
A Process Algebra Interpretation of aVerificationOrientedOverlanguage
of VHDL

C.Bayol, B.Soulas (1); F.Corno, P.Prinetto (2); D.Borrione (3)

(1) EDF/DER, 77250 Moret/Loing, France;
(2)Politecnico di Torino, Dpt Automatica e Informatica, Turin, Italy;
(3)J. Fourier University, IMAG/ARTEMIS Lab, Grenoble France.

Abstract

The VOVHDL language was defined as a verification
oriented VHDL–based language in order to obtain a VHDL
simulable specification at system level and to be able to
verify this specification in a Process Algebra approach. This
paper presents a formal semantic model for VOVHDL in
terms of parallel composition of Labelled Transition Sys-
tems, and its implementation with the EVAL CCS–based ver-
ification tool.

0 – Introduction

In the context of complex systems development, as
VLSI components, it is now usually admitted to proceed by
successive specification refinements. The quality of the
final system is then ensured by a Verification process which
allows to control the conformance of each specification step
with the previous one [SGT, 92].

Thus, such a methodology comes up against the seman-
tic gap between two specification levels : from a General
Requirement File to a Detailed Design Specification, where
technological constraints appear explicitly, there is neces-
sarily one (or more) frontier hard to cross.

The System Specification file is, doubtless, the first of
these borders. It creates a link, generally by contract,
between customer and designer. According to the General
Requirement File, it constitutes a more complete and non
ambiguous translation of foreseen services, while according
to design, it draws a first functional decomposition,
introducing the dimensioning constraints of the chosen
technology.

A typical example is the design of an ASIC component,
which implements the functionality of a communication
protocol. On the one hand, the General Requirement File,
frequently given by a protocol standard, can be formally spe-
cified and validated according to a Process Algebra
approach, on the other hand, detailed design will be sup-
ported by means of CAD tools using the standard description
language VHDL. Then, in a formal verification context,
which language are we going to use to describe the system

level specification file, knowing that the link between
VHDL and CCS is yet in research domain [DJS,93],
[OC,93]?

To answer this question, an overlanguage of VHDL,
VOVHDL (Verification Oriented VHDL) was defined
[CCPBS, 93a] with the following properties:

– to offer more powerful communication features, dedi-
cated to the elaboration of a specification at system level.

– to be compatible with the standard VHDL, thus enab-
ling a traditional VHDL_based design at the lowest levels.

– to guarantee the translation of a VOVHDL specifica-
tion system, into a Process Algebra model, with the view to
formally verify its conformity with the General Require-
ment File.

The content of this paper relates the third point, showing
how to express new semantic rules of VOVHDL language as
behavioral models. This point illustrates more particularly
how the gap between synchronous semantics can be bridged.

In a first part, we give a short summary of the VOVHDL
semantics. Then, we explain its interpretation according to a
CCS approach. Finally, we show how these concepts were
put in concrete models, using the industrial tool EVAL,
based on Labelled Predicates/Transition nets.

I – VOVHDL Communication Semantics

I.1 – Based on high level protocols ...

I.1.1 – Channel Definition : in VHDL, communication
channels are not explicitly defined; the broadcasting of sig-
nals implements the links between VHDL processes.

In VOVHDL, a new specific statement allows to define
a multiple channel with several senders and several receiv-
ers. The several senders of a channel must verify Composi-
tion Rules which can be : ALL (all senders have to be ready
and transmit the same value at this simulation step), ONE (as
soon as a sender is ready it transmits its value on the chan-
nel), SOME (in a non deterministic way, a subset of senders
among those that are ready and that transmit the same value
is chosen to realize the communication). In the same way,
several receivers of a channel have to verify Dispatching
rules such as : ALL (all receivers have to be ready to receive

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

the message on the channel), ONE (in a non deterministic
way only one receiver receives the message), SOME (all the
receivers which are ready receive the value of the channel)

 A channel is characterized by its name, its protocol, its
transmitter set with composition rules, its receiver set with
dispatching rules.

The protocol can be MULTI–RENDEZ–VOUS (MRV),
CALL&RETURN (CALL), VSIG_value, VSIG_event
(where VSIG means ”VHDL signal”).

0.1.1 – Communication Protocols : protocols play a key
role in the VOVHDL communication model. We briefly
introduce their semantics.

