
VHDL and Cyclic Corrector Codes

France Mendez

CNET Grenoble (France Telecom)

Abstract

Cyclic corrector codes, or "block codes",
are often used in telecommunications
systems. To facilitate the design of
coding/decoding circuits using this type of
code, we described the usual algorithms
using VHDL. The mathematics used for
these codes requires special packages to be
created describing the functions on Galois
Fields. The synthesis of components
performing these functions provided the
necessary information for choosing the
model of architecture.

Introduction

When studying cyclic corrector codes,
we were confronted with multiple
notations and numerous algorithms. The
model written in VHDL allowed us to
compare the different algorithms using a
unique notation, and the simulation of
VHDL descriptions enabled various
processes to be explored. With these
descriptions, we have been able to evaluate
the performances of each decoding
method. Using the results of the synthesis
of algebraic basic operators, it has also
been possible to help designers choose the
optimum architecture.

All the algorithms used for decoding
linear block codes require mathematics
based on the Finite Fields. To understand
the theory of the cyclic corrector codes, it
is necessary to make a short presentation
of the Finite, or Galois, Fields. First we will
explain how VHDL makes it possible to
synthesize operations over the Finite
Fields. After we will describe how to model
decoders using VHDL. Finally we will show

how the modelling can help in the choice
of the most appropriate architecture.

1. Presentation of Finite Fields

1.1. What are Finite Fields

The Galois Fields are vectorial fields with
a finite number of elements. Each element
A of the fields can be represented as a
vector on the primitive element named
"α"Ê:Ê

A = ajα
j

j=0

M −1

∑
where α is a root of a monic polynomial
PÊ:Ê

P x() = pj x
j

j=0

M −1

∑ and P α() = 0

As binary fields are normally used, aj
and pj are 1 or 0. All the non-zero elements
of the fields can also be represented as a
power of α.

For example in the field GF(23), formed
with the primitive polynomial x3 + x + 1,
α 3 = α + 1 and the elements can thus have
three representationsÊ:Ê

logarithmi
c

polynomial "vector
"

 1 1 0 0 1
 α1 α 0 1 0
 α2 α2 1 0 0
 α3 α + 1 0 1 1
 α4 α2 + α 1 1 0
 α5 α2 + α + 1 1 1 1

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the

ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

 α6 α2 + 1 1 0 1
 α7 1 0 0 1

In a binary field the fundamental
property of α is that α 2 M −1 = 1. A binary
Galois Field has only (2M-2) non-zero
elements. The zero element can not
normally be represented as a power of α. To
have a complete logarithm-representation,
we represent arbitrarily the vector ZERO
with α 2 M −1. This necessitates testing the
zero value in each function.

We will now see how VHDL transforms
this complicated mathematical theory into
synthesizable components.

1.2. The VHDL modelling for

Finite Fields

To describe the algebra in Galois Fields
using VHDL, a package of new types is
defined first, following by other packages
for the algebraic functions.

As explained, there are three
representations of each element, but the
polynomial and the vector can be
described using the same type called GFPM
(subtype of bit vector). Another type
named GF_ALPHA (subtype of integer) is
used for the logarithm. Conversion
functions allow translation between the
representations.
library IEEE, ALGEBRE_IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
package GF2_TYPE is
-- Declaration of the order of the Field M
 constant M : NATURAL := 8;
-- declaration of INFINITE
 constant INFINITE : NATURAL := 2**M-1;
-- Field element as polynomial
 subtype GFPM is UNSIGNED(M-1 downto
0);
-- Field element as power of Alpha
 subtype GF_ALPHA is INTEGER
range 0 to INFINITE;
Two other types were defined :

- MOT to represent a vector of GF_ALPHA, to
represent the polynomials with
coefficients in GF(2M).
- GF_ALPHABIT :Êthe representation of a
GF_ALPHA in bit vector, i.e. the
representation of an integer in bit vector.

For example, we often use the constant
V_INFINITE, which is a vector with all the
components at '1'. This constant is
equivalent to the zero value in vectorial
representation.

In another package the basic operations
over Finite Fields are described Ê:Êaddition,
p r o d u c t , d i v i s i o n , i n v e r s i o n ,
exponentiation, and multiplication by an
integer. In a binary field the subtraction
does not exist. Addition is described for the
GFPM'type and the GF_ALPHA'type.
library ALGEBRE_IEEE, IEEE;
use ALGEBRE_IEEE.GF2_TYPE.all;
use IEEE.std_logic_1164.all;
package GF2_SYNTH is
-- Definition of addition
-- of finite field elements
-- (polynomial representation)
 function PLUS_GFPM(OPA, OPB: in
GFPM)
 return GFPM;
-- Definition of addition
-- of finite field elements
-- (power of ALPHA as UNSIGNED)
 function PLUS_GFLOG(OPA, OPB:
 in GF_ALPHABIT)
 return GF_ALPHABIT;
-- Definition of addition
-- of finite field elements
-- (power of ALPHA as INTEGER)
 function PLUS_GFLOG(OPK1, OPK2:
 in GF_ALPHA)
 return GF_ALPHA ;
As the decoding generally uses more

products than additions, the other
functions are only described for
GF_ALPHA.

