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Abstract
We present a loosely coupled parallel algorithm for the place-

ment of standard cell integrated circuits. Our algorithm is a deriva-
tive of simulated annealing. The implementation of our algorithm is
targeted toward networks of UNIX workstations. This is the very
first reported parallel algorithm for standard cell placement which
yields as good or better placement results than its serial version. In
addition, it is the first parallel placement algorithm reported which
offers nearly linear speedup, in terms of the number of processors
(workstations) used, over the serial version. Despite using the
rather slow local area network as the only means of interprocessor
communication, the processor utilization is quite high, up to 98%
for 2 processors and 90% for 6 processors. The new parallel algo-
rithm has yielded the best overall results ever reported for the set of
MCNC standard cell benchmark circuits.

1.  Introduction
Nearly ten years ago, an early implementation of simulated

annealing for standard cell placement yielded particularly promis-
ing results[23]. However, it was many times slower than previously
known methods. Therefore, this spawned considerable research
efforts into developing a parallel implementation of simulated
annealing for row-based placement. These previous methods can be
categorized by the type of parallel hardware employed as well as
the interprocessor communication schemes used. These methods
were based on: 1) a shared-memory architecture [2][3][14], 2) both
a shared-memory and dedicated communication channels architec-
ture[18][19], 3) a hypercube machine [1][8][21], 4) a massively
parallel machine[4][30], and 5) a network of workstations[9][10].

In every case, these previous methods failed to yield results as
good as those produced by the state-of-the-art serial standard cell
placement algorithm available at the time[23][24][26][27]. In fact,
the results yielded by these prior methods diverged appreciably as
the size of the placement problem instances grew. Worse yet, these
methods generally had difficulty even handling the very large prob-
lem instances. And it’s exactly those large problems for which one
would want to have a parallel implementation available. Another
problem which diminished the utility of the prior methods is that
they achieved substantially less than linear speedup as a function of
the number of processors employed. Worse still, most of these
methods were only applicable to very expensive hardware.

As a consequence of these problems, no parallel implementa-
tion of simulated annealing has ever been used in industry. It would
therefore be of considerable interest if there existed a coarse-
grained, parallel standard cell placement algorithm which ran on a
standard network of low-cost workstations and which yielded
results at least equivalent to the serial version of the same algo-
rithm, and in addition, offered nearly linear speedup with the num-
ber of processors used. Furthermore, the new parallel method
would have to produce results at least as good as those ever
reported for the widely adopted set of benchmark circuits available
from MCNC.

In fact, we report precisely such a parallel placement algo-

rithm in this paper, which is organized as follows. In Section 2 we
first review the previous parallel approaches developed for standard
cell placement. In Section 3, we very briefly touch on the key
aspects of the serial placement algorithm, derived from simulated
annealing, from which we began the development of our new paral-
lel algorithm. Our new parallel placement algorithm is the subject
of Section 4. We analyze the performance of the algorithm in Sec-
tion 5. Finally, in Section 6 we present our results.

2.  Previous Work
Among the first reported parallel algorithms for standard cell

placement were those by Rutenbar and Kravitz[14][20]. They pro-
posed two shared memory multiprocessor simulated annealing
algorithms. One was based on move decomposition and the other
on parallel moves. A move could be either the displacement of a
single cell or the exchange of two cells. In the first approach, a
move was decomposed into several sub-tasks and parallelism was
exploited in these sub-tasks. This scheme was only able to exploit
limited parallelism. In addition, the synchronization of these sub-
tasks had to be performed very carefully. In [14], a speedup of 2
was reported by using 3 processors. The speedup increased only
slightly with the introduction of additional processors.

In their parallel moves approach, aserializable subset is
defined as a subset of all non-interacting moves that can be carried
out serially in any order. Thus, all moves in this subset can be car-
ried out in parallel and the outcome would be the same as if the
moves had been executed and evaluated serially. An advantage of
this approach is that the convergence behavior of simulated anneal-
ing is the same as that for the serial version[16]. However, it turns
out that finding serializable sets is extremely difficult. In fact, the
authors resorted to the simplest form of this approach which is
based on attempting and evaluating a group of moves in parallel,
and then actually performing the single move that is accepted first
(if any) and then aborting all the other attempts. As noted in [3], this
approach unfortunately puts a bias in favor of moves that required
less computation time. It turned out that this method showed a lin-
ear speedup with the number of processors for the lowest tempera-
tures in the annealing schedule, where few moves are accepted, but
performed poorly at higher temperatures.

