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Abstract

A set of concurrent processes communicating through
shared variablesis an often used model for hardware sys-
tems. This paper presents three modeling techniques for
representing such shared variables in VHDL, depending
on the acceptabl e constraints on accesses to the variables.
Also a set of guidelines for handling atomic updates of
multipleshared variablesis given.

1 Introduction

It is often desirable to partition a computational system
into discrete functional units which cooperates to solve a
giventask. In order to be able to cooperate, it is necessary
for the functional units to communicate information; the
communication can be based on various models, one of
which is shared variables.

The primary characteristic of shared variables is that
multiple functional units may access a given variable for
reading and writing; between updates, the shared variable
retains the most recently written value. For the class of
shared variables considered here, multiple simultaneous
write accesses are not permitted.

Shared variables can be used for severa different pur-
poses, at variouslevels of abstractions. A few examples of
these uses are;

¢ In the language modd Synchronized Transitions [7],
shared variables are used as the medium of commu-
nication between a set of transitions, i.e., guarded,
atomic variable assignments.

e Duringhigh-level synthesisfrom aprocedura defined
functional unit in VHDL (i.e.,, a high-level process),
the sequential behavior is transformed into a set of
concurrent functional units. AsVHDL alowsan out-
put to be updated from several pointsinthe sequential

*This research has been sponsored by the Danish Technical Research
Council.
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Figure 1: Inter process communication through shared variables.

Control:
Process P3:
var + 15;
suspend until var = 1;
var «+ 0.

Compute:
Process P1:
forever
suspend until var # 1 A odd(var);
var + var* 3+ 1.

Process P2:
forever
suspend until var # 0 A even(var);
var « var/ 2.

Listing 1: Pseudo code to test 15 for wondrousness[3].

code, this leads to a requirement for a given output
to be updated from several of the resulting functional
units[1]. Thisisnaturally modeled as ashared output
variable.

e Theparasitic capacitancesinherent inthe CMOStech-
nology allowsbusesto storevalues on thesignd lines.
Shared variablesis areasonable mode for thisbehav-
ior.

Listing 1 shows a ssimple example of an agorithm [3,
pp. 400 — 401] which uses a shared variable for communi-
cation between independent processes (see figure 1).

In many cases it is interesting to be able to model the
shared variable concept in VHDL. As figure 1 illustrates,
a shared variable exists, in a sense, independently of the
design hierarchy. This creates problems for the modeling
inVHDL.

One possible approach might be to use the global vari-
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ables of VHDL’ 93 [4];* however, the global variables are
primarily intended for system level modeling, permitting
any process in the hierarchy to access a few select vari-
ables. In hardware models, where the shared variable con-
cept is the main communication mechanism, this kind of
global visibility isunacceptable; all communication should
be explicitly stated in the interface declaration.

This paper presents three different models for shared
variables; usingthebuilt-insupportfor registersin VHDL,
modeling hierarchical shared output variables and a model
providing full shared variables. Finaly some usage guide-
linesfor the latter model is presented.

2 Usngtheregister Based Shared Variables

VHDL partly supports shared variables through the spe-
cia signa kind caled register [6, pp. 209-211]. A reg-
ister signal retains its last value when al its drivers have
been disconnected (i.e., when null is assigned to the signal
driver).
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Figure 2: Modeling shared variablesusing theregister construct.

subtype Var i abl eType isVal ueType;

typeVect or Type isarray (| NTEGER range< > ) of Vari abl eType;

function Resol ver (1 nput : Vect or Type) returnVari abl eType;

subtype Shar edVar i abl eType isResol ver Vari abl eType;

procedure Shar edW i t e( signal Shar edVar : out Vari abl eType,
Val ue : inVal ueType) ;

Listing 2: Type definitionsfor register based shared variables.

Having multiple sourcesfor the signal makes abusreso-
lutionnecessary (seelisting2; theVal ueType may beany
user type). However, as only onedriver may be connected
(non-null) at a given time, the bus resolution function is
very smple, asillustrated in listing 3. A shared variable
may be updated through the procedure shown in listing 4.