In polynomial representation, the
addition is a simple EXCLUSIVE-OR.
-- Definition of addition in GF(2**M)
-- polynomial representation
 function PLUS_GFPM(OPA, OPB: in
GFPM)
 return GFPM is
 begin
 return (OPA xor OPB);
 end PLUS_GFPM;
With the GF_ALPHA there are two

possibilitiesÊ:Êeither convert A and B into
GFPM, use an EXCLUSIVE-OR, and convert
the result into GF_ALPHA; or use the
ZECH'logarithm to perform the addition.

α Z (x) = α x + 1
ThenÊ:Ê

α x + α y = α (x + Z ((y− x) mod(2 M −1))) mod(2 M −1) =

α (y+ Z ((x − y) mod(2 M −1))) mod(2 M −1)

The first method uses three tables, the
second only one, but the modulo'addition
and modulo'subtraction are more
complicated. The logic synthesis showed
that the second method is more interesting
when M is higher than 5 (the usual case is
8).

As an example, the function
PLUS_GFLOG, which performs the addition
of two elements of GF(2M) in logarithmic
representation.
function PLUS_GFLOG(OPA, OPB:
 in GF_ALPHABIT)
 return GF_ALPHABIT is
 variable ADDRESS, VALUE, A, B :
 GF_ALPHABIT;
 begin
 --case of equality of the operands
 if OPA = OPB then
 return V_INFINITE;
 --case of null operand
 elsif OPA = V_INFINITE then
 return OPB;
 elsif OPB = V_INFINITE then
 return OPA;
 -- normal case
 elsif M < 6 then
 A := TO_GFPM(OPA);
 B := TO_GFPM(OPB);
 return TO_ALPHABIT(A xor B);
 else
 ADDRESS := SUB_MOD(OPB, OPA);
 VALUE := TO_ZECH(ADDRESS);
 return PLUS_MOD(VALUE, OPA);
 end if;
 end PLUS_GFLOG;
The product of GF_ALPHA also uses the

addition modulo (2M-1)Ê:Ê

C = α a × α b = α (a+b)mod(2 M −1)

The e x p o n e n t i a t i o n is like the
productÊ:Ê

C = An = (α a)n = α (a×n)mod(2 M −1)

For the decoding processes, only square

and cube are needed.
A special case is the inversion , i.e.

when nÊ=Ê-1. However, we must be sure
that A is non-zero if n is negative.

A−1 = α 2 M −1−a

For the divisionÊ:Ê

C = A / B = α (a−b)mod(2 M −1) if B ≠ 0
For the multiplication of A by an

integer n we can note that in a binary
field A + A = 0 . So if n is even the result is
zeroÊ:Ê

n × A =
0 if n even

A if n odd

All these functions can be modelled to be
synthesized using a logic synthesizer.
-- function addition modulo (2**M-1)
-- for UNSIGNED
 function PLUS_MOD(OPA, OPB : in GFPM)
 return GFPM;
-- function subtraction modulo (2**M-1)
-- for UNSIGNED
 function SUB_MOD(OPA, OPB : in GFPM)
 return GFPM;
function PLUS_MOD(OPA, OPB : in GFPM)
 return GFPM is
 variable R : GFPM;
 variable A, B : INTEGER range 0 to
INFINITE;
begin
 A := to_natural(OPA);
 B := to_natural(OPB);
 if (A + B) = 2*INFINITE then
 R := A0;
 elsif (A + B) >= INFINITE then
 R := conv_unsigned(A + B - INFINITE,
M);
 else
 R := conv_unsigned(A + B , M);
 end if;
 return R;
end PLUS_MOD;
function SUB_MOD(OPA, OPB: in GFPM)
 return GFPM is
variable S : GFPM;
begin
 S := PLUS_MOD(OPA, not OPB);
 return S;
end SUB_MOD;
They sometimes use intermediate

functions, like PLUS_MOD or SUB_MOD, to
calculate the addition or subtraction of two
integer modulo (2M -1), which are
described in the package.

A package has also been written
containing the conversion tables usually
used for various values of M. With this

package we can synthesize the conversion
functions between both representations.

Using all these packages, the decoding
processes can now be described.