Rose,et al. [18][19] proposed a method called heuristic span-
ning to replace the high temperature regime in simulated annealing.
Parallelism was obtained by executing a mincut algorithm with dif-
ferent starting partitions on different processors. After collecting
the results generated by the various processors, the one with the
lowest cost is chosen to enter the low temperature annealing phase.
This phase is accelerated by mapping different regions of the chip
onto different processors. Every processor performed moves in par-
allel and then broadcast the new cell locations to the other proces-
sors. To avoid idle processors, asynchronous moves were exploited
at the cost of introducing error in the wire length calculations since
processors often had different views on the current position of some
portion of the cells. The processor utilization efficiency was esti-
mated to be 70%.

In [4] and [30] there were attempts to implement simulated
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annealing on a massively parallel machine, such as the Connection
Machine. The data structures for cells, nets and pins are distributed
over many processors. The maximum circuit size that can be pro-
cessed is then limited by the number of processors available. In [4],
it was reported than even on a 65,536 processor Connection
Machine, a maximum of only 8000 cells could be handled. The pro-
cessor utilization was also very low. There were no experiments
showing that this approach can achieve the same high quality
results produced by the sequential simulated annealing algorithm.

Banerjee,et al. [1][8][21] presented parallel algorithms for
standard cell placement on a hypercube multiprocessor. The cells to
be placed are mapped onto all of the processors in the hypercube.
The mapping was either done in grid-like fashion[1][8] or in row-
based fashion [21]. Due to the hypercube structure, only processors
with a particular address pattern are allowed to perform cell inter-
changes. This rather restricts cell movement. To avoid error accu-
mulation[21], sets of non-interacting cells are identified and only
cells in the same sets are allowed to be exchanged. This further
impeded cell movement. This algorithm performed and evaluated
moves in parallel on all processors. After each move, the new cell
position was broadcast to all processors. The global synchroniza-
tion scheme was rather expensive. In [21], the expected speedup
was 11-21 using 64 processors.

Of all the parallel implementations of simulated annealing,
those which perform moves in parallel attract the most attention
because they have the most potential for appreciable speedups. Par-
allelism can be highly exploited by performing moves on all of the
processors at the same time. All of the previous methods required
frequent application of some form of global synchronization. They
either broadcast new information after each move or after fewer
than 10 moves. This rather high communication cost restricted its
application to only special parallel architectures that can provide
high communication throughput in the form of either shared mem-
ory, a hypercube interconnection network or other dedicated hard-
ware.

There has been a small amount of previous work on develop-
ing standard cell placement implementations for loosely coupled
parallel processing environments, in particular, consisting of net-
works of low-cost workstations. Mohan,et al., [17] presented a
placement approach based on the genetic algorithm. Also, Kling,et
al., [12] presented a method based on simulated evolution. How-
ever, neither of these approaches were shown to be comparable in
terms of placement quality with the state-of-the-art serial imple-
mentation of simulated annealing. Finally, Banerjee,et al., have
developed a parallel version of simulated annealing for this loosely
coupled environment[9][10]. They based their approach, which
they called ProperPLACE, on TimberWolfSC version 6.0. Unfortu-
nately, the results produced by ProperPLACE diverged badly as cir-
cuit sizes increased in comparison to TimberWolfSC 6.0. In
addition, the speedup as a function of the number of processors was
far from linear.

As a consequence of the limitations of the previous approaches
to parallel placement, particularly parallel implementations of sim-
ulated annealing, none of these methods has ever been used in
industry. However, by no means does this imply that faster place-
ment isn’t badly needed. Although the state-of-the-art serial version
of simulated annealing for standard cells (TimberWolf 7.0 [26][27])
was reported to be dramatically faster than the previous version
(6.0), in fact, seven to ten times faster for larger circuits, the compu-
tation time on a state-of-the-art workstation can still approach 24
hours for a 200,000-cell gate array. No other serial algorithm has
been reported which can yield comparable results in less computa-
tion time.

