
Distributed Simulation for Structural VHDL Netlists

Werner van Almsick1, Wilfried Daehn1, David Bernstein2

1 SICAN GmbH, Germany 2 Vantage Analysis Systems, USA

Abstract:

This article describes the current state of the project

to develop distributed simulation. The reader will have

an introduction to the most commonly used algorithms in

this research field. The paper deals in particular with the

influence of the partitioning of VHDL netlists affecting

the control of a distributed simulation tool.

1. Introduction

This paper deals with the actual state of a joint ven-

ture project between Vantage and SICAN. Its task is to

provide an interface tool for theVantageSpreadsheet

VHDL simulator in order to make a distributed simu-

lation of netlists described in structural VHDL possible.

In particular, this paper describes, analyzes and compares

the different algorithms and techniques which can be

used for realizing a distributed or parallel digital simula-

tion tool.

Synthesized systems often contain several hundred

thousand gates. A simulation of these systems costs quite

a lot of computation time or may even be impossible.

One way to simulate such big systems is by distributing

the simulation. For this, several processors are used for

the simulation of one system. Such a simulation, which

might exceed the technical bounds of a single system,

has the ability to solve the simulation problem with

multiple times of addressable memory and other re-

sources. Due to its parallel character, the user receives

the result considerably faster. The efficiency of a distrib-

uted simulation can be specified with the help of a

speedupvalue. This value depends on the system that is

to simulate. It is defined as the ratio oft0 to tdist, wheret0

is the user time that is needed for a single-processor

simulation andtdist is the user time needed for the distrib-

uted or parallel simulation. In some cases, it is possible

to reach a speedup higher thanN by using onlyN pro-

cessors. The reason for this is the minimization of mem-

ory swaps which are very expensive with respect to

computation time.

At present, the following three different strategies are

favorable for a distributed or parallel digital simulation.

The first one is the parallel simulation by parallelizing

the program code of the simulator. It assumes that the

user has a multi-processor machine. In nearly all cases,

a parallel code simulation tool works with one global

simulation time. Therefore, all simulation cycles that

occur at the same simulation delta can be calculated in

parallel by different processors because of their data

independence. However, if the event list of the tool is

also parallized, a great speedup can be noticed. The big

advantage of this strategy is that no partitioning of the

VHDL description is necessary. On the other side, there

is a maximum speedup given by the number of available

processors as well as the number of parallel events in the

circuit [5,6].

The second strategy is a distributed simulation which

works with one global simulation time. It can be used for

tightly (multi-processor systems) and loosely (LAN)

connected processor systems. For that, a partitioning of

the VHDL system that will be simulated intoN VHDL

subsystems is required (chapter 3.). The characteristic of

the strategy is that after partitioning, one main process

starts and controlsN independent digital simulators onN

processors. Each of theN simulators simulates one of the

N subsystems. All necessary signal and time messages of

the cut data dependencies will be sent to the main pro-

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50



cess. This main process distributes these messages to the

concerned simulators again. With the help of the global

time a synchronization of all simulators can be done. The

problem of this strategy is the multitude of messages,

which must be handled by the main process. This leads

to a high probability of network crashes by sending and

receiving messages from/to the main process. Depending

on the system that is to be simulated, this reduces the

achievable speedup in a LAN.

By replacing central communication control with

distributed control, we achieve the third strategy. Here,

each simulation process has the ability to communicate

with every other simulation process. The only task of the

main-control process is to start all sub-processes, give

them the information about the single partitions and

receive the final results. Each process sends and receives

its own messages about a changed signal. In this way

communication will be distributed among all processors.

As in to the second strategy, simulation of non-simulta-

neous states is both possible and a goal. On the basis of

this distributed control, the speedup can be substantially

higher than the two strategies described before. There-

fore, a distributed simulation working with this strategy

will be discussed in the following chapters.