MRV : the communication takes place when all trans-
mitters (according to the specified composition rule) are
ready to transmit AND all the receivers (according to the
specified dispatching rule) are ready to receive. The com-
munication is supported simultaneously by all the processes.
Otherwise, ready processes are blocked, waiting for the
other ones.

CALL : the transmitter sends a message and holds,
awakening the receiver, that is waiting for a message. Only
when the receiver acknowledges the end of its task, the
sender resumes its activity. The call&return protocol is eas-
ily interpreted in terms of two MRV communications.

VSIG : the transmitters (according to the specified com-
position rule) transmit a message on the channel which can
be seen as a one–message buffer holding the most recently
written value. The two following reception modes may be
defined :

♦ value–driven reception (VSIG_value protocol) :
receivers read at any time the most recently written message.

♦ event–driven reception (VSIG_event protocol) :
receivers wait until a new value is written, then resume with
the new value read.

0.1.2 – Send and Receive Statements : in order to constrain
the use of the VOVHDL protocols, the signal assignment
and WAIT statement are forbidden. In VOVHDL, the
information transfer between two processes is explicitly
declared by the use of the two following communication
primitives:

♦ SEND (ch1, val_out) : a module transmits the value
val_out on the channel ch1;

♦ RECEIVE (ch1, val_in) : the module receives the
value val_in on the channel ch1.

Thus, in a VOVHDL specification, all the communica-
tion events correspond to either a SEND or a RECEIVE
statement invocation.

However, the information transfer between the sender
and the receiver is realized if and only if the channel proper-
ties are satisfied (composition, dispatching, and protocol
rules). For instance, on a channel with the MRV protocol, the
ALL composition rule and the ONE dispatching rule, the
communication is possible if and only if, at the same simula-
tion time, all the senders of the channel are ready to transmit
the same value and, at least one among the receivers of the
channel is ready to receive. Otherwise, the module, either a
sender or a receiver, has to wait until these rules are satisfied.

Note that the VSIG_value protocol never leads to a blocking
state, neither for a sender nor for a receiver.

0.2 – ... but Synchronous Executive Semantics.

In order to interpret a VOVHDL specification according
to a VHDL–like simulation view, the communication
semantics of VOVHDL needs to inherit the VHDL synchro-
nous characteristic. So, a simulation step δVOVHDL is
defined as the internal time which separates two VOVHDL
communication events. It is like an event driven simulation.

 Like a ”blocking sampler” functioning, the unrolling of
a VOVHDL program can be decomposed into three simula-
tion parts as follows :

1– At the beginning of the simulation step, the input val-
ues of all channels are sampled and blocked.

2– Then, each process resumes its processing until its
next communication event. It can be a SEND or a RECEIVE
event.

3– When all processes are stabilized, the availability of
information transfer is evaluated for each channel, accord-
ing to the composition, dispatching and protocol rules. In
successful cases, the value of the channel is propagated to
the receiver for the next simulation step.

In unsuccessful cases, the concerned modules are
blocked until the third part of the next simulation step, in
order to evaluate again the channel rules, and so on until their
satisfaction. By this way, a process may be in a waiting state
during several δVOVHDL.

I – Formal Semantic Model for VHDL in
terms of Labelled Transition System (LTS)

I.1 – Preserving Trace

In order to support the double objective of VDHL–based
design and CCS–based verification, as described in the
introduction, we have to consider two translations. On one
side, we have to translate a VOVHDL specification into a
VHDL script, on the other side we interpret it into CCS
semantics.

However, to guarantee the validity of the verification
itself, these translations have to be performed in such a way
as to preserve the conformance between the VHDL specifi-
cation and the CCS model. VOVHDL internal and external
communication events must be observable in theVHDL and
CCS translations.

VOVHDL and VHDL have both a synchronous execu-
tive semantics. Therefore, the package feature of VHDL tool
facilitates the translation from one to the other. In fact, the
translation leads to decompose each VOVHDL simulation
step into several VHDL simulation steps. This introduces
additional internal transitions. That is why the VOVHDL
protocols are modelled in a VHDL way that respects each
VOVHDL simulation step (VHDL simulation steps are
adjusted to VOVHDL ones). The VOVHDL event traces are
preserved by the VHDL translation.

In order to obtain the same result with the CCS transla-
tion, we have to consider two aspects :

♦ the interpretation of the behavior of each process, in
terms of LTS model, according to the VOVHDL commu-
nication events.

♦ the interpretation of the VOVHDL communication
semantics in term of a behavioral module described as a
LTS.