It would therefore be of considerable interest if there existed a
coarse-grained, parallel standard cell placement algorithm which
ran on a standard network of low-cost workstations and which
yielded results at least equivalent to TimberWolfSC version 7.0,
and in addition, offered nearly linear speedup with the number of
processors used. Furthermore, the new parallel method would have
to produce results at least as good as those ever reported for the
widely adopted set of benchmark circuits available from MCNC.

3.  Serial Version of Simulated Annealing for
Standard Cell Placement
We felt that we could develop the most effective loosely cou-

pled parallel algorithm for standard cell placement by basing it on
the most effective serial algorithm available, name TimberWolfSC
7.0. In this section we review the key aspects of this algorithm.

In [26][27] a new approach to simulated annealing and a new
hierarchical algorithm for row-based placement was described.
This implementation obtained the best results ever reported for the
set of MCNC benchmark circuits. Chip area reductions up to 15%
were achieved compared with TimberWolfSC v6.0. In addition,
chip area reductions up to 21% were achieved while consuming up
to 7.5 times less CPU time in comparison to TimberWolfSC v6.0.
The new approach produced lower total wire length by an average
of 8% than Gordian/Domino[5][6][11][25], 11% lower wire length
than Ritual/Tiger [22], while using comparable run time.

Figure 1 shows the algorithm used by TimberWolfSC 7.0 for
generating new placement configurations. First, cella is randomly
selected. A single cell move is attempted if the target row’s length
limit is not exceeded. Otherwise, a cellb which covers the target
location is noted and an interchange ofa andb is attempted if no
row length limits are violated. The length limit is set to be the
smaller of one percent of the average row length or one average
standard cell width. If a limit was violated, the new state generator
begins anew. If a single cell or interchange move is feasible, then
the change in cost is computed. The probability of accepting the
new configuration is one if ; otherwise, it is equal to

, whereT is the temperature. If the new configuration is
accepted, the cells in the affected rows are shifted to avoid any cell
overlapping. Every new configuration thus generated is legal and
physically feasible.

(1)
The incremental cost function used by TimberWolfSC 7.0 is

given in (1).  is the change in the net lengths for those nets con-
nected to the cell (or two cells) participating in the single cell (or
exchange) move.  represents the change in the net lengths for
those nets connected to the cells in the affected rows which must be

1.  randomly select cella
2.  randomly select rowr and locationx in r
3.  /* x in r is within the range limiter window span fora [24] */
4. if  (addinga to r doesn’t exceed length limit forr) then
5. compute∆C for movinga to locationx in r
6. else
7. /* now consider an exchange ofa andb */
8. note cellb covering locationx in r
9. if  (length limit of neither row is exceeded)then

10. compute∆C for exchanginga andb
11. else
12. go to line 1
13. if ( ) then
14. eliminate overlaps for the row(s) ofa andb
15.  update estimation model fora andb

Figure 1 New State Generator
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shifted to avoid the creation of cell overlapping. When a new cell is
inserted into a row, other cells in this row generally need to be
shifted to accommodate the new cell. An effective and efficient
method for estimating , the change in the net lengths for those
nets connected to the shifted cells are given in [26][27].

When a cell moves from one row to another, the overall move
distance will consist of two components, thex displacement and the
y displacement. When a cell moves within the same row, there will
only be anx displacement. The value of ay displacement will be at
least the distance between the rows. On the other hand, thex dis-
placement can be as small as one grid size. In a typical circuit, the
distance between the rows is usually tens or hundreds of grid sizes.
Hence they displacement is generally several times larger than the
x displacement. This phenomenon causes for aninter-row
move, which has bothx andy components, to generally be several
times larger than for anintra-row move, which has only anx com-
ponent.

When the simulated annealing acceptance criterion is used to
evaluate moves, those moves that generate higher cost changes will
generally have a much higher chance of being rejected. Thus, inter-
row moves, which generate higher changes in cost, are much more
likely to be rejected than intra-row moves at a given temperature.
This was found to be especially severe when the temperature is low;
primarily only intra-row moves were being accepted. This greatly
hampered the search ability of simulated annealing since inter-row
moves were not adequately exploited. When only inter-row moves
were included in calculating the acceptance rate, the annealing
schedule described in [26][27] yielded much better results.