2. Parsing and Analyzing

For such a distributed digital simulation the VHDL

code must be parsed and analyzed. The parser provides

a description of the VHDL in graph form. This can be

done by parsing the VHDL code or a VHDL Inter-

mediate Format (VIF). VIF is created by a VHDL com-

piler such as the one used. By using an intermediate

format one saves the work for a direct parsing of the

complete VHDL standard. In our project we confine

ourselves to the parsing of structural VHDL code. Syn-

thesized VHDL systems are mainly described in a netlist

form with instantiatedCOMPONENTs. If it is necessary to

simulate an ARCHITECTURE with a few behavioral

statements, the embedding of these statements into sub-

ENTITIES produces anARCHITECTURE without behavioral

statements. So in most cases this represents no restric-

tion.

VHDL supports multiple sources for a signal; the

value of the signal is computed by a resolution function.

This function determines the value based on one or more

driving values inside the circuit. Since it is impossible to

distribute this function between two or more independent

simulators, cutting a resolved signal is never allowed. So,

the parser builds a union node for all those nodes which

are connected to such a signal, or it tries to resolve all

components which are connected to this signal in order

to get signal connections without any resolution function.

The parser should also have the ability to work hier-

archically. Based on the size of the parsed graph, the

parser decides whether a resolving of an instantiated

COMPONENT should be resolved. One occasion for re-

solving aCOMPONENTis that on the one hand the number

of nodes must be quite larger than the number of parti-

tions that should be built and on the other hand a very

large graph slows the whole distributed simulation.

Inbetween providing the graph and building up the

partitions, an analysis of the graph is advisable to deter-

mine the simulation loads of the nodes and the commu-

nication costs between the nodes. An exact estimation of

the simulation loads from the VHDL code is very diffi-

cult or probably impossible. A previous simulation of the

circuit for calculating the probable simulation load is

often unreliable and needs a lot of computation time.

Therefore, in most cases it is better to assume that all

nodes have the same simulation load. Besides, the de-

signer must be able to assign special simulation loads for

instantiations whose loads strongly deviate from the

average. This can be done by a configuration file. The

second value, the communication cost of one edge, i.e. a

direct connection between twoCOMPONENTs, can be

calculated by using the signal width. In addition to the

cost of one bitB an offsetA (constant cost) is required.

This varies according to the protocol and synchronization

information between the two processes if this edge is cut.

For a LAN its value is very large and for a multi-

processor machine it is very small.

In addition to this all cycles inside the graph will be

marked. A cycle represents a feedback in the system that

is to be simulated. A node that is inside of such a cycle

is called astrong component[1]. The localization of all

strong componentsthat build one cycle is important for

the further work; in particular it has a strong influence



on the control system of the simulators (chapter 4).

Up to now this paper assumes that the number of

partitionsN that should be built is a fixed value that is

given by the computer environment. However, the effi-

ciency of a distributed simulation can rise if an adapta-

tion of this value to the graph and computer environment

is possible. In reality only the upper limit ofN is a fixed

value and this is equal to the number of available proces-

sors P. A distributed simulation has the goal that all

simulators run as parallel as possible. This assumes that

all partitions have nearly the same simulation load.

Hence, the following valueNSL describes the second limit

for N if NSL is less than or equal toP. In the formulas,

SLi is the simulation load of the node or unioni andm is

the number of nodes inside the VHDL graph. It is

with

the second limit that determines a valid interval forN.

Since a big value ofN increases the possible speedup,N

should be set to the upper interval limit.

3. Partitioning

The task of partitioning is to divide the graph intoN

subgraphs. By projection of these subgraphs onto VHDL

systems theN partitions will be built up. Thequality and

the relationship (RS) between the partitions are respon-

sible for the achievable speedup of the distributed simu-

lation. Two factors are important for thequality . The

first one is the deviation of thesimulation loadsof the

single partitions from the optimal values. If only com-

puters with equal performance are used, the optimal

value is given by the overallsimulation loaddivided by

the number of partitionsN. By using different computer

types the distribution of thesimulation loadsshould

depend on the different performances. The second value

that influences the quality of partitioning is the sum of

the communication costsamong all cut signals including

the offsets for the first cut signal between two partitions.

