Static Analysis for VHDL model Evaluation

Alessandro Balboni, Mirella Mastretti, Mario Stefanoni

ITALTEL-SIT, Castelletto di Settimo Milanese,
20019 Settimo Milanese (MI), ITALY

Abstract

Automated VHDL source analysis may be a valuable approach
to develop, measure and compare models managed by high-level
design tools. Moreover, VHDL code should be developed
according to some well-founded guidelines and in a measurable
way to improve the quality of the overall design process. This
paper aims to describe in a detailed way a part of SAVE
prototype exploring the areas of complexity analysis and
simulation efficiency analysis starting from the VHDL system
description.

1. Introduction .

The VHDL 1076 IEEE standard is one of the most popular
languages for building software models of hardware system.
However, the increase in complexity of the system to be
modelled brings a large addition of troubles in writing quality
code. While emerging high-level design tools, such as System
Design Station (Mentor Graphics), Express VHDL (i-Logix) and
SpeedChart (SPEED), are able to generate VHDL source code
in automated way, the typical VHDL-based design environment
only provides tools for simulation and logic synthesis: no
support is given at present in order to evaluate and improve the
quality of VHDL code. An helpful aid to cope with large and
complex VHDL descriptions and to develop, measure or
compare models managed by all the above methodologies is
needed.

Automated VHDL source analysis enhanced with advising
capabilities, may assist the user in designing and improving
source code. It should be pointed out that the goal of defining
suitable quality measures for hardware description languages
such as VHDL introduces specific aspects that may have no
direct couterpart in the more assessed ficld of software
engineering. From a general point of view, opportunities for
quality analysis of VHDL descriptions should be investigated,

at least, with respect to the following domains:

- code complexity and consistency

- efficiency of execution (simulation)

- feasibility of the synthesis process

- testability of the final implementation
Within each domain, general rules as well as rules tighly
dependent on the specific design environment in use have to be
found out. Possible conflicts between different analysis goals
may also arise. Improving simulation efficiency, for instance,
may reduce readability; observability or controllability, in the
testing domain, may be in contrast with optimization carried out
by automated synthesis. The present paper aims at providing an
overview of the work in progress within a rescarch project
called SAVE (Static Analysis for VHDL Evaluation), aiming at
developing methodologies and tools for automated VHDL
quality analysis. The SAVE project includes theoretical analysis
tasks as well as the implementation of prototype tools. From the
theoretical point of view, suitable metrics have to be selected.
Qualitative analysis of VHDL source code, in fact, is a
completely unexplored research field and results from software
engineering can provide only some limited suggestions. Because
of the intrinsic complexity of the problem, heuristic techniques
(giving approximate results) look more promising. A static
analysis of VHDL models is performed in order to obtain
measures of complexity, simulation efficiency, sinthesisability
and testability. Moreover, an integrated expert system provides
the user with advices to improve the code. The next sections
focus on two particular domains of the quality analysis of VHDL
descriptions: simulation efficiency and code complexity /
consistency.
2. Efficiency of execution
Developing high performance simulation environments regards

EDA vendors, but hardware designers exploiting

Permission to copy without fee all or part of this material is granted provided that the copics are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fec and/or specific permission.

© 1994 ACM 0-89791-687-5/94/0009 3.50

concurrent
descriptions

80

number of processes

Fig 1: time spent in simulation for sequential
descriptions versus concurrent ones.

VHDL can contribute to optimize simulation efficiency by
writing source code according to specific guidelines in order to
reduce the time spent in design verification. In [Lev9l],
[Hue91], [BGGY2], a coding style is proposed and within the
SAVE project it has been confirned and enriched by
experiments. In fact some guidelines have to be discovered on
an experimental basis and some performance aspects may
depend on the specific simulator.

2.1 Benchmarks and performance analysis

A lot of testbenches have been carried out to evaluate the
efficiency of the different description styles and VHDL
statements on QuicksimIl (Mentor Graphics) and Vantage
(View Logic) simulators. The same tests will be executed on
other simulators (QuickVHDL, VSS) to confirm the general
VHDL efficiency rules. These experiments have shown the
higher efficiency of sequential VHDL descriptions versus
concurrent ones.