Figure 2 shows the hierarchical placement methodology
described in [26][27], which combined a new clustering technique
with the new approach to simulated annealing. The original netlist
is hierarchically clustered into various levels of netlists. Then the
new approach to simulated annealing is used to place those various
levels of netlists.

In the clustering stages, the original netlist is condensed into
the first and then the second level netlists. The produced clusters in
the higher level netlists have similar size, which greatly aids the
annealing placement stages. In the placement stages, the condensed
second level netlist is placed using simulated annealing at the
higher temperatures. Then the second level netlist is decomposed
back to the first level netlist. Cells of the lower level netlist are ran-
domly placed within the range of the cluster to which they belong in
the higher level netlist. At the new lower level, these cells may then
move outside the bounds of the higher level cluster. The first level
netlist is then placed at the middle temperatures. Next, the first level
netlist is decomposed back to the original netlist, and the original
netlist is placed at the lower temperatures. There are two clustering
stages and three placement stages. This combined clustering and
simulated annealing methodology can be viewed as a combined
bottom-up and top-down approach, where the two clustering stages
provide bottom-up perspectives and the three placement stages pro-
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Figure 2 Hierarchical Placement

vides a top-down view, from the course grain of the higher levels to
the fine grain of the lower levels. Timing requirements are satisfied
in all stages[29]. The right hand side of figure 2 shows some typical
values.

The clustering technique is based on graph connectivity. It
produces clusters with about the same size, and emphasizes nets
with small fan-out. The technique was shown to yield good results
using a linear (in terms of the number of cells) time implementa-
tion.

As stated above, the first level netlist is placed in the higher
temperature regime. This first stage comprises the first 50% of the
total annealing schedule as shown in figure 3. The second place-
ment stage starts at 50% and ends at 70% of the total annealing
schedule as shown in figure 3. The constituent cells belonging to a
cluster are randomly placed within the confines of the location of
the bounding rectangle of the cluster as determined in the previous
stage. The third stage starts at 70% of the total annealing schedule.
The restarting temperatureT of the second (and third) placement
stage is given by (2), where  is the average net length and  is
the target acceptance rate.

(2)

The total number of moves (thex axis in figure 3) is divided
into 150 iterations. Eachiteration consists of a number of moves
equal to the total number divided by 150. The total number of
moves,m, is given by (3), wheren is the number of cells in the cir-
cuit.

(3)

4.  The New Parallel Placement Algorithm

4.1 Introduction
Given that our parallel processing hardware consists of a net-

work of workstations, our objective was to achieve near linear
speedup with the number of processors (workstations). There are
two main obstacles: 1) how to absolutely minimize interprocessor
communication since the local area network is quite slow, and 2)
given that moves will be generated and evaluated in parallel, how to
execute (generate and evaluate) these moves effectively in the pres-
ence of erroneous information on the location of some portion of
the cells.

Communication between the processors can be reduced to
zero by dividing the chip inton non-overlapping regions and
assigning each of then processors to a unique region. Each proces-
sor then optimizes the locations of the cells which were initially
placed in its region. There are several critical problems with this
approach. First, it is virtually impossible to initially assign all of the
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cells into their proper region. Partitioning algorithms which have
been proposed to date have not been shown to be effective for this
problem. Second, given that some cells will therefore not be in their
optimal regions, there is no way for the cells to move between
regions and to therefore improve their region assignment. Third,
when optimizing the placement of the cells within its region, the
processor has almost no idea of where the cells are in other regions.
Given that there can be more than 10,000 cells in a region and that
there can be a similar number of inter-region nets connecting these
cells, this will be a very serious source of error when computing
total wire lengths (the basic cost function in annealing-based place-
ment algorithms).

In summary, a parallel implementation based on no interpro-
cessor communication can be characterized as having virtually lin-
ear speedup with the number of processors, but will not yield state-
of-the-art results because of the confinement of the cells to the orig-
inal regions and because of the uncertainty in the positions of the
cells outside of a given processor’s region. In our new parallel algo-
rithm, we retain the main advantage of the no-interprocessor-com-
munication technique (virtually linear speedup) while avoiding its
key disadvantages: 1) by permitting a small (almost negligible)
amount of inter-processor communication and 2) by using a new
dynamic region generation scheme.

