
A General Framework for Vertex Orderings,

With Applications to Netlist Clustering�

C. J. Alpert and A. B. Kahng

UCLA Computer Science Department, Los Angeles, CA 90024-1596

Abstract

We present a general framework for the construc-
tion of vertex orderings for netlist clustering. Our
WINDOW algorithm constructs an ordering by iter-
atively adding the vertex with highest attraction to
the existing ordering. Variant choices for the attrac-
tion function allow our framework to subsume many
graph traversals and clustering objectives from the lit-
erature. The DP-RP method of [3] is then applied to
optimally split the ordering into a k-way clustering.
Our approach is adaptable to user-speci�ed cluster
size constraints. Experimental results for clustering
and multi-way partitioning are encouraging.

1 Introduction

A netlist hypergraph H(V;E) consists of a set of
modules (vertices) V = fv1; v2; : : : ; vng and a set of
nets (hyperedges) E = fe1; e2; : : : ; emg. A cluster Ci
is a nonempty subset of V , and a k-way clustering P k

is a set of k clusters such that every vi 2 V belongs
to exactly one cluster in P k. We study the following
problem:

The k-Way Clustering Problem: Given H(V;E),
a value 2 � k � n, and cluster size bounds L and U ,
construct P k = fC1; C2; : : : ; Ckg with L � jCij � U ,
1 � i � k, that optimizes a given objective function
f(P k).

We often refer to P k as a clustering when k is large,
e.g., k = �(n), and as a partitioning when k is small,
e.g., k � 10. Where applicable, we let w(Ci) denote
the cost or weight of having Ci in the clustering, and
express f in terms of w. Our work is motivated by
two observations:

� Clustering reduces the problem size and can im-
prove the performance of partitioning and place-
ment heuristics [4, 15]. However, alternative clus-
tering metrics must still be explored for such
\meta-objectives".

� We need fast, high-quality clustering construc-
tions that adapt to a variety of alternate objec-
tives.

�Partial support for this work was provided by a Department
of Defense Graduate Fellowship, and by NSF MIP-9257982 and

MIP-9223740. The authors thank Dr. Lars Hagen for code and
experimental data.

In this paper, we seek vertex orderings that capture
the clustering structure of a netlist hypergraph, such
that the vertices in any contiguous subset of the or-
dering form a \good" cluster. For this purpose, vertex
orderings induced by traversals such as depth-�rst or
breadth-�rst search are insu�cient: (i) a DFS order-
ing can wander, rather than remain in a dense region;
and (ii) a BFS ordering will visit all neighbors of a
given vertex but can then jump to an entirely di�er-
ent region of the topology. Our main contribution is
a new framework for traversing a graph to induce a
vertex ordering: vertices are added into the ordering
based on their attraction to the previous history of the
ordering. This paradigm is fast and exible { we ex-
hibit attraction functions that can capture a variety of
ordering constructions. The user can also set parame-
ters to construct an ordering best suited to particular
applications.

1.1 Clustering Methods and Metrics

Many clustering approaches have been proposed in
the literature, e.g., [2, 4, 6, 9, 15]. These methods
typically address meta-objectives such as the utility of
the clustering within two-phase Fiduccia-Mattheyses
[8] (FM) bisection or within annealing placement. At
the same time, explicit clustering objectives such as
the following have been proposed.

� The DS objective [7] is:

maximize f(P k) =
1

n

kX

i=1

w(Ci) where

w(Ci) = jCij �
degree(Ci)

separation(Ci)

Here, degree(Ci) is the average number of nets
incident to each module of the cluster that have
at least two pins in the cluster; separation(Ci)
is the average length of a shortest path between
two modules in Ci (= 1 if the cluster is discon-
nected). This requires O(n3) time to evaluate,
making DS more useful for comparison, rather
than optimization, of clustering solutions.

� What we call the Absorptionmetric [15] counts
the number of nets \absorbed" by the clusters:

maximize f(P k) =
kX

i=1

w(Ci) where

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0063 $3.50

w(Ci) =
X

fe2E j e\Ci 6=;g

je \Cij � 1

jej � 1

i.e., net e incident to cluster Ci adds absorption
(p�1) � 1

jej�1
to the cluster, where p is the number

of pins of e in the cluster.

� Scaled Cost [5] is a k-way generalization of the
ratio cut objective:

minimize f(P k) =
1

n(k � 1)

kX

i=1

w(Ci) where

w(Ci) =
jfe j 9u; v 2 e; u 2 Ci; v =2 Cigj

jCij

i.e., w(Ci) is the \outdegree" of a cluster, divided
by the cluster size.