Moreover, increasing the number of processes in the program,
brings a large addition in simulation time as shown in figure 1:
by replacing a concurrent description with an equivalent
sequential one, a 20% reduction of simulation time has been
observed. Moreover, a behaviour modelled using guarded blocks
and guarded signal assignment statements, may often be
managed by means of sequential processes: such a replacement
causes simulation time to break down about 40%. In addition,
reducing concurrency allows to get rid of a lot of signals that are
less efficient than variables as shown in fig.2. Another critical
aspect is the form used to specify the sensitivity list in
processes: a static sensitivity list is more efficient than the

10 signals or 10

variables

0 assignments

Fig 2: Simulation time differences using signals vs
variables increasing assignments

equivalent dynamic one specified by only one WAIT statements.
Also in this case the gained time increases with the number of
processes in the program as shown in figure 4. Different
performances for VHDL data types have been also observed: in
general, integer types allow faster operations than logic types;
moreover, for the latter ones, it may be computed a diagram in
which speed decreases when the number of logic values grows;
multiple value logic should be considered only for applications
in which such level of detail is mandatory; for instance, in
Mentor Graphics QuicksimIl environment, there are special
logic types QSIM_STATE and QSIM_12STATE, three times
more efficient than STD_ULOGIC. The access to arrays and
records is also slower with respect to the access to scalar
variables. Finally, input stimuli are also performance-critical, so
all the experiments have to be repeated in the same condition
and with the same test patterns.

2.2 Strategies to increase simulation speed

Assuring that VHDL code is developed according to the
following guidelines, may have a relevant impact on the time
spent during the simulation phase:

a) follow classic rules of smart programming; this aspect
includes ordering clauses in conditional structures according to
exccution probabilitics, avoiding loop invariant statements,
assigning intermediate results to temporary variables and
minimizing the use of procedure calls; sequential and concurrent
"case” constructs are typically more efficient than "if"
statements, while less flexibie (there are more opportunities for
automated optimization);

100

50 1

0 T L T L
Fig 3: benefits achieved improving a VHDL description
following the proposed rules.

b) give preference 1o a sequential style :

- joining together processes with the same sensitivity list,
because they would be always executed during the same
simulation delta;

- joining together processes sharing one signal as
communication channel, to get rid of it.

- replacing signals with variables whenever possible;

- avoiding nesting of guarded blocks using

equivalent sequential processes in which the guarded condition
is tested in a WAIT ON - UNTIL statement;

c) give preference to static sensitivity lists: replace dynamic
ones whenever they are at the bottom of the process and they
have no conditions;

d) choose the most suitable data types for the application at
hand and avoid resolved signals whenever possible;

€) limit the use of attributes returning signals, such as STABLE

It should be pointed out that the above guidelines provide faster
code but in some cascs may be in contrast with general
readability, maintenability and other factors. Furthermore, speed
bottlenecks are usually restricted to small specific sections of
the whole program. An approach to investigate this
performance-critical code, may be to weight the analysis results
of that process with large sensitivity list. In fact, when the
number of signals in sensitivity list is large, the process may be
resumed by a large number of events and used in many different
processing paths. For this reason, processes with large
sensitivity list must be efficient: improving such processes may
contribute in a significant way to increase simulation speed.

At present, commercial support tools for automated analysis of
such kind of rules are not available. Therefore, a prototype
system that - statically analyzes VHDL source code for
compliance to a specified performance-oriented coding style,

wait

F sensitivity

1 80

Fig 4: dynamic sensitivity list vs static one
increasing processes.

and possibly suggests code modifications and/or improvements,
has been developed. Figures 5, 6 below show some examples of
execution of the system.

In the first example, a VHDL description developed ignoring the
above guidelines is submitted to the efficiency analyser. Results
are shown graphically to the user by means of an evaluation
number generated computing the number and the weight of the
violated metrics.

The user can also obtain a set of suggestions to improve the
analysed code. The simulation of this model has taken 65
minutes. In the second example the same VHDL description,
improved following the suggestion in figure 5, is submitted to
the efficiency analyser. The simulation of the optimized model
has taken 20 minutes.

3. Complexity and consistency

A significant effort has been devoted in the past to provide some
kind of estimation for software complexity. The relevance of
this issue is particularly related to the problem of maintenance
of source code which, as well-known, involves different aspects
such as modifiability, reusability, readability, and so on. A
survey of the main approaches adopted up to now is not the goal
of this section. However, in general, it should be noted that the
results produced in the software engineering area are still
controversial and are not widely applied in actual software
development and management. In particular, such kind of
metrics provide very approximate estimations, acceptable only
for restricted class of applications. Moreover, programming
languages pmposed for hardware description, such as VHDL,
introduce several specific issues which have no counterpart in
more traditional software design (mixed behavioral/structural
paradigms, event-driven behavior, deep concurrency, explicit
timing, ...). While static analysis techniques for concurrent
programs are emerging (GKB86), [RTY8S5], [Sha88], [CCK93],