4.2 Interprocessor Communication
In our approach, each processor maintains its own copy of the

complete data structures for the entire placement problem. At the
start of each iteration, the entire chip area is divided into a union of
non-overlapping regions. Each processor is assigned to a unique
region and this region will be termed theactive region for that pro-
cessor. All other regions are termedinactive with respect to that
processor. A processor will only move those cells that are initially
(i.e. at the start of the iteration) in its active region. It will never
move a cell outside of its active region. Furthermore, a processor
assumes that the positions of the cells in its inactive regions remain
as they were at the beginning of the iteration. In the next section we
will address the impact of this error.

Interprocessor communication only takes place at the end of
each iteration (that is, 150 times during a placement run). Each pro-
cessor broadcasts the positions of only those cells in its active
region which have changed since the end of the previous iteration.
Each processor also receives new position information for only
those cells in itsinactive regions which have moved since the last
iteration.

4.3 Dynamic Region Generation
During the course of an iteration, the cells in a processor’s

active region are not permitted to move outside that region. There-
fore, badly misplaced cells (cells assigned to non-optimal regions)
can seriously degrade the quality of the final placement. We found
that how the chip area is divided into regions has a profound effect
on the placement quality.

We discovered that the most effective approach is to dynami-
cally generate the regions. In addition, we found that in order to get
good placement results, it is very important that each processor be

...1 n

1

n
Figure 4 Dividing Chip Area

...

capable of generating and evaluating both long distance and short
distance moves. We were able to satisfy these criteria with the fol-
lowing scheme. At the beginning of each odd numbered iteration,
the chip area is divided into equal-size regions which consist ofn
vertical slices as illustrated on the left-hand side of figure 4. At the
start of each even numbered iteration, division of the chip area into
non-overlapping equal-size regions (now consisting of horizontal
slices) takes place as shown on the right-hand side of figure 4. In
either case, regioni is the active region for processori.

Note that this scheme permits a cell to move from its current
position to anywhere else on the chip in at most two iterations. This
is illustrated in figure 5, where cellA is currently in the upper left
corner of the chip but should move to the lower right corner to max-
imally reduce the total wire length. During the current iteration
(left-hand side of figure 5)A can move to the bottom of its region
and then during the next iteration (right-hand side of figure 5) it can
move to the extreme right of its region.

4.4 New Parallel Placement Algorithm

Figure 6 shows the overall pseudo code for our new parallel
standard cell placement algorithm. Line 14 implies that each pro-
cessor manipulates its own value of the temperature so that its
actual acceptance rate follows the target rate shown in figure 3. The
temperature is updated about every ten moves; it can be raised or
lowered as necessary. Since each processors maintain its own tem-
perature, the temperature will be a little different on the various
processors. Because the regions change aspect ratios, each proces-
sor will generally get a largely different set of cells in its active
region from one iteration to the next. Therefore at line 23 we set the
initial temperature value for the next iteration equal to the average

Figure 5 Cell Movement
x

A

x

1.  determine initial temperature
2.  set range limiter dimensions equal to chip dimensions
3.  start with a random initial placement of the cells
4. for  each iterationdo
5. /* given n processors */
6. divide chip inton distinct regions
7. /* vertical slices on odd iterations */
8. /* horizontal slices on even iterations */
9. /* a processor can only move cells in its region */

10. for  each processor in its active regiondo
11. generate a move
12. determine whether to accept/reject
13. /* see figure 1 for details */
14. periodically adjust the temperature
15. /* for each processor, force the actual acceptance
16. /* rate to track the target rate shown in figure 3 */
17. until  the iteration is complete
18. /* an iteration consists of a fixed no. of moves */
19. /* an iteration is terminated for all processors as
20. /* soon as one processor completes the iteration */
21. each processor broadcasts its cell position changes
22. reduce range limiter window dimensions
23. set temperature to average temperature over all regions
24. until  all iterations have been completed

Figure 6 Parallel Placement Algorithm
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value over all regions at the end of the previous iteration. The range
limiter window [23][28] in line 22 is used to generate moves more
efficiently. In the early iterations, the window dimensions are very
large, permitting cells to move any distance across the chip. As the
iterations proceed, the window size is reduced so that we preferen-
tially generate moves that have a non-negligible chance of being
accepted.

