-
that how the chip area is divided into regions has a profound effegferature, the temperature will be a little different on the various
on the placement quality. processors. Because the regions change aspect ratios, each proces-

We discovered that the most effective approach is to dynamior will generally get a largely different set of cells in its active
cally generate the regions. In addition, we found that in order to getgion from one iteration to the next. Therefore at line 23 we set the
good placement results, it is very important that each processor liitial temperature value for the next iteration equal to the average

value over all regions at the end of the previous iteration. The range 2.

limiter window [23][28] in line 22 is used to generate moves more 1.8 (%')
efficiently. In the early iterations, the window dimensions are very 1.6 _
large, permitting cells to move any distance across the chip. As the 1.4 Serial —
iterations proceed, the window size is reduced so that we preferen- 1.2 Parallel
tially generate moves that have a non-negligible chance of being 1.0
accepted. 0.8
1 “Ix 0.6 W r
P(X = S-exp(—) (4) 8:;1%“\%%
The functional form of the range limiter that we use is given in 00 =10 15 20 25 30 35 40 45 50 (Distance)
(4), wherer is the dimension of the window (either horizontally or Figure 7 Move Distance in x Direction
vertically), x is the proposed move distance, &) is the prob-
ability that such arx will be generated. The window sizés ini- 3. o,
tially set to the dimension of the entire chip and it is then decreased 3.0 (%)
exponentially (with respect to the iteration number). It reaches its 25 1 Serial—
minimum dimension, about twice the average cell width, slightly ’ Parallel
more than half way through the annealing schedule. The range lim- 2.0
iter plays an important role in our parallel algorithm. 15
W r
5. Performance Evaluation and Error Analysis 1-0/\\
. . 0.5
5.1 Cell Mobility Analysis —
In our approach, the chip area is divided into regions and the Oo 2 4 6 8 10 12 14 16 (Distance)
cells are not allowed to move between regions. A key concern is the Figure 8 Move Distance in y Direction

impact this has on cell mobility. For example, if a long-range, out- As mentioned earlier, is initially set to the chip dimensions
of-a-region cell move was proposedd by a serial algorithm oper- and it is exponentially decreased (as a function of iteration) down to
ating with a single region), it might be accepted by the serial algoa minimum size of about two average cell widths just over half way
rithm but prevented by the parallel algorithm. If this happenghrough the annealing schedule. Two average cell widths is a very
frequently, it is quite apparent that the serial version will outpersmall distance, relative to the chip dimension, given the size of
form the parallel algorithm. standard cell circuits today, which include up to 100,000 cells.
The probability of a certain move distance is controlled solelySincer is exponentially decreased, this implies that r for most
by r in (4). The distances of more than 95% of the moves will lieof the iterations. This provides a rich opportunity to explore paral-
within the intervat-3r. Therefore, iff is much greater than the size lelism.
of the region, the cell mobility will be affected. On the other hand,
if r is smaller than the size of the region, we contend that the cell
mobility will not be affected.

To assess the parallel algorithm’s impact on cell mobility, we
noted how far each cell traveled during an iteration. We compiled
the empirical data shown in figures 7, 8, 9 and 10 for one iteration
consisting of one million moves, for a very large industrial circuit.
The horizontal axis is the net distance that a cell moved during the
iteration and the vertical axis is the percentage of the cells that
moved that net distance (normalized in terms of average cell size).
The range limiter dimensian(normalized the same way) is shown 0 [10 15 20 25 30 (Distance)
along the horizontal axis, as is the region sizblote that in figure Figure 9 Move Distance in x Direction
7 (the net move distance in théirection) and 8 (the net move dis-
tance in the direction),w <r. As expected, the cell mobility profile
for the parallel algorithm is noticeably different than that of the
serial algorithm (using only a single region equal to the entire chip)
caused by dividing the chip area into regions. Nonetheless, an
important observation is that although there is distortion, there are
still a substantial number of long-range moves (net cell moves that
exceed the size of the region). This is attributed to the way we
divide the chip area into regions (figure 4). In particular, there is
always either a vertical or horizontal direction in which a cell can
travel a long distance.