1While global variables have been included in the standard, the access
mechanism has not been finalized, effectively making global variables
unavailable at the time of writing.

function Resol ver (I nput :
begin
assert | nput’ LENGTH=1 or NOM0 NS
report” Miltiple drivers" severity ERROR
rgturn I nput (I nput’ LEFT) ;
end;

Vect or Type) returnVari abl eType is

Listing 3: The bus resolution function for register based shared
variables.

procedure Shar edW i t e( signal Shar edVar : out Vari abl eType,
Val ue : inVal ueType) is
begin
SharedVar < =Val ue;
wait for O NS;
SharedVar < =null;
end;

Listing4: Procedurefor updating aregister based sharedvariable.

The ‘wait for 0 NS’ ensures that the shared variable will
be updated before the driver is disconnected again.

Themainlimitation of usingtheregister construct isthat
ahierarchy of driversfor the signal cannot be modeled (as
aresolution function cannot return null), i.e,, it ispossible
to propagate a value up through the hierarchy for reading,
but not for writing. This situation is shown in Figure 2:
Process P1 and P2 share avariable Var whichisasignal
of kind register. Var may only be written fromwithinthe
entity | nner . The signal may however beread in process
P3 which isat the next hierarchical level.

Another problem is due to the restriction that null can-
not be used to initidize signal drivers (the null literal is
always of an access type). To work around this problem,
theimplicit loop of each process have to be trandated into
an explicit loop. Listing 5 shows the structure of a process
statement, inwhich all output driversarefirst set tonull and
the actual execution is then placed in the explicit infinite
loop.

.si.g.nal Var : SharedVari abl eType;
process
begin
Var < =null;
ioop
§Har edWite(Var, Var +1);
end ioop;
end process;

Listing 5: The structure of a process statement using the regis-
ter based shared variables (in the examples the Val ueType is
assumed to be an integer).



3 Modeling Shared Output Variables

The main limitation of the register based shared vari-
ablesisthat hierarchica output drivers cannot be handled.
If thisis an unacceptable restriction, a slightly more com-
plicated solution must be chosen. In this case the shared
variablesare modeled by arecord (listing 6) containingthe
value as well as drive information. Encoding the drivein-
formation within the signal enables the resolution function
to propagate disconnection status.
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Figure 3: Modeling shared output variables.

Asseen from listing 7, it is now necessary for the reso-
[ution function to scan the completelist of inputs; thiswas

typeDriveTypeis(lnvalid, Valid);
typeVari abl eType isrecord

Val ue : Val ueType;

Drive: DriveType;

end record;
typeVect or Type isarray (| NTEGER range< > ) of Vari abl eType;
function Resol ver (I nput : Vector Type) return Vari abl eType;
subtype Shar edVar i abl eType isResol ver Vari abl eType;
procedure Shar edW i t e( signal Shar edVar : out Vari abl eType,
Val ue : inVal ueType);

Listing 6: Type definitions for shared output variables.

function Resol ver (I nput : Vector Type) returnVari abl eType is
variableVal i dSeen : BOOLEAN: = FALSE;
variableResul t : Vari abl eType;

egin
Resul t : = (Defaul t Val ue, I nvalid);
for I in 1 nput’ RANGE loop
casel nput (1).Drive is
when Val i d =>
assert not Val i dSeen
report” Miltiple sources" severity ERROR
Val i dSeen : = TRUE;
Resul t : =Vari abl eType’ (I nput(!l). Val ue, Val id);
when I nval i d =>
null;
end case;
end loop;
return Resul t;
end;

Listing 7: The bus resolution function for shared output vari-
ables. Def aul t Val ue is the desired default value for the
Val ueType.