(4)

The functional form of the range limiter that we use is given in
(4), wherer is the dimension of the window (either horizontally or
vertically),x is the proposed move distance, and  is the prob-
ability that such anx will be generated. The window sizer is ini-
tially set to the dimension of the entire chip and it is then decreased
exponentially (with respect to the iteration number). It reaches its
minimum dimension, about twice the average cell width, slightly
more than half way through the annealing schedule. The range lim-
iter plays an important role in our parallel algorithm.

5.  Performance Evaluation and Error Analysis

5.1 Cell Mobility Analysis
In our approach, the chip area is divided into regions and the

cells are not allowed to move between regions. A key concern is the
impact this has on cell mobility. For example, if a long-range, out-
of-a-region cell move was proposed (e.g. by a serial algorithm oper-
ating with a single region), it might be accepted by the serial algo-
rithm but prevented by the parallel algorithm. If this happens
frequently, it is quite apparent that the serial version will outper-
form the parallel algorithm.

The probability of a certain move distance is controlled solely
by r in (4). The distances of more than 95% of the moves will lie
within the interval±3r. Therefore, ifr is much greater than the size
of the region, the cell mobility will be affected. On the other hand,
if r is smaller than the size of the region, we contend that the cell
mobility will not be affected.

To assess the parallel algorithm’s impact on cell mobility, we
noted how far each cell traveled during an iteration. We compiled
the empirical data shown in figures 7, 8, 9 and 10 for one iteration
consisting of one million moves, for a very large industrial circuit.
The horizontal axis is the net distance that a cell moved during the
iteration and the vertical axis is the percentage of the cells that
moved that net distance (normalized in terms of average cell size).
The range limiter dimensionr (normalized the same way) is shown
along the horizontal axis, as is the region sizew. Note that in figure
7 (the net move distance in thex direction) and 8 (the net move dis-
tance in they direction),w < r. As expected, the cell mobility profile
for the parallel algorithm is noticeably different than that of the
serial algorithm (using only a single region equal to the entire chip)
caused by dividing the chip area into regions. Nonetheless, an
important observation is that although there is distortion, there are
still a substantial number of long-range moves (net cell moves that
exceed the size of the region). This is attributed to the way we
divide the chip area into regions (figure 4). In particular, there is
always either a vertical or horizontal direction in which a cell can
travel a long distance.

Figure 9 (net move distance in thex direction) and 10 (net
move distance in they direction) are for a later iteration whenw > r.
It is apparent that the cell mobility profiles are virtually identical in
this case. This is an important result for the parallel algorithm. As
long asw > r, the statistics of the net cell moves will not be
affected, and therefore the quality of the optimization during these
iterations should not be affected.

P x( )
1
2r

exp
x−
r

( )=

P x( )

As mentioned earlier,r is initially set to the chip dimensions
and it is exponentially decreased (as a function of iteration) down to
a minimum size of about two average cell widths just over half way
through the annealing schedule. Two average cell widths is a very
small distance, relative to the chip dimension, given the size of
standard cell circuits today, which include up to 100,000 cells.
Sincer is exponentially decreased, this implies thatw > r for most
of the iterations. This provides a rich opportunity to explore paral-
lelism.

5.2 Error Analysis
In the parallel algorithm, each processor evaluates cell moves

within its active region assuming that the cells in the other regions
do not change during the course of the iteration. This leads to error

Figure 7 Move Distance in x Direction
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when a processor computes the change in wire length due to a move
in its region. The errors are not eliminated until the global synchro-
nization step of line 21 in figure 6 where each processor broadcasts
(to all other processors) the positions of cells that have changed
since the last update (iteration).

Figure 11 shows a scenario a processor might face in our par-
allel algorithm. The shaded area is the active region assigned to
processori. The processor can only move cells within its active
region. Three nets are shown: neta connecting 4 cells, netb con-
necting 2 cells, and netc connecting 3 cells. We classify all of the
nets into one of two categories:internal nets orcrossover nets. A
net whose span is entirely within one region is defined as an internal
net; otherwise, it is a crossover net. In figure 11, netsa andb are
internal nets while netc is a crossover net.

For all internal nets, a processor either knows exactly the span
of the net, or it does not care about the net. In either case, no error
will result. For example, neta in figure 11 is an internal net. All of
its four cells are in the active region of processori. This processor
knows theexact locations of these four cells at all times because
only it is allowed to move them. Therefore there will never be any
error when processori computes the change in length of neta. On
the other hand, processori does not care about netb since this net
has no connections to cells in regioni. Thus processori will never
be called upon to evaluate the change inb’s length and therefore no
error will ever result.