Figure 9 (net move distance in tkedirection) and 10 (net
move distance in thedirection) are for a later iteration whers r.
It is apparent that the cell mobility profiles are virtually identical in :
this case. This is an important result for the parallel algorithm. Ag'z Error Analysis .
long asw > r, the statistics of the net cell moves will not be In the parallel algorithm, each processor evaluates cell moves

affected, and therefore the quality of the optimization during thes®ithin its active region assuming that the cells in the other regions
iterations should not be affected. do not change during the course of the iteration. This leads to error

(%)

Serial—
] Parallel-

o R N W bh 01O N

(%)
Serial—
Parallel-

i 2 3 4 5 6 7 8 9 (Distance)
Figure 10 Move Distance in y Direction

O R N WA U1O N O

when a processor computes the change in wire length due to a mawan for two processors. This is not surprising since dividing the
in its region. The errors are not eliminated until the global synchroehip area into four regions as opposed to two is certain to yield
nization step of line 21 in figure 6 where each processor broadcastfore crossover nets. Second, in the very beginning when virtually
(to all other processors) the positions of cells that have changedl moves are accepted, it is equally likely that a processor will over
since the last update (iteration). estimate as under estimate a crossover net’s length. Thus the net
percentage error is around zero. Since the number of long nets is
large, leading to many crossover nets, the percentage error
increases as the acceptance rate falls. It reaches its maximum value
b when the acceptance rate falls to around 50 percent (or about itera-
tion 30). From then on the error decreases toward zero as the
annealing schedule proceeds.

This decreasing trend is due to several factors: 1) Net lengths
continually get smaller and therefore fewer and fewer crossover
T nets will exist as the iterations go by. 2) As the range limiter win-
EZ dow dimensions decrease, the distance that cells move during an
iteration continually decreases implying that a processor’s view of

. the positions of cells in its inactive regions will be closer to reality
Figure 11 Internal and Crossover Nets as the iterations go by.

Figure 11 shows a scenario a processor might face in our par- In any case, the percentage error at any iteration is under about
allel algorithm. The shaded area is the active region assigned &0 percent. And even this maximum error occurs only when the
processoli. The processor can only move cells within its activeacceptance afphill moves is prevalent. When the temperature gets
region. Three nets are shown: ag];onnecting 4 cells, nét con- low enough that primarily On|¢Othi” moves are accepted, then
necting 2 cells, and netconnecting 3 cells. We classify all of the the percentage error is virtually zero. Hence we would expect the
nets into one of two categoriéaternal nets orcrossovemets. A parallel algorithm to yield comparable results to the serial algo-
net whose span is entirely within one region is defined as an intern@ghm.
net; otherwise, it is a crossover net. In figure 11, aeiadb are
internal nets while netis a crossover net.

For all internal nets, a processor either knows exactly the span
of the net, or it does not care about the net. In either case, no error
will result. For example, netin figure 11 is an internal net. All of
its four cells are in the active region of processdthis processor
knows theexactlocations of these four cells at all times because
only it is allowed to move them. Therefore there will never be any
error when processorcomputes the change in length of aeOn
the other hand, processodoes not care about nesince this net
has no connections to cells in regiohus processarwill never 20 40 60 80 100
be called upon to evaluate the change'srength and therefore no Figure 12 E, During Annealing

error will ever result. Figures 13, 14 and 15 show resultsEgnersusk for our par-

_ Crossover nets, however, may lead to errors when a processglie| hierarchical placement approach. Figure 13 shows the result of
is computing the changes in wire length resulting from a cell move, versusk for circuit Biomedusing 4 processors. Figures 14 and

in its region. For example, netn figure 11 is a crossover net. Cell 15 show the results &, versusk for circuit BiomedandAvgsmall

p on netc is not in the active region of processa@nd hence this respectively, by using 6 processors. The results consistently show
processor does not know the exact location of this cell. Prodessoghat there is some error in the first half of the annealing process and

assumes that cedlremains at the position it was at the beginning ofthe error decreases toward zero in the second half. The maximum
the iteration even if it was moved upward by some other process@psolute value d, is less than 2%.

as indicated in figure 11. This source of inaccurate cell information

Ey (%) 2 processors
4 processors

causes error when process@valuates its moves. It is straightfor- 1.0 E, (%) 1st stage—
ward to experimentally ascertain the magnitude of this error. At the 0. 2nd stage
end of iteratiork, just before each of the processors broadcast the 0 3rd stage—
updated cell positions to all of the other processors, we@pte , a It A
processor’s view of the total length of all of the crossover nets and -0.
from this we subtrac€y , the (exact) value after the broadcast. The _1.
percentage errdg, is then determined by dividing by, , the over- 1
all total wire lengthi(e. the sum of the lengths of the internal and -
crossover nets after the broadcast), as shown in (5). -2.0
-2 g
T e 5) 2"@ 20 40 60 80 100
k W, Figure 13 E,for Biomed, 4 processors