2. Decoding Block codes

A cyclic code is a set C verifying :

c0 , c1, ..., cn−1() ∈C ⇒

 cn−1, c0 , ..., cn−2() ∈C

C = c0 , c1, ..., cn−1() ≈ C(x) =

 c0 + c1x+...+cn−1x
n−1

 C(x) ∈C ⇒ x × C(x) ∈C
The ci are elements of the Finite Field

GF(2M).
For each code there is a generator

polynomial G(x). Each element C(x) of code
C is a multiple of G(x)Ê:Ê

C(x) = xr × I(x) + R(x) = Q(x) × G(x)
where I(x) is the polynomial containing

the information before coding.
A Reed-Solomon code is normally named

with the parameters (N, K, d):
N :Êthe number of symbols in the
transmitted coded word
d Ê:Êthe distance of the code
KÊ:Êthe number of information symbols

Usually N is 2M-1. A code of distance d
can correct T errors if d≥ 2T+1. The code is
generated using polynomial G(x)Ê:

G(x) = x − α i()
i=0

2T −1

∏
Several methods exist for decoding cyclic

corrector codes. The most well known is
the Berlekamp algorithm [2]. A
combinational method can also be used[5],
or a method developed by Youzhi in [9],
which is like Berlekamp's, but without
inversion. Another method uses a function
similar to the Fourier Transform [4]. Not all
the decoding methods are described in this
paper. We only show how VHDL can help to
describe different decoding methods, using
component instantiation.

2.3. Modelling decoders

All the decoding processes are made of
several blocks.

In the "frequency-domain" there is the
direct method (Berlekamp or Youzhi)
withÊ:Ê
1 - calculation of syndromes
2 - calculation of sigma
3 - calculation of error positions with the
Chien search
4 - error evaluation
5 - correction

This case can be represented using the
schema shown in figure 1.

In the case of the transform method
(Blahut) the blocks are :Ê
1 - "transformed errors"
2 - calculation of sigma
3 - calculation of last "transformed errors"
4 - correction

We can also use the "Time-domain"
(Shayan)Ê:Ê
1 - calculation of sigma in time-domain
2 - correction

We have described each block as an
entity. The architecture can be
"functional" or "structural". All the
entities are generic with N and T. M is
a constant defined in the package
GF2_TYPE.

For exampleÊ:Ê
library ALGEBRE_IEEE, IEEE;
use IEEE.std_logic_1164.all;
use ALGEBRE_IEEE.GF2_TYPE.all;
entity YOUZHI_RS is
 generic(T, -- number of
errors
 N : INTEGER); --word length
 port(S : in MOT(2*T-1 downto 0); --
syndrome
polynomial
 RS, -- reset
 H_BIT, -- bit clock
 H_SYMB, -- symbol clock
 H_MOT : in STD_LOGIC; -- word
clock
 SIGMA_PRET : out STD_LOGIC;
 -- control signal
 SIGMA, OMEGA : out MOT(T downto
0));
 -- polynomials sigma and omega
 end;
For the Syndrome component

instantiation we use the "generate" VHDL
instruction.
 G_SYN : for J in 0 to 2*T-1 generate

 SYN : SYNDROME_RS
 generic map(J, N)
 port map(RI, RS, H_MOT, S(J));
 end generate G_SYN;
Using the functional architectures, we

have simulated the different decoding
processes. These architectures have also
been used to evaluate the performances of
a panel of six decoders [3]. See figure 2.

The results of the following table are
based on the algebraic operators used in
the algorithms.

Decoder Complexity Latency

7SA 2NT+(19/2)T+12
1-serial 8SM

1SINV
1SD

5(T+1)SA 2NT+(13/2)T+7
1 -
Parallel

4(T+1)SM

1SINV
1SD

5SA 2NT+(19/2)T+12
2-Serial 8SM

3SD
(3T+5)SA 2NT+(13/2)T+7

2 -
Parallel

(5T+9)SM

(2T+3)SD

6SA 2NT+6T^2+(27/2)
T+8

3-Serial 11SM
1SD

(2T+6)SA 2NT+(13/2)T+7
3 -
Parallel

(5T+11)SM

1SD

8SA 3NT+3N+4T-
2T^2+7

4-Serial 7SM
1SINV

(N+6T+2)SA 2NT+2N+6T+10
4 -
Parallel

(5T+5)SM

1SINV

7SA 3NT+3N+4T-
2T^2+7

5-Serial 7SM
2SD

(N+4T+2)SA 2NT+2N+6T+10

5 -
Parallel

(6T+7)SM

2(T+1)SD

4SA 5N^2+10N+5
6-Serial 8SM

1SINV
3SA 2(N+1)

6 -
Parallel

7SM

1SINV

- Table 1 -
SA : addition
SM : product
SD : division
SINV : inversion

2.4. Choice of architecture for

synthesis

Using our VHDL-Synthesis tool we have
evaluated components performing the
functions on Galois Fields. In the usual
case, the number of standard cells of each
operator isÊ:Ê

operator M = 8
log addition 695
log division 110
log product 95
log cube 43
log inversion 13
vectorial addition 8