Crossover nets, however, may lead to errors when a processor
is computing the changes in wire length resulting from a cell move
in its region. For example, netc in figure 11 is a crossover net. Cell
p on netc is not in the active region of processori and hence this
processor does not know the exact location of this cell. Processori
assumes that cellp remains at the position it was at the beginning of
the iteration even if it was moved upward by some other processor
as indicated in figure 11. This source of inaccurate cell information
causes error when processori evaluates its moves. It is straightfor-
ward to experimentally ascertain the magnitude of this error. At the
end of iterationk, just before each of the processors broadcast the
updated cell positions to all of the other processors, we note , a
processor’s view of the total length of all of the crossover nets and
from this we subtract , the (exact) value after the broadcast. The
percentage errorEk is then determined by dividing by , the over-
all total wire length (i.e. the sum of the lengths of the internal and
crossover nets after the broadcast), as shown in (5).

(5)

For the MCNC benchmark circuitPrimary1, in figure 12 we
plot Ek as a function ofk for two different runs: one using two pro-
cessors and the other using four processors. In each case, the total
number of moves was approximately one million. Two observations
are apparent: First,Ek for four processors has greater absolute value

Figure 11 Internal and Crossover Nets
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than for two processors. This is not surprising since dividing the
chip area into four regions as opposed to two is certain to yield
more crossover nets. Second, in the very beginning when virtually
all moves are accepted, it is equally likely that a processor will over
estimate as under estimate a crossover net’s length. Thus the net
percentage error is around zero. Since the number of long nets is
large, leading to many crossover nets, the percentage error
increases as the acceptance rate falls. It reaches its maximum value
when the acceptance rate falls to around 50 percent (or about itera-
tion 30). From then on the error decreases toward zero as the
annealing schedule proceeds.

This decreasing trend is due to several factors: 1) Net lengths
continually get smaller and therefore fewer and fewer crossover
nets will exist as the iterations go by. 2) As the range limiter win-
dow dimensions decrease, the distance that cells move during an
iteration continually decreases implying that a processor’s view of
the positions of cells in its inactive regions will be closer to reality
as the iterations go by.

In any case, the percentage error at any iteration is under about
two percent. And even this maximum error occurs only when the
acceptance ofuphill moves is prevalent. When the temperature gets
low enough that primarily onlydownhill moves are accepted, then
the percentage error is virtually zero. Hence we would expect the
parallel algorithm to yield comparable results to the serial algo-
rithm.

Figures 13, 14 and 15 show results forEk versusk for our par-
allel hierarchical placement approach. Figure 13 shows the result of
Ek versusk for circuit Biomed using 4 processors. Figures 14 and
15 show the results ofEk versusk for circuit Biomed andAvqsmall,
respectively, by using 6 processors. The results consistently show
that there is some error in the first half of the annealing process and
the error decreases toward zero in the second half. The maximum
absolute value ofEk is less than 2%.

Figure 12  During AnnealingEk
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Figure 13  for Biomed , 4 processorsEk
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6.  Results
Table 1 shows the parameters of our test circuits. All circuits

are from the 1993 MCNC layout benchmark set[13].

6.1 Wire Length Results
Table 2, 3, and 4 compare the wire length results produced by

our parallel algorithm with those generated by the serial program
TimberWolf v7. The second column shows the wire length produced
by TimberWolf v7 for the five MCNC benchmark circuits. These
wire lengths were the best among all previously published results.
The 3rd, 5th and 7th columns of table 2 show the wire length pro-
duced by our parallel algorithm using 2, 4, and 6 processors. The
results range from 1% worse to 5% better than the serial program
TimberWolf v7. It is interesting to note that our parallel algorithm
tends to produce evenbetter results than the serial counterpart. This
can be attributed toEk, the errors introduced by our parallel algo-
rithm (Section 5.2). This small random error actually allows our
parallel algorithm to climb out of local minima and find better solu-
tions.