Then, two VOVHDL processes, P1 and P2 composed
according to VOVHDL communication are interpreted in
CCS semantics by the parallel composition of(see Figure 1):

♦ LTS representation of each process
♦ The VOVHDL communication behavioral model

BVOVHDL_COM.

P1 // VOVHDL P2

//ccs
[BVOVHDL_COM] ccs// P2P1

LTS LTS

Figure 1 : Vovhdl parallel composition into CCS

I.2 – LTS Interpretation of each process

I.2.1 – A VOVHDL Process into LTS : if we consider a
VOVHDL process as a black box with input and output
ports, we can observe VOVHDL communication events
during the simulation of the global VOVHDL specification.
Theoretically, it is possible to interpret the obtained trace in
terms of a Labelled Transition System (LTS).

This LTS may be characterized by :
♦ each state corresponds to the moment immediately

before a communication statement,
♦ each transition, labelled with the communication

statement which follows the current state, corresponds to
one VOVHDL simulation step.

In practice, the extraction of the LTS model from the
VOVHDL specification comes up against the conditional
branching structure allowed by the VHDL language. Thus,
formal computing of all the possible transitions from one
state to the other ones is made difficult.

That is why, a more direct solution is to use a tool such as
EVAL (see below), whose description language allows to
represent the conditional branching statement, and which
supports an exhaustive simulator engine in order to obtain
the reachable states graph.

In addition, as explained above, some VOVHDL proto-
cols may lead to blocking situations. In order to represent
them, the LTS model must be completed with a loop transi-
tion on each state from which a communication event occurs
on channel with such a protocol.

start_st

arrival_st

SEND(ch1, val_out), ok

SEND(ch1, val_out), nok
A loop transition to
take into account a
blocking situation

Figure 2 : loop transition

I.2.2 – Synchronous Interpretation : even without consid-
ering the communication exchange between the processes,
the synchronous semantics of the VOVHDL enforce an
implicit synchronization of them.

Indeed, the LTS models evolve in a synchronous way:
♦ from their initial state at the same starting time,
♦ by firing at the same time one transition.
If we consider the LTS model of one process separately

from the global system, its behavior is non deterministic due
to the loop transitions (see Figure 2). However, the model-
ling of VOVHDL communication semantics, and the paral-
lel composition of all the processes should guarantee that, at
each simulation step, only one of the two labelled transitions
(the principal and loop ones) is enabled from each state. That
is why we need to distinguish them by extending the label
(for instance ok for not blocking, nok for blocking).

I.3 – Communication Interpretation

I.3.1 – A Fundamental property : considering the LTS
interpretation of the behavior of a VOVHDL process, a very
simple but fundamental property may be brought into the
fore

At each moment, e.g. at each simulation step, each
process is active on one and only one channel.

The reason is that we consider one state before each
communication event. However, it would be possible to
extend the VOVHDL in order to take into account a multiple
activity on several channels during one simulation step. But
in this case, we must interpret this multiple exchange as a
unique and atomic communication event.

Considering the synchronous evolving of all processes,
the communication model has to represent their parallel
composition in terms of successful or unsuccessful rendez–
vous of the different activity on each channel, according to
its composition, dispatching and protocol rules.

For this reason, a first approach leads naturally to model
each channel as a module linked to its sender processes and
its receiver processes. But the analysis of this solution, as
shown below, will lead to consider an other architecture.

I.3.2 – A communication Module to each Channel : this
approach consists in replacing each channel of a VOVHDL
specification with a communication module which reflects
the behavior of the specified protocol on the channel, includ-
ing CR and DR rules (see Figure 3).

This communication module is composed with its
sender and receiver processes according to the CCS rendez–
vous.

P2

initial model

VOVHDL communication
channels

P3P1

ch3

ch2
ch1

ch4

CCS

A module for each channel

P2

P3P1

CCS

Figure 3: One communication moduleperchannel
This architecture has to be interpreted in terms of paral-

lel composition of :
♦ P1 || P3 || ch1; labels set [Send(ch1,_), Receive(ch1,_)]
♦ P1 || P2 || P3 || ch2; labels set [Send(ch2,_), Receive(ch2,_)]
♦ P2 || P3 || ch3; labels set [Send(ch3,_), Receive(ch3,_)]
♦ P1 || P2 || ch4; labels set [Send(ch4,_), Receive(ch4,_)]

At each step, the communication module is in rendez–
vous with a subset of its sender and receiver processes.
According to the protocol rules, it has to manage so that pro-
cesses evolve by firing their principal transition or their loop
one. The channel module is in rendez–vous with an active
process by means of one of its two transitions, with respect
to the necessity to block it or not, at the same state.