1.2 Vertex Orderings

Given vertices V = fv1; v2; : : : ; vng, a vertex or-
dering v�1 ; v�2 ; : : : ; v�n is de�ned by a bijection � :
[1 : : :n] ! [1 : : :n]. Vertex vi is the jth vertex in the
ordering if �(j) = i, so that v�1 is the �rst vertex in
the ordering, v�2 is the second vertex, etc.

The Vertex Ordering Problem: Given H(V;E),
construct a vertex ordering v�1 ; v�2 ; : : : ; v�n to opti-
mize some objective.

Intuitively, contiguous subsets of the ordering
should form \good clusters". Previous work has seen
such contexts as ordering of one-dimensional logic ar-
rays, graph partitioning, and sparse matrix computa-
tion. For example, Cuthill and McKee [13] proposed
a BFS variant which breaks ties in favor of the ver-
tex with smallest degree. King [13] proposed a min-
perimeter approach which, when we view the set of
ordered vertices as a single cluster, iteratively adds
the vertex that minimizes the \perimeter" of the re-
sulting cluster. Alternatively, adding the vertex with
the most connections to the current cluster yields a
max-adjacency approach; cf. Nagamochi and Ibaraki
[12]. Other constructions been given for VLSI layout.
Hall [11] showed that the second eigenvector of the
netlist discrete Laplacian yields a minimum squared-
wirelength ordering; [10] used this ordering in ratio
cut partitioning. Riess et al. [14] used an analytical
conjugate gradient method to construct orderings ac-
cording to a linear wirelength objective. In [3], we
induced (one-dimensional) orderings via space�lling
curves over multi-dimensional spectral netlist embed-
dings.

In the next section, we describe how an iterative
graph traversal can encompass di�erent orderings by
varying an attraction function. Section 3 then pro-
poses our WINDOW algorithm, as well as parameters
that allow clusterings with user-speci�ed attributes.
Section 4 explains how WINDOW orderings can be
split to yield a k-way clustering, and we conclude with
experimental results.

2 The Attraction Function

Our general framework is as follows. We say that
vertex vj has been ordered if �(index) = j for some

index; vj is otherwise unordered. In the following, we
generally use vj to indicate an ordered vertex, vi for
an unordered vertex, and vi� for the \best" unordered
vertex. We also use Nets(i) = fe 2 E j vi 2 eg to
denote the set of nets incident to vi, and Adj(i) =
fvj 2 e\S j e 2 Nets(i)g to denote the set of ordered
neighbors of vi. Let S = fvj 2 V j vj is orderedg, and
for each unordered vi let Attract(i) be the attraction
from vi to S.

1. Initialize: Choose a vertex vi� and set �(1) = i�.
Set index, the current size of S, to 1. For each
vi 2 V � S, compute Attract(i).

2. Best Vertex: If V � S 6= ; choose vi� 2 V � S
with optimal Attract(i�), else exit.

3. Update: Increment index and set �(index) = i�.
Update Attract(i) for each vi 2 V � S and go to
Step 2.

Many traditional vertex orderings are captured by our
framework.

� DFS Ordering. The attraction for vi is:

Attract(i) = maxfj j v�j 2 Adj(i)g

i.e., Attract(i) is the index of vi's most re-
cently ordered neighbor. If Adj(i) = ;, then
Attract(i) = 0. The \best" vertex vi� will be
adjacent to the most recently ordered vertex that
has an unordered neighbor. Fig. 1(a) shows a
snapshot of Attract values during construction of
a DFS ordering, given that �ve vertices have al-
ready been ordered.

� BFS Ordering. The attraction for vi is:

Attract(i) = minfj j v�j 2 Adj(i)g

If Adj(i) = ;, then Attract(i) = 1. The best ver-
tex vi� has minimum Attract(i�) (see Fig. 1(b)).

� Max-Adjacency Ordering. The attraction for
vi is:

Attract(i) = jfe 2 Nets(i) j e \ S 6= ;gj

The best vertex vi� has the most hyperedges in-
cident to vertices in S (see Fig. 1 (c)).

� Absorption Metric. The attraction for vi is:

Attract(i) =
X

fe2Nets(i) j e\S 6=;g

1

jej � 1

For each e incident to vi and S, absorption 1
jej�1

is gained by adding vi to S. Thus, vi� that max-
imizes Attract(i�) will give the greatest increase
in the absorption of S.