For a given number of partitionsN and a given optimal

distribution for thesimulation loadsthis sum is to be

minimized.

The feedbacks of the circuit or the cycles of the graph

respectively characterize therelationship (RS1-2) between

the partitions. As it will be shown in chapter 4, therela-
tionship determines whether it is possible to apply an

effective kind of simulation control. The following four

different relationships should be defined. For the case

that all connections between two partitionsP1 and P2

have the same direction, therelationship is called unidi-

rectional (RS1-2 = UD). This implies that no external

cycle exists between the partitionsP1 andP2. If connec-

tions in both directions exist but no external cyclebe-

tween the elements ofP1 and P2, the relationship is

called bidirectional (RS1-2 = BD). The third case is that

the elements of the partitionsP1 and P2 build one or

more external cycles. This case is called feedback-full

(RS1-2 = FB). The case that there are no connections

between the partitionP1 and P2 is called unconnected

(RS1-2 = UC). If the partitions, but not their internal

graphs, are visible, then the casesRSX-Y = BD and

RSX-Y = FB are identical.

The rest of this chapter describes a way to produce

partitions which increases the percentage of unidirection-

al and unconnected relationships. We call this partition-

ing algorithm Levelizing.

It can be proved that for every directed acyclic graph

G with n nodes a partitioning withp ∈ [1, n] partitions

of the relationshipsRSX-Y = UD and/orRSX-Y = UC can

always be found. The proof can be done as follows: Each

node gets a help value called level. If a node is uncon-

nected, its level-value will be set to ’0’. Otherwise, if a

node has only output edges, its level gets the value ’1’.

For each other nodeni the level will be set to

MAX(ni ) + ’1’, whereMAX(ni ) is the maximum level of

all nodes which have output-edges to this nodeni. All

nodes of one level will be united into one partition. After

that the required number of partitionsp can be achieved

by dividing partitions or by building the combination of

two partitions if their nodes have monotonically increas-

ing level-values.



Since this is only valid for an acyclic graph, the con-

ditions for a conversion of a cyclic into an acyclic graph

will be derived. The analyzer marks each node that is an

element of a cycle in a way that it is possible to find all

nodes building one complete cycle. Hence it is also pos-

sible to calculate the number of nodesn’ which will

build up the graph if one complete feedback is replaced

by one union node. Depending on the size of the feed-

backs a conversion of a cyclic into an acyclic graph

may be useful - a big global feedback prevents this

conversion because then a partitioning intoN partitions

would not be effective or might even be impossible.

Now it should be assumed that a given graph withn

nodes has no cycle. For this, a simple partitioning al-

gorithm which creates only partitions with the relation-

shipsRSX-Y = UD and/orRSX-Y = UC will be introduced.

Equal to the last proof, this algorithm works with the

temporary level value. After assignment of the level

values, allN start partitions will be built. By this each

partition getsm’ elements withm’ ∈ [m - 1, m + 1] and

Also the procedure of this proof can be used in practice

for creating partitions for an acyclic graph. The selection

of nodes for a partition will be done by consideration of

the level-value. For this, each level-value inside the

partitionsPi andPi+1 must meet the formulas (4.1, 4.2).

Due to the definition of the level value all partitions of

the graph are of typeRSX-Y = UD andRSX-Y = UC. Since

this algorithm takes no notice of the desirable minimiza-

tion of Communication Costs, this partitioning must be

revised. This will be done by moving single nodes from

one partition into a second partition. The kind of moving

nodes must be in a way that no connection of typeBD or

FB will be created. For describing the conditions a def-

inition of the partition-stage s is required that is only

defined for partitions of typeUD and/orUC. A partition

that has no external input edges gets the stage-value ’1’.