At this point, a first problem appears due to the fact that
there is at each step only a subset of active processes on a
given channel. For example, if P3 is active on ch3, it can not
be active on ch1, at the same time. For this reason, the behav-
ioral model of the channel has to contain as many transitions
as the number of possible subsets of the senders and receiv-
ers set, in order to avoid any deadlock.

Then a second problem appears : the communication
module becomes by this way non–deterministic, due to the
fact that two transitions relative to two subsets, one included
in the other one, are concurrent. For instance, for ch2, it is
necessary to have a transition for the case where P1 and P2
are active and an other one in case where only P1 is active :
but this last transition is also enabled when P1 and P2 are
active at the same time.

In order to ensure that only the transition corresponding
exactly to the subset of active processes fires, it is necessary
to label it by the non–activity of the other processes. This
enforces that all processes are linked to each channel mod-
ule. Thus each process broadcasts its communication event
to all channel modules, and informs one channel of its inac-
tivity on it by stating that it is active on an other one.

In conclusion, this analysis leads us to consider a new
architecture as depicted below :

P1 ch1

ch2

ch3

ch4

P2

P3

Figure 4 : Broadcasting between processes and
channels

In this manner, one simulation step evolving is repre-
sented by a parallel composition which corresponds to the
synchronization of one transition in each process and in each
channel module. For example, if P1 and P2 are active on the
channel ch4 and P3 on ch3, the evolution may be repre-
sented, as shown in Figure 5, by the synchronization of one
transition in each process and the corresponding transition in
each channel module labelled with the composition of the
three communication events.

In fact we have to point out that it is the same transition
in all channel module ; the single difference is that the com-
puting of the protocol rules is distributed on each commu-
nication module supporting the characteristics of each chan-
nel.

This is the reason why we define a new communication
model constituted by only ONE communication module
connected to all channels.

I.3.3 – Only ONE Communication Module for all Chan-
nels : in this approach, we collect all channels into a unique
communication module.

 Each process is connected to the communication mod-
ule, and transmits to it which channel it is active on (see
Figure 6).

P1

P2

P3

 communication
module

Figure 6 : one communication module
The communication module contains the definition of

all channels, i.e. the composition rule, dispatching rules and
protocol of each one. Formally in terms of the LTS model,
we have to consider two points : the synchronous aspect of

state_start

SEND(ch1, val_out), nokstate_start

state_arrival

SEND(ch4, val_out), ok

state_start

state_arrival

RECEIVE(ch4, val_out), ok

P1 P2 P3

state_start

state_arrival

RECEIVE(ch4, val_out), ok
SEND(ch4, val_out), ok

SEND(ch1, val_out), nok

in each
channel module

Figure 5 : Simulation step as Transition comparison

VOVHDL and the behavioral model of the different proto-
cols allowed by the VOVHDL language

The first point is solved by modelling the communica-
tion module with only one state. In addition, this choice
guarantees that the LTS model does not introduce extra
internal transition.

The second point may be represented, for each protocol,
by a set of transitions, as a loop on the unique state : each one
has to represent each situation which can be met, concerning
the activity or not of processes, and the corresponding block-
ing condition : for instance for MRV on ch1 between two
modules P1 and P2. Process P1 can be ready to send a value
val_out on channel ch1 (i.e. to be in a ok state). At the same
time, process P2 can be ready to receive the value val_in on
ch1. On the same schema, there are two kinds of possible
transitions: one corresponding to the fact that P1 is in a
blocking state and process P2 can be in a sending or receiv-
ing mode on a channel different from ch1; conversely,
another transition corresponds to the fact that P2 is in a
blocking state but P1 can be sender or receiver on another
channel.
{ SEND(ch1,val_out), ok || RECEIVE(ch1,val_in) ok} ∪
{ SEND(ch1,val_out), nok || EvtSt(chi,val_in) X | i≠1} ∪
{ EvtSt(chi,val_out), X || RECEIVE(ch1,val_in) nok | i≠1}

X takes the value ’ok’ (there is no blocking) or ’nok’
(there is a blocking). Val_in and val_out are the received
and sent values on a channel. EvtSt can take the value SEND
or RECEIVE.