Based on Table 1, we obtain the following
results in terms of number of standard
cells for the different decodersÊ:Ê

Decoder T = 2 T = 5 T = 8

1-Serial 5 748 5 748 5 748

1-Parallel 11 688 23 253 34 818

2-Serial 4 565 4 565 4 565

2-Parallel 10 220 18 560 26 900

3-Serial 5 325 5 325 5 325

3-Parallel 9 055 14 650 20 245

4-Serial 6 238 6 238 6 238

4-Parallel 189 088 203 023 216 958

5-Serial 5 750 5 750 5 750

5-Parallel 187 335 198 045 208 755

6-Serial 3 553 3 553 3 553

6-Parallel 2 763 2 763 2 763

SJ

SJ

SJ

2t component
SYNDROME

calculation of sigma

Chien search

Correction

IN

OUT

Delay

Figure 1

Chercheur de
chien modifié

Chercheur
de Chien

Transformées

D
o
m
a
i
n
e

T
e
m
p
o
r
e
l

Calcul des syndrômes

Youzhi sans
division

YouzhiBerlekamp

Chercheur
de Chien

1

2

34 5

6

Figure 2

Table 1 also gives us approximate arrays
in 0.7 µ technologyÊ:Ê

Decoder T = 2 T = 5 T = 8

1-Serial 10 mm2 10 mm2 10 mm2

1-Parallel 20 mm2 41 mm2 61 mm2

2-Serial 8 mm2 8 mm2 8 mm2

2-Parallel 17 mm2 31 mm2 45 mm2

3-Serial 9 mm2 9 mm2 9 mm2

3-Parallel 15 mm2 25 mm2 34 mm2

4-Serial 11 mm2 11 mm2 11 mm2

4-Parallel 338 mm2 362 mm2 387
mm2

5-Serial 10 mm2 10 mm2 10 mm2

5-Parallel 334 mm2 352 mm2 370
mm2

6-Serial 6 mm2 6 mm2 6 mm2

6-Parallel 5 mm2 5 mm2 5 mm2

To choose an appropriate architecture,
the designer must compare the area, but
also the time performances. The logic
Synthesizer provides the time period for
the operators

operator M = 8
log addition 77,6 ns
log division 1,1 ns
log product 27,2 ns
log cube 19,1 ns
log inversion 17,8 ns
vectorial addition 7,4 ns

In the case T = 2, the results for the
latency in clock'cycles are the
followingÊ:Ê

Decoders M=8

1-Serial/2-Serial 1 055

1-Parallel/2-
Parallel

1 049

3-Parallel 1 044

3-Serial 1 083

4-Serial/5-Serial 2 311

4-Parallel/5-
Parallel

1 558

6-Parallel 514

6-Serial 330 245

The complete results given in [3] and [7]
will help the designer to choose the
smallest and fastest Reed-Solomon decoder.

Conclusion

The use of VHDL has allowed us to work
in different steps. First the description of
the algebra on Finite Fields; secondly the
comparison between different decoding
methods and the evaluation of the
different performances; and thirdly the
synthesis.

Finally, the very mathematical theory of
cyclic corrector codes can become VLSI
circuits with the help of VHDL and
synthesis.

Bibliography

[1] R. AIRIAU, J.M. BERGE, V. OLIVE, J.
ROUILLARD : VHDL Du langage à la modélisation..

Presses Polytechniques et Universitaires
Romandes 1990.
[2] E.R. BERLEKAMP : Algebraic Coding Theory .
Mac Graw Hill 1968
[3] S.ÊBERNARDÊ:ÊArchitectures et performances
de décodage des Codes Reed-Solomon.. Note
technique CNET NT/CNS/CIT/115. 7/1993.
[4] R. BLAHUT : Digital transmission of
information. Addison Wesley Publishing Co 1990
[5] M.CAND : Approche combinatoire du décodage
BCH. Note technique CNET NT/CNS/CCI/103.
3/1992
[6] F. MENDEZ : Modélisation VHDL des
codeurs/décodeurs BCH et Reed-Solomon.. Note
technique CNET NT/CNS/CIT/113. 4/93.
[7] F. MENDEZ : Décodeurs Reed-Solomon : Aide
au choix d'une architecture synthétisable en
VHDL. Note technique CNET 12/93.
[8] Y. SHAYAN, T. LE-NGOC, V.K. BHARGAVA : A
versatile Time-domain Reed-Solomon decoder.
IEEE Journal on Selected Areas in Com. 8 N°8.
(pp. 1535-1542) 10/1990.
[9] X. YOUZHI : Implementation of Berlekamp-
Massey algorithm without inversion. IEE
PROCEEDINGS-I 138 N°3 (pp. 138-140) 6/1991

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