� Scaled Cost Metric. An attraction function
that is based directly on Scaled Cost may not be
e�ective, since the perimeter of a cluster does not
measure how close the cut nets are to becoming
uncut. Thus, we use:

Attract(i) =
X

e2Adj(i)

jS \ ej

jej � 1

A net e 2 Nets(i) exerts attraction on vi propor-
tional to the number of its pins in S. As more
vertices of a given net become ordered, the un-
ordered vertices incident to that net feel stronger
attraction to the ordering. By contrast, a net e
incident to vi and S would exert the same Ab-
sorption attaction on vi regardless of how many
pins of e are in S.

1

2

3

4
5

(a)

A = 5

A = 3

A = 2

2

3

4

5

1

A = 2

A = 3

A = 3

(b)

1

2

3

4

5

A = 2

A = 1

A = 1

(c)

Figure 1: Snapshots of feasible orderings: (a) DFS,
(b) BFS, and (c) Max-Adjacency. Ordered vertices
are labeled by indices in the ordering; unordered
vertices are labeled by attraction value A. With (a)
and (c), vi� maximizes A; with (b), vi� minimizes
A.

Naive updates of Attract(i) in Step 3 may result in
an O(n2) ordering construction. However, for many
attraction functions Attract(i) increases (decreases)
monotonically throughout the ordering process. Thus,
our implementation uses a Fibonacci heap to store
each vi 2 V � S with Attract(i) as the corresponding
key: the vertex with maximum (minimum) key is iter-
atively extracted from the heap, and keys for the other
vertices are updated via an increase-key (decrease-key)
operation. This results in an amortized O(n logn)
time implementation.

Notice that the attraction functions listed above
treat all of S as the \current cluster". However, if the
ordering is to be subsequently split into a k-way clus-
tering, vertices ordered earlier will probably not end
up in the same clusters as vertices ordered later. This
suggests that only the ordered vertices which can po-
tentially belong to vi's cluster - i.e., the more recently
ordered vertices - should exert attraction on vi. Based
on this idea, our new WINDOW algorithm is devel-
oped as follows.

3 The WINDOW Construction

We de�ne the current window of size W to consist
of the W most recently ordered vertices; only vertices
in the window exert full attraction on unordered ver-
tices. Notice that a user might set W = n

k
in seeking

a k-way clustering over n vertices. However, some re-
ection reveals that this simple approach cannot ade-
quately deal with possible cluster size bounds L and
U . For example, if we have W = n

k
= 5 and L = 1,

this framework would yield the same ordering whether
U = 10 or U = 1000; in the latter case, as many as
994 ordered vertices might end up sharing a cluster
with vi� after having no inuence on the choice of this
vertex. Hence, we use a second parameter T to de-
�ne the tail of the window; attraction exerted by a

vertex in the tail is proportional to distance from the
end of the window. Figure 2 depicts the attraction
exerted by the �rst 100 ordered vertices for di�erent
choices of W and T . Figure 3 integrates the window
and tail concepts into a description of our WINDOW
construction.

0.5

0.0

1.0

%
 A

ttr
ac

tio
n

Ordering Index
0 50 100

0.5

0.0

1.0

%
 A

ttr
ac

tio
n

Ordering Index
0 50 100

0.5

0.0

1.0

%
 A

ttr
ac

tio
n

Ordering Index
0 50 100

0.5

0.0

1.0

%
 A

ttr
ac

tio
n

Ordering Index
0 50 100

(a) W = n, T = 0 (b) W = 25, T = 1

(c) W = 25, T = 25 (d) W = 1, T = n

Figure 2: Attraction exerted by the �rst 100 ordered
vertices for varying W and T values.