For the MCNC benchmark circuitrimaryl, in figure 12 we
plot E, as a function ok for two different runs: one using two pro-
cessors and the other using four processors. In each case, the total
number of moves was approximately one million. Two observations
are apparent: FirsE, for four processors has greater absolute value

1st stage—
2nd stage
3rd stage—

_0.0 WWMW

-1.0f
1

1.0
E, (%)
0.

20— 20 40 60 80 10
Figure 14 E, for Biomed, 6 processors
[~

| B)

0 WWMWW
-0.
-1. 1st stage—

2nd stage

-1. 3rd stage-
-2.

2320 40 60 _ 80
Figure 15 E, for Avgsmall , 6 processors

0]

100

Wire Wire

Circuit TW V7.0 4 procss Difference

Biomed 3.24 3.23 -0%
Industry 2 13.53 13.35 1%
Industry 3 42.84 43.08 -0%
Avgsmall 5.41 5.38 1%
Avglarge 5.86 5.91 -1%

average - - 0%

Table 3: Wire Length Comparison
TimberWolf v 7 vs. Parallel 4 processors

Circuit T\\IIVVI:/E‘?.O 6V[\)I:(r)ec’s Difference

Biomed 3.24 3.29 -1%
Industry 2 13.53 13.71 -1%
Industry 3 42.84 42.71 0%
Avgsmall 5.41 5.31 2%
Avglarge 5.86 5.84 0%

average - - 0%

Table 4: Wire Length Comparison
TimberWolf v 7 vs. Parallel 6 processors
6.2 Run Time Speed Up
Table 5, 6, and 7 show the run time speed up gained by our
parallel algorithm. All reported times are elapsed times (including
CPU times and interprocessor communication times) in seconds on
DEC alpha workstations 3000/400he results show that our

6. Results

parallel algorithm achieves near linear speed up.

Table 1 shows the parameters of our test circuits. All circuits . Time Time
are from the 1993 MCNC layout benchmark set[13]. Circuit TW V7.0 2 proc's Speed Up

Circuit # cells # nets # pins # rows Biomed 1327 668 1.98
Biomed 6417 5742 26947 46 Industry 2 4928 2514 1.96

Industry 2 12142 13419| 125555 72 Industry 3 6756 3385 1.99

Industry 3 15059 21940| 176584 54 Avgsmall 6881 3578 1.92

Avgsmall 21854 22124 82601 80 Avglarge 8252 4194 1.97
Avglarge 25114 25384 82751 86 average - - 1.96

Table 1: Test Circuits

Table 5: Speed Up

TimberWolf v 7 vs. Parallel 2 processors

6.1 Wire Length Results
Table 2, 3, and 4 compare the wire length results produced by

Time

Time

our parallel algorithm with those generated by the serial program

TimberWolf v7 The second column shows the wire length produced

by TimberWolf v7for the five MCNC benchmark circuits. These

wire lengths were the best among all previously published results,

The 3rd, 5th and 7th columns of table 2 show the wire length pro-

duced by our parallel algorithm using 2, 4, and 6 processors. Th

Circuit TW V7.0 4 procss Speed Up

Biomed 1327 380 3.49
Industry 2 4928 1306 3.77
Industry 3 6756 1765 3.83
Avgsmall 6881 1755 3.92
Avglarge 8252 2127 3.88

average - - 3.78

results range from 1% worse to 5% better than the serial program
TimberWolf v7 1t is interesting to note that our parallel algorithm
tends to produce evdretterresults than the serial counterpart. This

Table 6: Speed Up

TimberWolf v 7 vs. Parallel 4 processors

can be attributed t&,, the errors introduced by our parallel algo- ircu Time Time
rithm (Section 5.2).kThis small random erroryactuaFI)Iy aIIowsgour Cireut TWv7.0 6 proc’s Speed Up
parallel algorithm to climb out of local minima and find better solu- Biomed 1327 305 4.35
tions. Industry 2 4928 847 5.81
o Wire Wire . Industry 3 6756 1188 5.68
Cireut TW v7.0 2procs | Difference Avgsmall 6881 1279 538
Biomed 3.24 3.28 -1% Avglarge 8252 1559 5.29
Industry 2 13.53 13.64 -1% average - - 5.30
Industry 3 42.84 42.92 -0% Table 7: Speed Up
Avgsmall 5.41 5.32 2% TimberWolf v 7 vs. Parallel 6 processors
Avglarge 5.86 5.57 5% Figure 16 plots the speed up achieved by our parallel algo-
average - - 1% rithm. Although our target parallel environment (a network of