several theoretical and practical issues still make VHDL
analysis a very complex task. In fact, the concurrency model of
VHDL is different at a large degree from the ADA model (from
which many VHDL language constructs have been derived).
Furthermore, most VHDL descriptions refer to explicit time
concepts. The approach followed in the SAVE project, consists
of investigating existing complexity metrics in order to discover
if they may be adapted in order to satisfy VHDL requirements.
The basic idea is to apply the most suitable sequential metrics to
single modules (processes, procedures, functions) and develop
higher-level metrics based on some cost function to estimate the
complexity of the whole VHDL description. In the first
prototype, complexity of single modules is evaluated computing
Mc Cabe cyclomatic number: the number of computing path,
decisional node complexity (number of operators), nesting level
between control structures arc considered complexity-critical
issues. As general guidelines, there are two main issues that are
critical in determining the complexity of VHDL descriptions.
The first is timing: developers of VHDL models have to keep in
mind that some statements produce effects (events) that are not
immediate but arc scheduled at some point in the future. The
second is the influence among multiple processes, in particular
in large descriptions with many shared signals and wait
statements. These two guidelines should lead the research work
towards more VHDL-oriented metrics. Anyway, we feel that
qualitative metrics will be probably more successful than
quantitative ones, because of the intrinsic complexity of the
VHDL language.

Conceming correctness and consistency, a possible way of
exploiting static analysis could consist of taking into account
formal verification approaches recently proposed in many
rescarch works. However, in order to obtain short-term results
(formal analysis, in our opinion, has more ambitious but long-
term goals) it is important to focus on specific subclasses of
VHDL models, such as for instance communicating finite state
machines, for which some kinds of easier but still very useful
static analysis may be carried out. As shown in figure 6, results
of this analysis are the diagram of the fsm modelled and a set of
controls on the conditions that control state transitions: if
conditions that can not come true are found, they are displayed
in dashed lines and possible trap-states or unreachable-states are
highlighted. Also, in this case, timing is one of the most critical

aspects to be captured by static reasoning. Anyway, many
practical VHDL models do not explicitely address time (for
instance, RTL synthesizable descriptions).

Some features improving readability of source code already
implemented are shown in the examples in figure6 : complexity
analysis results are presented by means of a mean complexity
evaluation over all processes and a graphical specification of
single process complexity. In this graph the sequence of
processes in the description is represented with the abscissa
enumeration.

Morcover a graphical browser exploits source-level analysis in
order to display objects such as structures, processes, blocks and
subprograms in a user-friendly way. Additional algorithms
under development include the extraction of particular code
sections translatable into procedures, by means of pattern
recognition techniques.

4. Complexity - Efficlency Analyser Architecture

An architectural scheme of the prototype environment
addressing efficiency and complexity analysis is depicted in
figure 7. The LVS (LEDA VHDL System) commercial
environment has been adopted to support the parsing step of
VHDL source files, including semantic analysis concerning the
standard language definition. LVS is also able to build an
intermediate representation within an object-oriented database
according to VIF (VHDL Intermediate Format) specifications.
Starting from the results of the parsing step, a custom tool
(Preprocessor) builds a new representation more suitable for
further processing by exploiting the LVS support for user-
defined extensions to the basic VHDL schema.

Such an enriched representation collects all data needed for the
computation of efficiency-oriented metrics such as the following:
list of signals accessed by the process and access mode (read or
write), kind of sensitivity list, attributes, number of processes
accessing each signal, nesting depth for blocks and block
guards.

The designer chooses to evaluate project in term of complexity
or simulation efficiency and two different libraries are activated
to compute the metrics embedded in the rule base.

A graphical interface module (Presentation Manager) enables
the display of the above characteristics by using graphs, tables
and diagrams and an example of its form has been shown in the

previous sections.

o SAVE 13
MGC Fée Edit View Formals Gadgets Data , Optioms Help
e e 0 bRt il - el e B~ it 4 — e
= Nolepael - Aisers/slelanoni/save work/S effictenc R) I SAVE |Jes] Aisersfstefanonifedanviniimeaiect.vhd (R)]+
1 ; T ieee;
USE leee std_logic_1 164 ALL:
LNy E *
* Signal SEL 1 Is read and written only by process MUX -~ "\ / c r LIBRARY sid;
Replace it with a variable USE std standard AL{;
It (611994 by M.Masi| USE stdlextioALL;
* Signal SEL2 Is read and written only by process MUX J
Replace k with a variable ENTITY prjt IS =
PORT
“ Signal ST2 connect process P1 with P1 and MUX din: IN STD_ULOGIC;
Try to join them together to get rid of & O ! ck: INSTO_LLOGIC;
22 mr:iNSTD_ULOGIC;
.| * Process _P1 has dynamic sensitivity list. b0 : IN STD_ULOGIC;
Ik I3 &t the bottom of the process, k may be repiaced by an equivalent s{ § [Se™Wotion STOUT : OUT STD_ULOGIC;
d1001: QUT STD_ULOGIC:
- Il you wark on Quicksimil: melrics d0011 : QUT STD_ULOGIC; .
* replace STD_ULOGIC type with the more efficiernt QSIM_STATE d0110 : OUT STO_LLOGIC;
Declared STD_ULOGIC oblect are: d1100: QUT STD_ULLOGIC), :
DIN, CK, MR, Bo, STOUT, D100+, DOB1 1, DO ™ T r— rrv—— T '
Efficiency Analysls Resits . :
* Signal SEL t is uselessly resoived: replace EFFICIEIICY EVA LUATION
* Signal SELZ is uselessly resolved: replace
* Nesting between guarded blocks is not an o e
try to replace them vith an equivalent sequery
Is tested in 8 WAIT ON - UNTIL statement »
Block INT1 have nesting level 2
"
* STABLE stiribute ot line 28 return a signal:
R may be replaced by the more eficient EVENN - Tegend
worst case L4
» sucinnt 60
Dest case 100
Tomdle ; !
.
Fig 5 SAVE execution: efficiency analysis results of bad description
A
ey
o = Msers/atoloneviisave wernsS fsm R] [)