A partition that is unconnected in both directions gets the

stage-value ’0’. The stage-value of every other partition

Pi will be set toMAX(Pi ) + ’1’, where MAX(Pi ) is the

maximum stage-value of all partitions which have exter-

nal output edges to this partition. Now it is possible to

express the conditions for a valid move of a node by

introducing the following terms.

a) n is the node looked at and is an element of the

partition Pi.

b) s(Pi) is the stage-value ofPi.

c) minout is the minimum stage-value of all partitions

which can be reached directly by walking fromn via

its output-edges. Ifn has no output-edge,minout gets

the maximum stage-value of all partitions.

d) maxin is the maximum stage-value of all partitions

which can be reached directly by walking fromn via

its input-edges. Ifn has no input-edgemaxin gets the

value ’0’.

Movements:The noden can be moved into all partitions

Pj if their stage-values meet the condition (5).

The negation of this sentence is not true. A movement

can be allowed without condition (5) being satisfied. This

occurs if two or more partitions have the same stage-

values as it is shown in the following example. In addi-

tion, it should be noticed that the move of one node from

a partition Pi into a partitionPj can change the stage-

values of all partitions.

Taking theCommunication Costsand theSimulation

Loads into consideration, a movement can be assessed.

For the calculation of the movements an adaption of the

algorithm described in [2] turned out to be suited.

As already described, it is not always possible to

project a circuit to an acyclic graph. This becomes true if

a complete feedback of the circuit is greater than the

maximum size for the greatest partition. In such a case,

the Levelizing-algorithm cannot be used. However, there

are many of algorithms for partitioning cyclic graphs by

consideration to various cost functions . An evaluation of

all these algorithm would require another paper. There-

fore, it should only be noticed that we choose theMIN-

CUT algorithm described in [4].

In this case, the task of thisMIN-CUT algorithm is

not to partition the whole cyclic graph. Only the cyclic

part of the graph will be partitioned by this algorithm.

The acyclic part will be partitioned by theLevelizing



algorithm (figure 1) as before. This way, a partitioning

can be achieved of which typesUC and/orUD are pre-

ferred.

The procedure is as follows: The analyzer checks

Figure 1: Global partitioning algorithm

whether the graph can be converted into an acyclic

graph. If possible, the whole graph will be partitioned by

the Levelizing algorithm. Otherwise the analyzer deter-

mines the two valuesNFB andcFB,. NBF is the number of

partitions for the cyclic part of the graph;cBF is the

weight factor for a node in the acyclic part of the graph.

It is

cUD/UC := weight factor for a node inside the acyclic

part of the graph

NUD/UC := Number of partitions for the acyclic part

of the graph

With help of the values in (6.1) and (6.2) it is possible to

fit the sizes of the partitions to their relationship. The

intention of this will be shown in the following chapter.

4. Simulation control

This chapter describes one possible means of a dis-

tributed simulation that works without the direct use of a

global simulation time. For this, each VHDL simulator

has its own local shell. These local shells control their

own simulator and administer their own communication.

The central shell is only used for the main functions such

as stopping and starting and other basic procedures.

The communication between a local shell and its

simulator depends on the available interfaces of the sim-

ulation unit. The simulator used in this project provides

the Styx interface. Through this interface the user can

build functions which are written in the computer lan-

guage ’C’ into his VHDL code. For example it is pos-

sible to link a PROCESSwritten in ’C’ into the VHDL

code. By listing each partition’s output signals in the

sensitivity list of this process, the shell will be informed

of all events at the partition’s outputs. The communica-

tion between the different local shells should be done by

sockets since they are available on every UNIX machine.

This type of distributed simulation does not use direct

global simulation time, so the data availability must be

guaranteed by the local shell itself. Otherwise the simula-

tors will work with wrong signal values and this leads to

wrong simulation results. In particular, cyclically con-

nected partitions (i.e.RSX-Y = BD andRSX-Y = FB) cause

problems for the simulation control. For example, the

following partitioning ought be used.