Table 2: Wire Length Comparison
TimberWolf v 7 vs. Parallel 2 processors

workstations) only provides limited communication bandwidth, our
parallel algorithm still achieves near linear speedup, especially for

larger circuits. And it's exactly those large problems for which one
would want to have a parallel implementation available.
6

Speed Up

5

Ideal -
4 Industry2 —-

Industry3 -
3 Avgsmall -

Avglarge
2
1

of processors

0 1 2 3 4

Figure 16 Speed Up vs. # of Processors

6.3 Processor Utilization

Table 8 shows the processor utilization in our parallel environ- 5
ment. They are obtained by dividing the CPU time by the eIapseH]
time. The utilization is on average 98% when 2 processors are used.
The average utilization is 87% when 6 processors are used.

Circuit 2 Processear | 4 Processor§ 6 Processo
Industry 2 98% 89% 87%
Industry 3 98% 91% 90%
Avgsmall 98% 94% 86%
Avglarge 97% 96% 86%

average 98% 93% 87%

7.

placement of standard cell integrated circuits. Our algorithm is
derivative of simulated annealing. The implementation of our alg

Table 8: Processor Utilization

Conclusion

rs

(8]

(9]

(10]

(11]

(12]

(13]
(14]

(16]

(17]

(18]

[19]

We presented a loosely coupled parallel algorithm for thd20]

0_

fo]

rithm is targeted toward networks of UNIX workstations. This is
the very first reported parallel algorithm for standard cell placemerip2]
which yields as good or better placement results than its serial ver-

sion. In addition, it is the first parallel placement algorithm reporte
which offers nearly linear speedup, in terms of the number of pro-

23]

cessors (workstations) used, over the serial version. Despite using
the rather slow local area network as the only means of interprocefg4]
sor communication, the processor utilization is quite high, up to
98% for 2 processors and 90% for 6 processors. The new para:kégl
algorithm has yielded the best overall results ever reported for t

set of MCNC standard cell benchmark circuits.

8.
(1]

[2

K]

(4]

(5]

(6]

(71

Reference

P. Banerjee and M. Jones, “A Parallel Simulated Annealing for Stan-:

dard Cell Placement on a Hypercube Computrdt. Intl. Conf. on
Computer-Aided DesigflL986): 34-37.
A. Casotto, F. Romeo, and A. Sangiovanni-Vincentelli, “A Parallel (28]
Simulated Annealing Algorithm for the Placement of Macro-Cells.”

Proc. Intl. Conf. on Computer-Aided Desi¢986): 30-33
A. Casotto, F. Romeo, and A. Sangiovanni-Vincentelli, “A Parallel [29]
Simulated Annealing Algorithm for the Placement of Macro-Cells.”

IEEE Trans. on CADVolume 6, No. 5, pp 838-847, Sep 1987.

A. Casotto, A. Sangiovanni-Vincentelli, “Placement of Standard Cell

Using Simulated Annealing on the Connection Machifredc. Intl.

Conf. on Computer-Aided Desi¢io87): 350-353.

(26]

(27]

<[30]

K. Doll, F. M. Johannes, and G. Sigl, “Accurate Net Models for Place-
ment Improvement by Network Flow Method®toc. Intl. Conf. on
Computer-Aided Desigri992, pp. 594-597.
K. Doll, F. M. Johannes, and G. Sigl, “Domino: Deterministic Place-
ment Improvement with Hill-climbing Capabilities.Proc. VLS|

1991, pp. 3b.1.1-3b.1.10.

R. Jayaraman and F. Darema, “Error Tolerance in Parallel Simulated

Annealing TechniquesProc. Intl. Conf. on Computer Desi§h988):
545-548.

M. Jones and P. Banerjee, “Performance of a Parallel Algorithm for
Standard Cell Placement on the Intel HypercubBedt. 24th Design
Automation Conf(1987): 807-813.

S. Kim, “Improved Algorithms for Cell Placement and their Parallel
Implementations,” Tech. Rep. #CRHC-93-18, UILU-ENG-93-2231,
University of lllinois, Urbana, IL, July 1993.