i notl RNMD *=* 1) andnot(RNMI *=* '1') andnoyl RMATCH 4
A: TAGOEL <« 0° A: TAGWEL <= *1° A DIROEL <= "1* A: DIRWEL|
A: SETDIRTY <« 0" A: SETINV<e 0" A: SETVAL <= 0' A; SETHIT
A: STARTMGR« 0°

Inkial siate -» SO

7" WARNING: STATE S3 IS AN UNREACHABLE-STATE

°"° WARNING: STATE $4 IS A TRAP-STATE
—

Oeslpn Architacr

[COMPLEALITY EVALUATION

Carpimaly evaluaiion of e singls
wovst case 8 procens

S.

Fig 6 SAVE execution: complexity analysis and s anysis

5. Conclusion

Goal of the SAVE project is the definition and the
implementation of a set of tools to support the circuit designer to
improve the quality of VHDL descriptions. In particular, four
main parameters have been identified to evaluate the quality of
VHDL code: code complexity, simulation efficiency, feasibility are available up to now. Our project aims at filling the gap by

of the synthesis and circuit testability. The work presented in exploring the areas of complexity and simulation efficiency
this paper ‘ analysis.

concerns the definition and the implementation of new rules
allowing VHDL code analysis focusing on the first two points of
view. As discussed in the previous sections, only a limited
number of research contributes really oriented to VHDL metrics

Fig 7: Architecture of the prototype environment for efficiency /

complexity analysis.
Transformation VIF VHDL
Function Parser
xplanatory
Extended Graph Graph
neration |
> SAVE DATA BASE
e ——
> Efficiency
Metrics ‘
Expianatlon
! and Advise | 7
 Generation |
Complexity

Metrics

References

[AKS92]

(BKM90]

[C&A91]

[C&GI3}

E.J. Aas, K. Klingsheim, T. Steen “Quantifying
design quality: a model and design experiments”,
Proc. of the 6th European Conf. on State-of-the-art
ASIC, Paris, 1992.

S. Burson, G.B. Kotik, LZ. Markosian, “A
Program Transformation Approach to Automating
Software Reengineering”, Proc. of the 14th Int.
Computer Software and Application Conf., 314-
322, Washington, D.C., IEEE Computer Society
C.H. Cho, J.A. Armstrong, “VHDL Semantics for
Behavioral Test Generation”, in Computer
Hardware Description Languages and their
Applications, D. Borrione, R. Waxman (Editors),
1991 Elsevier Science Publishers B.V., North
Holland, pp. 427-444.

S. Carlson, E. Girczyc “Increasing Design Quality
and Engineering Productivity through Design
Reuse” Proc. of the 30th Design Automation

[CCK93]

[GKBS6]

[Hue91]

[Levil]

[RTY8S]

(Sha88]

< Source
VHDL

—-‘ Syntax
Report Bug

Graph
Istogram
Tables

Explanation
and Advise

Graphical
User
Interface

Conf., Dallas, Texas, 1993

S. Cha, LS. Chung, Y.R. Kwon, “Complexity
measures for concurrent programs based on
information-theoretic metrics”, Proc. of the 30th
Design Automation Conf., Dallas, Texas, 1993.
1.D. Gannon, E. Katz, V. Basili, “Metrics for ADA
packages: an initial study” Communication of the
ACM, July 1986.

M. Hueber, “VHDL experiments on Performance”,
EURO-VHDL ‘91.

O. Levia, “Writing High Performance VHDL
Models” EURO-VHDL ‘91.

J. Ramamoorthy, W. Tsai, T. Yamaura, A. Bhide,
“Metrics guided methodology” Proc. 9th Computer
Software and Application Conf. Oct.1985.

S. Shatz, “Towards Complexity Metrics for ADA
Software

tasking”, IEEE Transactions on

Engineering, August 1988

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