EP1 := Input-Event for partition P1

Figure 2: Cyclic connected partitions

EP2 := Input-Event for partition P2



Initially, only the input events at the timest0 and t1 are

known. The first event causes att’0 an event at partition

P2 and att’0’ an event atP1 once more. This event is not

known before the simulation unit forP2 has reached the

time t’0’ . Due to different path lengths inside the parti-

tions and the external feedback, it is impossible to pre-

dict the partition and the time of the next event. Hence,

all simulators must run parallel with respect to the simu-

lation time. Updates of all cut signals for each simulation

cycle is required. This means that a high communication

rate between all simulators and therefore, between all

participated processors. Frequently, the result will be a

speedup of less than one.

This can be avoided by using an algorithm that works

with a look-ahead[3]. The principle is that the simula-

tors store the simulation state after a determined time

into a temporary data file. The simulation will create

provisional values. If a simulator detects that these values

are wrong, it will decipher the last valid stored state, set

the correct signal values and reset its simulation time.

Also, the simulator must cancel all sent messages which

were wrong. This can be done by sending and receiving

anti-messages. Hence, this algorithm is suited for simula-

tors that can be reset quickly. In addition to this, the

transport time for messages should be very small.

Most of the partitioning algorithm create partition

type BD resulting in a situation as shown in example

figure 2. The partitioning, as accounted in the last chap-

ter, tries to avoid partitions with the relationshipsBD and

FB. In the absence of the above mentioned types, the

only other relationships possible areUD andUC. Then,

all simulators can run parallel without a synchronization

for the time deltas or without using alook-aheadal-

gorithm. This can be shown with the following example.

First, all input events for the systemP1 will be simu-

lated. The local shell of this partition sends its output

events to the local shells of partitionsP2 and P3. To

prevent a stepwise simulation, the shells accumulate the

input events. When a number of events has reached the

shell, the simulation is started. The risk of deadlocks will

be avoided by sending request-messages. This occurs

when a simulator waits longer for an input event than a

predefined timeT. Then a local shell sends a request-

message to the shell concerned. This particular one sends

back the information referencing the time which had just

been simulated. If all partitions have nearly equal simula-

tion loads, a maximum speedup will be achieved.

It is not always possible for the designer to build up

a system without global feedback. In this case the proce-

dure introduced in chapter 3 provides cyclically and

acyclically connected partitions in which the priority is

placed on the acyclic part. The simulation of the cyclic

part will be done step for step. Opposite to this, the local

shell of the acyclic connected partition starts its simula-

tion unit blockwise. The result is that their processors

can be used for other tasks between the single simula-

tions. In addition to changing the values of the simula-

tion loads (6.1, 6.2), the distributed simulation can be

fitted into the computer environment. Given this, a simu-

lation of a system with global feedback can be done with

a noticeable speedup.

This paper introduced the main characteristics of one

possible way for a distributed digital simulation. The

apparent advantage is the absence of a theoretical upper

speedup limit for this algorithm. It was shown how a

fitted partitioning can increase the efficiency. This paper

shows how the proposed methods can be applied without

unnecessary exclusion of significant cases.

References

1. A. V. Aho, J. E. Hopcroft, J. D. Ullman,The Design and

Analysis of Computer Algorithms, Reading, MA, USA:

Addison Wesley, 1974.

2. C. M. Fiduccia, R. M. Mattheyses, "A Liniear-Time Heu-

ristic for Improving Network Partitions", Proc.19th Design

Automation Conference, 1982, pp. 175-181.

3. D. R. Jefferson, "Virtual Time",ACM Trans. Prog. Lang.

Syst. 7, no. 3, July 1985, pp. 404-425.

4. L. A. Sanchis, "Multiple-Way Newtwork Partitioning",

IEEE Transactions on Computers, Vol. 38, No. 1, January

1989, pp. 62- 81.

5. L. Soule, T. Blank, "Statistics for Parallelism and Abstrac-

tion Level in Digital Simulation",Proceedings of the 24th

Design Automation Conference, 1987, pp. 588-591.

6. Wong, Frankilin, "Statistics on Logic Simulation",23rd

Design Automation Conference, ACM/IEEE July 1986,

pp.13-19


	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index