S. Kim, J. Chandy, B. Ramkumar, S. Parkes and P. Banerjee, “Proper-
PLACE: A Portable, Parallel Algorithm for Standard Cell Placement,”
Proc. 8th Int. Parallel Processing SympCancun, Mexico, April
1994.

J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, “GORD-
IAN: VLSI Placement by Quadratic Programming and Slicing Opti-
mization.”|EEE Trans. on CADVolume 10, No. 3, 1991, pp 356-365.
R. Kling and P. Banerjee, “Concurrent ESP: A Placement Algorithm
for Execution on Distributed ProcessorBroc. Intl. Conf. on Com-
puter-Aided Desigif1987): 354-357.

K. Kozminski, “Benchmarks for Layout SynthesisProc. 28th
Design Automation Confl991, pp. 265-270.

S. Kravitz and R. Rutenbar, “Placement by Simulated Annealing on a
Multiprocessor."IEEE Trans. on CAPVolume 6, No. 4, pp 534-549,
Jul 1987.

J. Lam, J. M. Delosme, and C. Sechen, “Performance of a New
Annealing Schedule.Proc. 25th Design Automation Cor(fl988):
306-311.

D. Mitra, R. Romeo, and A. Sangiovanni-Vincentelli, “Convergence
and Finite-Time Behavior of Simulated Annealingdtivances in
Applied Probability Vol. 18. No. 3, pp. 747-771, 1986.

S. Mohan, and P. Mazumder, “Wolverines: Standard Cell Placement
on a Network of Workstations|EEE Trans. on CAPVolume 12, No.

9, pp 1312-26, Sep 1993.

J. S. Rose, D. R. Blythe, W. M. Snelgrove, and Z. G. Vranesic, “Fast,
High Quality VLSI Placement on an MIMD MultiprocessoPRtoc.

Intl. Conf. on Computer-Aided Desi¢ho86): 42-45.

J. S. Rose, D. R. Blythe, W. M. Snelgrove, and Z. G. Vranesic, “Paral-
lel Standard Cell Placement Algorithms with Quality Equivalent to
Simulated Annealing.IEEE Trans. on CADPVolume 7, No. 3, pp
387-396, Mar 1988.

R. Rutenbar and S. Kravitz, “Layout by Annealing in a Parallel Envi-
ronment.”Proc. Intl. Conf. on Computer Desigh986): 434-437.

J. S. Sargent and P. Banerjee, “A Parallel Row-Based Algorithm for
Standard Cell Placement with Integrated Error Contitdc. 26th
Design Automation Conf1989): 590-593.

A. Srinivasan, K. Chaudhary, and E. S. Kuh, “RITUAL: A Perfor-
mance Driven Placement Algorithm for Small Cell ICBroc. Intl.
Conf. on Computer-Aided Desigtf91, pp. 48-51.

C. Sechen and A. Sangiovanni-Vincentelli, “The Timberwolf Place-
ment and Routing PackagdEEE J. of Solid-State Circuits, vol SC-
20, no 2pp 510-522, Apr 1985.

C. Sechen and K. W. Lee, “An Improved Simulated Annealing Algo-
rithm for Row-based PlacementProc. Intl. Conf. on Computer-
Aided Desigr(1987): 478-481.

G. Sigl, K. Dall, and F. M. Johannes, “Analytical Placement: A Linear
or a Quadratic Objective FunctionPtoc. Design Automation Con-
ference 1991, pp. 427-432.

W. Sun and C. Sechen, “Efficient and Effective Placement for Very
Large Circuits.”Proc. Intl. Conf. on Computer-Aided Desi(D93):
170-177.

W. Sun and C. Sechen, “Efficient and Effective Placement for Very
Large Circuits.” submitted tiEEE Trans. on CAD.

W. Swartz and C. Sechen, “New Algorithms for the Placement and
Routing of Macro Cells,Proc. Int. Conf. on Computer-Aided Design
1990, pp. 336- 339.

W. Swartz, “Automatic Layout of Analog and Digital Mixed Macro/
Standard Cell Integrated CircuitsPh. D. ThesisYale University,
1993.

Chi-Pong Wong and Rolf-Dieter Fiebrich, “Simulated Annealing-
Based Circuit Placement Algorithm on the Connection Machine Sys-
tem.” Proc. Intl. Conf. on Computer Desih987): 78-82.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