The WINDOW Algorithm

Input: Netlist H(V;E)
W � window size
T � tail of the window

Objective function Attract

Output: Vertex ordering v�1 ; v�2 ; : : : ; v�n
1. Choose a vertex vi� 2 V and set v�1 = vi�

for each unordered vi 2 V , do compute Attract(i).
2. for index = 2 to n do

3. Choose unordered vi� with optimal Attract(i�)
4. Set v�index to vi�

5. for each unordered vi, update Attract(i) such that
if index�W + 1 � j � index, then
vertex v�j has full attraction on vi

if index�W � T + 1 � j � index �W , then

vertex v�j has attraction
(T+W+j�index)

T
on vi

6. return v�1 ; v�2 ; : : : ; v�n

Figure 3: The WINDOW Algorithm

We observe that if T = 1 (i.e., the window has no
tail) and W is a constant, then WINDOW can typ-
ically be implemented to run in linear time. Let N
denote the set of unordered neighboring vertices of
the window. Since netlist modules have bounded de-
gree, jN j is bounded by a constant proportional toW .
The Step 5 updating can be done by adding unordered
neighbors of the chosen vi� to N and then updating
Attract(i) for each vi 2 N ; minor additional book-
keeping reects the shift of the new window by one
position. For T > 1, Step 5 takes time proportional
to T , and the complexity becomes O(nT jN j).

4 Splitting Orderings into Clusterings

In [3], we presented the \DP-RP" algorithm for
constructing a multi-waypartitioning. DP-RP accepts
a vertex ordering as input and returns a restricted par-
titioning, i.e., a k-way partitioning with each cluster
being a contiguous subset of the ordering. Dynamic
programming is used to �nd the optimal set of k � 1
splits of the ordering that induce the k-way partition-
ing; this is possible for any clustering objective that
is a monotone function of an intercluster cost metric
(e.g., both Absorption and Scaled Cost are express-
ible as monotone functions in w). Although the com-
plexity of DP-RP depends on the objective function,
O(nU + kn(U �L)) implementations have been given
for Scaled Cost [3] and Absorption [1].

5 Experimental Results

5.1 Clustering Comparisons

Table 1 compares DP-RP clusterings derived from
WINDOW vertex orderings with the MBC [4], RW-
ST [9], and AGG [2] clusterings, in terms of the Scaled
Cost, Absorption, DS and two-phase FM min-cut bi-
section measures. The same number of clusters is used
as in the experiments of [9, 2]. For AGG, we report
the best Scaled Cost and Absorption values over the
ten AGG clusterings available for each test case; we
also report the best min-cut over 200 FM runs (20 for
each clustering). Because computing the DS metric re-
quires O(n3) time, we report only the DS value for the
AGG clustering with lowest Scaled Cost. FM min-cuts
for the other algorithms are the best observed over 20
runs and are quoted from [2] with the exception of the
Test05, for which FM min-cuts were regenerated due
to a faulty area �le used in the original experiments.

The WINDOW clusterings were generated using
cluster size constraints L = 1 and U = 20, and with
W = dn

k
e and T = U � W . A random pseudo-

peripheral vertex was used to begin the ordering.1

(Separately, we have found that these parameters are
not optimal, and that in particular the tradeo�s be-
tween W and T remain unclear [1].)

Notice that because each ordering is derived using
the appropriate attraction function, the WINDOW re-
sults for Scaled Cost and Absorption correspond to
di�erent clusterings.2 As one would expect, when
WINDOW optimizes one objective, the clustering usu-
ally worsens with respect to other objectives. For ex-
ample, with the Primary1-SC test case, minimizing
Scaled Cost (173.1) leads to Absorption = 621:9, while
maximizingAbsorption (687.6) leads to Scaled Cost =
234.8.

For Scaled Cost, Absorption and DS, WINDOW
clusterings averaged 34.2%, 13.2% and 8.3% respec-

1The eccentricity of a vertex v is the distance of the vertex u

furthest from v. A pseudo-peripheral vertex v has the property
that if the distance from u to v is also the eccentricity of v, then

the eccentricity of u is no larger than the eccentricity of v.
2It is not clear which attraction functionsare best for DS and

two-phase FM. Furthermore, DP-RP is very ine�cient when
applied to DS, and cannot be applied at all to two-phase FM.
Thus, we measured DS and FM cuts in terms of the WINDOW
clusterings that optimized Scaled Cost.