P1 P2

P3

ch1

ch3

P4

ch2

> >

>
>

>
>

Figure 7 : An example

The transition is in fact labelled with the same number of
communication events as the number of processes. Thus the
Cartesian product of the set of transitions for each channel
must be considered. In the previous example, if we add a
third process P3 connected to P2 with the MRV channel ch2,
and a fourth process P4 connected to P1 with the MRV chan-
nel ch3 (see Figure 7), the set of possible transitions (events
in the order of the processes P1,P2,P3,P4) is the following:
{SEND(ch1,val_out) ok || RECEIVE(ch1,val_in) ok ||
RECEIVE(ch2,val_in) nok || SEND(ch3,val_out) nok }∪
{SEND(ch1,val_out) nok || SEND(ch2,val_out) ok ||
RECEIVE(ch2,val_in) ok || SEND(ch3,val_out) nok }∪
{RECEIVE(ch3,val_in) ok || RECEIVE(ch1,val_in) nok ||
RECEIVE(ch2,val_in) nok || SEND(ch3,val_out) ok }∪
{RECEIVE(ch3,val_out) ok || SEND(ch2,val_out) ok ||
RECEIVE(ch2,val_in) ok || SEND(ch3,val_out) ok }

In this example, we can notice that two concurrent
information transfers may occur on two different channels
(the last case).

It is sure that in the case of more complex system, the
manual computation of all information transfer cases is
impossible. That is why a predicate–based approach is more

appropriate to express,in a symbolic way, the logical link
between the channels on which processes are active and the
status (blocking / non blocking) for each process.

A last point must be considered by the communication
module, concerning the computation of the value of each
channel (val_in) which are transferred as input of processes,
on the base of the values (val_out) which were transmitted
by the SENDER processes of the channel. In fact, due to the
delay introduced by the simulation step, it is necessary to
consider a resource for a protocol such as VSIG ; the value
val_in is thus computed from the current value of this
resource, which itself evolves according to the transmitted
values val_out.

We can notice that the MRV protocol does not need any
resource. This is because the information transfer occurs in
the same simulation step, if senders AND receivers are
ready.

To compute this data flow, we also benefit from a predi-
cate–based approach, implemented in the EVAL tool.

II – A Predicate–Based Modelling

II.1 – EVAL Tool Principles

EVAL is an industrial tool developed by EDF and VERI-
LOG providing modeling and validation features for the
analysis of system behavior. Thanks to Labelled Predicate/
Transition Nets, and a Prolog engine, the EVAL tool can be
used for high abstract level modeling, particularly suitable
for the case of global system and software [LlAV, 90].

A multi–level hierarchical modeling is performed by
means of an efficient graphic editor.

 The tool is based on Petri net formalism, with Predicate
and Labelled extensions. A transition is characterized by :

♦ preconditions : the set of required communication
events (input or output), the set of required places, a PRO-
VIDED condition,

♦ postconditions : the set of replacing places.
The places are defined as predicates. The condition

PROVIDED, expressed in Prolog, may specify typing, data-
base, logical conditions or processing.

The semantics of communication between the sub–
modules is based on a multiple RENDEZ_VOUS mode
which is an extension of CCS [Mi, 89] and LOTOS [BR,88]
communication. The tool also includes a communication
mode by FIFO queues. The global Petri Net is computed
using the parallel composition operator of the CCS algebra,
which is expressed by transition merging [LlAV,90] of the
models of all sub–modules, at the decomposition level con-
sidered.

Thanks to an exhaustive simulation engine, EVAL
builds the reachable state graph, interpreted as LTS, on
which standard model checking properties (deadlock, live-
ness, models that are not cyclic, dead code) are provided.

Finally, EVAL supports Process Algebra operators such
as composition, reduction based on bisimulation [Mi, 89],
trace equivalence, temporal logic formula checking...

II.2 – EVAL Implementation

From section II, we define the requirements that the
EVAL communication has to verify.

♦ In a SYNCHRONOUS way, it receives the activity of
each module, e.g. on which channel it communicates. From
a SENDER, it receives also a value.

♦ For each channel, it decides if protocol and rules on
SENDERS (composition rules) and RECEIVERS (dispatch-
ing rules) are verified.

♦ To each process, it sends the blocking conditions and,
to a receiver, the current value of the channel.

♦ For each channel, it updates the resource (containing
the current value on the channel).