Circuit # cells # nets # pins # rows
Biomed 6417 5742 26947 46

Industry 2 12142 13419 125555 72
Industry 3 15059 21940 176584 54
Avqsmall 21854 22124 82601 80
Avqlarge 25114 25384 82751 86

Table 1: Test Circuits

Circuit Wire
TW v7.0

Wire
2 proc’s

Difference

Biomed 3.24 3.28 -1%
Industry 2 13.53 13.64 -1%
Industry 3 42.84 42.92 -0%
Avqsmall 5.41 5.32 2%
Avqlarge 5.86 5.57 5%
average - - 1%

Table 2: Wire Length Comparison
TimberWolf v 7 vs. Parallel 2 processors

Figure 14  for Biomed , 6 processorsEk
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Figure 15  for Avqsmall , 6 processorsEk
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6.2 Run Time Speed Up
Table 5, 6, and 7 show the run time speed up gained by our

parallel algorithm. All reported times are elapsed times (including
CPU times and interprocessor communication times) in seconds on
DEC alpha workstations 3000/400. The results show that our
parallel algorithm achieves near linear speed up.

Figure 16 plots the speed up achieved by our parallel algo-
rithm. Although our target parallel environment (a network of
workstations) only provides limited communication bandwidth, our
parallel algorithm still achieves near linear speedup, especially for

Circuit Wire
TW v7.0

Wire
4 proc’s

Difference

Biomed 3.24 3.23 -0%
Industry 2 13.53 13.35 1%
Industry 3 42.84 43.08 -0%
Avqsmall 5.41 5.38 1%
Avqlarge 5.86 5.91 -1%
average - - 0%

Table 3: Wire Length Comparison
TimberWolf v 7 vs. Parallel 4 processors

Circuit Wire
TW v7.0

Wire
6 proc’s

Difference

Biomed 3.24 3.29 -1%
Industry 2 13.53 13.71 -1%
Industry 3 42.84 42.71 0%
Avqsmall 5.41 5.31 2%
Avqlarge 5.86 5.84 0%
average - - 0%

Table 4: Wire Length Comparison
TimberWolf v 7 vs. Parallel 6 processors

Circuit Time
TW v7.0

Time
2 proc’s

Speed Up

Biomed 1327 668 1.98
Industry 2 4928 2514 1.96
Industry 3 6756 3385 1.99
Avqsmall 6881 3578 1.92
Avqlarge 8252 4194 1.97
average - - 1.96

Table 5: Speed Up
TimberWolf v 7 vs. Parallel 2 processors

Circuit Time
TW v7.0

Time
4 proc’s

Speed Up

Biomed 1327 380 3.49
Industry 2 4928 1306 3.77
Industry 3 6756 1765 3.83
Avqsmall 6881 1755 3.92
Avqlarge 8252 2127 3.88
average - - 3.78

Table 6: Speed Up
TimberWolf v 7 vs. Parallel 4 processors

Circuit Time
TW v7.0

Time
6 proc’s

Speed Up

Biomed 1327 305 4.35
Industry 2 4928 847 5.81
Industry 3 6756 1188 5.68
Avqsmall 6881 1279 5.38
Avqlarge 8252 1559 5.29
average - - 5.30

Table 7: Speed Up
TimberWolf v 7 vs. Parallel 6 processors
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larger circuits. And it’s exactly those large problems for which one
would want to have a parallel implementation available.

6.3 Processor Utilization
Table 8 shows the processor utilization in our parallel environ-

ment. They are obtained by dividing the CPU time by the elapsed
time. The utilization is on average 98% when 2 processors are used.
The average utilization is 87% when 6 processors are used.

7.  Conclusion
We presented a loosely coupled parallel algorithm for the

placement of standard cell integrated circuits. Our algorithm is a
derivative of simulated annealing. The implementation of our algo-
rithm is targeted toward networks of UNIX workstations. This is
the very first reported parallel algorithm for standard cell placement
which yields as good or better placement results than its serial ver-
sion. In addition, it is the first parallel placement algorithm reported
which offers nearly linear speedup, in terms of the number of pro-
cessors (workstations) used, over the serial version. Despite using
the rather slow local area network as the only means of interproces-
sor communication, the processor utilization is quite high, up to
98% for 2 processors and 90% for 6 processors. The new parallel
algorithm has yielded the best overall results ever reported for the
set of MCNC standard cell benchmark circuits.
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