Case Alg SC Absrp DS FM

Pr1-SC WINDOW 173.1 687.6 1.471 48
833 RW-ST 287.9 629.9 1.325 47

(191) AGG 277.9 437.0 0.879 49
MBC 254.0 309.3 1.258 48

Pr2-SC WINDOW 57.69 2257 1.539 186
3014 RW-ST 82.81 2013 1.566 165
(702) AGG 89.73 1227 1.048 146

MBC 82.44 736.4 1.238 187

Test02 WINDOW 97.02 1327 1.662 42
1663 RW-ST 150.7 1123 1.593 42

(445) AGG 164.7 706.2 0.657 42
MBC 137.4 407.0 1.231 42

Test03 WINDOW 91.50 1247 1.736 53
1607 RW-ST 156.2 1101 1.566 71
(327) AGG 153.9 678.4 1.204 50

MBC 140.7 379.5 1.185 59

Test04 WINDOW 100.2 1303 2.014 20
1515 RW-ST 151.8 1181 1.879 14
(317) AGG 193.3 833.9 1.135 12

MBC 160.3 415.5 1.297 20

Test05 WINDOW 55.28 2279 1.831 36
2595 RW-ST 88.52 2051 1.689 28
(424) AGG 103.0 1527 1.262 32

MBC 90.08 680.7 1.275 37

Test06 WINDOW 106.9 1274 1.516 73

1752 RW-ST 178.7 979.2 1.367 82
(476) AGG 163.2 359.0 1.183 63

MBC 142.4 315.3 1.331 83

19ks WINDOW 47.51 2556 1.883 127
2844 RW-ST 81.08 2395 1.578 146

(737) AGG 86.50 1485 1.022 124
MBC 75.50 719.9 1.166 156

bm1 WINDOW 137.8 692.5 1.278 62

882 RW-ST 258.5 637.9 1.221 58
(216) AGG 266.0 426.6 0.813 48

MBC 340.5 199.1 1.189 54

Table 1: Comparison between WINDOW and four
other clustering algorithms. The numbers below
each test case indicate n and k. MBC, RW-ST, and
AGG clusterings were obtained from [9] and [2].

tive improvement versus the closest other results. For
two-phase FM, WINDOW results were comparable to
MBC and RW-ST, but inferior to AGG. Improvements
may be possible using alternative attraction functions
and less restrictive cluster size bounds. CPU times for
our methodology on a Sun Sparc-10 were 9.7, 36 and
63 second to generate orderings for Primary2, Biomed
and Industry2 respectively; the additional times for
DP-RP to construct the clusterings were 106, 385, and
1322 seconds for the same three instances.

5.2 Vertex Ordering Comparisons

We also compared WINDOW orderings to �ve
other vertex ordering constructions: King, Cuthill-
McKee (CM) [13], Max-Adjacency (MA) [12], EIG1
[10] and SFC [3]. We ran DP-RP on the vertex order-
ing constructed by each algorithm for each test case,
again with L = 1, U = 20 and k as speci�ed in Table
1. Tables 2 and 3 respectively provide the Scaled Cost
and Absorption values for the clusterings generated
by DP-RP. SFC results are the best results obtained
from ten SFC orderings.

Algorithm
Case King CM MA EIG1 SFC WIN

Pr1-SC 209.6 226.7 176.1 244.1 204.7 173.1

Pr2-SC 68.97 73.24 61.08 78.82 68.10 57.69
Test02 118.1 129.6 100.3 137.4 131.4 97.02
Test03 119.6 130.1 97.28 132.1 126.5 91.50
Test04 132.3 143.9 109.2 155.4 147.7 100.2
Test05 73.27 83.97 60.42 85.08 76.06 55.28
Test06 121.8 127.5 107.0 131.5 142.8 106.9
19ks 63.12 69.79 50.18 73.58 66.37 47.51

bm1 168.3 185.9 132.8 184.8 146.2 137.8
Biomed 26.95 28.99 21.51 32.53 22.98 20.91
Indstr2 14.28 15.39 11.73 16.95 13.25 11.35

Table 2: Scaled Cost values for clusterings derived
from six ordering constructions.

Algorithm

Case King CM MA EIG1 SFC WIN

Pr1-SC 489.0 259.6 534.6 312.8 513.3 687.6
Pr2-SC 1209 598.6 1355 600.2 1114 2257
Test02 709.8 282.9 991.4 468.8 618.6 1327
Test03 649.3 300.6 951.7 525.5 640.3 1247

Test04 716.8 326.8 992.3 382.6 625.3 1303
Test05 1069 490.8 1562 891.9 1324 2279
Test06 546.5 247.6 765.3 264.9 349.1 1274

19ks 1389 636.2 2042 806.2 1573 2556
bm1 512.8 278.0 546.4 355.5 513.8 692.5

Biomed 2134 1427 3608 491.1 3403 5070
Indstr2 4392 1774 7551 1987 4630 10747

Table 3: Absorption values for clusterings derived
from six ordering constructions.