The communication module behavior is defined by
means of only one transition, thanks to the predicate–base
approach.

Each process Pi is connected to the communication
module by one interaction point. This link is a bi–directional
link and allows to transmit in one step :

♦ in one way : the channel on which the process is active
and the value sent (nil if receiver),

♦ in the other way : the blocking result and the value
received (nil if sender).

The EVAL model contains only one place list_fifo(L) ,
which represents the list of channel resources.

All the simulation engine is defined by an unique predi-
cate simul. This one can be generic on the base of the formal
model of the protocol. Prolog predicate simul computes out-
put variables (blocking, val_out, new fifo) depending on
input ones (channel, val_in, fifo) in the following manner.

For each channel :
♦ it verifies if composition and dispatching rules are

respected,
♦ according to protocols of the channel, it computes the

new values and the new processes blocking conditions
♦ according to protocol, it updates the value contained

in the channel.
For instance, let us consider a channel with the protocol

RDV, Compositional Rule ALL and Dispatching Rule ONE.
If ALL transmitters of the channel are active and trans-

mit the same value ’VAL, then CR is verified. If ONE
receiver among ALL receivers of the channel is ready then
DR is verified.

If CR and DR are verified then the communication is
possible and the transmitters and receivers are unblocking.
The receivers receives the value ’VAL.

If one of the two rules CR or DR is not verified then
transmitters which were ready are blocked, waiting for the
others.

Let us consider an other example: VSIG_val protocol
for which no blocking conditions on senders and receivers
are specified. So, it can be interpreted as a protocol with
ONE as Composition Rule and SOME as Dispatching Rule.
Among transmitters that are ready, one is selected in a
non_deterministic way to put its value sent (VAL) into the
buffer associated to the channel.

 At the next simulation step, the value ’VAL contained
into the buffer can be read by all receivers which are ready.

III – Conclusion

This paper presented the LTS interpretation of the Veri-
fication Oriented VHDL language, and its implementation
on CCS–based EVAL tool.

In order to meet this objective, we showed how the syn-
chronous aspect of the VOVHDL language may be repre-
sented in terms of parallel composition of LTS models, con-
cerning both the processes and the information transfer
between them.

Thanks to a predicate–based approach, the communica-
tion model is reduced to a single generic transition, particu-
larly significant of its synchronous characteristics.

Strengthened from this result, we now intend to study
the VHDL semantics, according the same approach.

Acknowledgement
The authors would like to thank two anonymous review-

ers for useful suggestions and comments.

References
[BCG, 93] M.Belhadj, R.MC Connell, P.Le Guernic ”a fra-
mework for Macro– and micro–time to model VHDL attri-
butes” Proceeding of EURO–VHDL ’93, EURO–DAC ’93.

[BR, 88] E.Brinksma ”On the design of extended LOTOS”
PhD Thesis. Twente University. Holland 1988

[CCPBS, 93a] P.Camurati, F.Corno, P.Prinetto, C.Bayol,
B.Soulas ”VOVHDL : A verification–oriented dialect of
VHDL” VHDL–FORUM 1993.

[CCPBS, 93b] P.Camurati, F.Corno, P.Prinetto, C.Bayol,
B.Soulas ”Inter–process Communication for System–Level
Design” International workshop on Computer Aided HW/
SW Co–design 1993.

[DJS, 93] W.Damm, B. Josko, R.Schlör” A Net–Based
Semantics for VHDL” proceeding of EURO DAC ’93,
EURO VHDL ’93.

[LRM, 88] IEEE STANDARD VHDL Language Reference
Manual IEEE Inc.,New_York NY, Mar 1988.

[LlAV, 90] JC. Lloret, P. Azema, F.Vernadat, ”Compositio-
nal design and verification with Labelled Predicates/Transi-
tion Nets” proceedings Computer Aided Verification 90,
Rutgers University, New Jersey (1990).

[Mi, 89] R. Milner ”Communication and Concurrency”
Prentice Hall, Englewood Cliffs, NY (USA), 1989.

[OC, 93] S. Olcoz, José Manuel Colom ”Toward a formal
Semantics of IEEE Std. VHDL 1076” Proceeding of EURO–
DAC ’93, EURO–VHDL ’93.

[SGT, 92] B. Soulas, JC. Geoffroy, Mme Tallec ”Toward an
integrated approach to qualification of numerical systems”
International symposium on Nuclear Power Plant, Instru-
mentation and control, Tokyo, may 1992.

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