For the �rst nine test cases, WINDOW obtains
fairly consistent improvements for both metrics. For
Scaled Cost, we observed 4.0% improvement over the
closest other algorithm, Max-Adjacency. However,
WINDOW subsumes Max-Adjacency when the proper
attraction function and W = n are used. Discount-
ing Max-Adjacency, we observed 18.3% average re-
duction in Scaled Cost over the best combined re-
sults of the other algorithms. For Absorption, WIN-
DOW obtained a 39.5% average improvement (in-
crease) over Max-Adjacency, and 78.3% improvement
over the combined results of the other four order-
ing constructions. For the larger test cases (Biomed:
n = 6514, k = 1303; and Industry2: n = 12637,
k = 2527), WINDOW-derived clusterings had low-
est Scaled Cost and highest Absorption, with Max-
Adjacency again being quite competitive. Our results
seem to suggest that \global" EIG1 and SFC orderings
cannot make the local decisions necessary for DP-RP
to generate a good clustering when k is large.

In conclusion, we have developed a general frame-
work for constructing vertex orderings, and explored
its applications to netlist clustering. By setting an ap-
propriate \attraction" function and window size, we
obtained superior clusterings for a variety of cluster-
ing objectives in the literature. We leave open the
question of �nding improved attraction functions for
meta-objectives that cannot be de�ned explicitly, such
as two-phase FM enhancement.

References
[1] C. J. Alpert and A. B. Kahng, \A General Framework for

Vertex Orderings, With Applications to Netlist Cluster-
ing," UCLA tech. report #940018, April 1994.

[2] C. J. Alpert and A. B. Kahng, \GeometricEmbeddings for
Faster and Better Multi-way Netlist Partitioning," Proc.

ACM/IEEE Design Automation Conf. 1993, pp. 743-748.

[3] C. J. Alpert and A. B. Kahng, \Multi-way Partition-
ing Via Space�lling Curves and Dynamic Programming,"
Proc. ACM/IEEE Design Automation Conf., 1994, pp.
652-657.

[4] T. N. Bui, \Improving the Performance of the Kernighan-
Lin and Simulated Annealing Graph Bisection Algo-
rithms", in Proc. ACM/IEEE Design Automation Conf.,
1989, pp. 775-778.

[5] P. K. Chan, M. D. F. Schlag and J. Zien, \SpectralK-Way
Ratio Cut Partitioning and Clustering", Proc. Symp. on

Integrated Systems, Seattle, March 1993.

[6] J. Cong and M. Smith \A Parallel Bottom-up Cluster-
ing Algorithm with Applications to Circuit Partitioning
in VLSI Design" Proc. ACM/IEEE Design Automation

Conf. 1993, pp. 755-760.

[7] J. Cong, L. Hagen and A. B. Kahng, \Random Walks
for Circuit Clustering", Proc. 4th IEEE Intl. ASIC Conf.,

Rochester, September 1991, pp. 14.2.1 - 14.2.4.

[8] C.M Fiduccia and R.M. Mattheyses, \A Linear Time

Heuristic for Improving Network Partitions", Proc.

ACM/IEEE Design Automation Conf., June 1982, pp.

175-181.

[9] L. Hagen and A. B. Kahng, \A New Approach to E�ective

Circuit Clustering",Proc. IEEE Intl. Conf. on Computer-

Aided Design, Santa Clara, Nov. 1992, pp. 422-427.

[10] L. Hagen and A. B. Kahng, \New Spectral Methods for
Ratio Cut Partitioning and Clustering", IEEE Trans. on

CAD 11(9), Sept. 1992, pp. 1074-1085.

[11] K.M. Hall, \An r-dimensional Quadratic Placement Algo-

rithm", Manag. Sci., 17(1970), pp.219-229.

[12] H. Nagamochi and T. Ibaraki, \Computing Edge-
Connectivity in Multigraphs and Capacitated Graphs",
Siam J. of Disc. Math. 5(1), Feb. 1992, pp. 54-66.

[13] S. Pissanetsky,Sparse Matrix Technology, AcademicPress
Inc., 1984.

[14] B. M. Riess, K. Doll, and F. M. Johannes, \Partition-
ing Very Large Circuits Using Analytical Placement Tech-
niques", Proc. ACM/IEEE Design Automation Conf.,
1994, pp. 646-651.

[15] W. Sun and C. Sechen, \E�cient and E�ective Place-
ments for Very Large Circuits" Proc. IEEE Intl. Conf.

on Computer-Aided Design, Santa Clara, Nov. 1993, pp.
170-177.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