procedure Shar edW i t e( signal Shar edVar : out Vari abl eType,
Val ue : inVal ueType) is
begin
Shar edVar < =Vari abl eType’ (Val ue, Val i d) ;
wait for O NS;
Sdhar edVar < =Vari abl eType’ (Def aul t Val ue, I nval i d);
end;

Listing 8: Procedure for updating a shared output variable.

entity Lat ch is
port( Shared : inVari abl eType;
Qut put : out Val ueType);
end Lat ch;

architecture St i cky of Lat ch is
begin
process( Shar ed)
bva_riableSt oredVal ue : Val ueType : = Def aul t Val ue;
egin
if Shared. Drive =Val i d then
St or edVal ue : = Shar ed. Val ue;
end if;
Qut put < =StoredVal ue;
end process;
end Sti cky;

Listing 9: Memory function for the shared output model.

implicitly handled by the simulator kernel in the previous
model. Notice that in case of no Val i d driver, the res-
olution function will propagate an | nval i d vaue. The
procedure for shared write (listing 8) is much the same as
before, only the drive information is now explicitly set in
the signal assignment.

For theregister based shared variable, the language se-
manti cs providesthe necessary memory functionfor shared
variables. Inthe shared output model, thisfunctionmust be
provided explicitly; listing 9 shows an output latch which
performs this function. The latch must be instantiated at
the topmost hierarchica level and also provides the type
conversion to Val ueType (see Figure 3).

From listing 10 it can be seen that the explicit loopsin
the processes of the previous model is no longer required,
astheinitialization can be made in the signal declaration.

.si.g.nal Var : SharedVari abl eType : = (Def aul t Val ue, I nval i d);
process
begin
SHar edWite(Var, 42);
end broceﬁ

Listing 10: The structure of a process statement using the shared
output variables.



4 Modeling Full Shared Variables

The shared output model can easily be extended to han-
diehierarchical writing and reading, permitting full shared
variablesto be modeled; thisisillustrated in Figure 4. The
main extension istheinclusion of awesk drivingvalue? in
additiontotheVal i d and | nval i d vaues, asillustrated
inlisting 11.

Figure 4: Full shared variables.

typeDri veType is(l nvalid, Weakvalid, Valid);
typeVari abl eType isrecord

Val ue : Val ueType;

Drive: DriveType;

end record;
typeVect or Type isarray (| NTEGER range< > ) of Vari abl eType;
function Resol ver (I nput : Vector Type) returnVari abl eType;
subtype Shar edVar i abl eType isResol ver Vari abl eType;
procedure Shar edW i t e( signal Shar edVar : out Vari abl eType;
Val ue : inVal ueType);
function Shar edRead( signal SharedVar : inVari abl eType)
return Val ueType;

Listing 11: Type definitionsfor full shared variables.

Having introduced the Weakval i d drive value, the
resolution function has to be extended to correctly han-
dle the relative strength of the input signals. Listing 12
shows the extended resol ution function, which ensures that
aVal i d signa value will override aWeakval i d value,
asaWeakval i d vaueoverridesan| nval i d value. The
strongest value present will thus propagate up through the
hierarchy.

As in the previous model, the strong value originates
from the Shar edW i t e procedure. The Weakval i d
value is generated by a ‘bleeder’ component, which is
instantiated once for each shared variable (the resolution
function checksfor the occurrence of morethan onebleeder
per shared variable). Thebleeder component, seelisting 13,
may be placed anywhere in the hierarchy and serves to
maintain the value of the shared variabl e between updates.

2Thisisinspired by shared variable implementationsin CMOS [5].

function Resol ver (I nput : Vector Type) returnVari abl eType is
variableVal i dSeen : BOOLEAN: = FALSE;
variableWeakSeen : BOOLEAN : = FALSE;
variableResul t : Vari abl eType;
begin
Resul t : =(Defaul t Val ue, I nvalid);
for 1 in 1 nput’ RANGE loop
casel nput (1).Driveis
when Val i d =>
assert not Val i dSeen
report” Miltiple sources" severity ERROR
Val i dSeen : = TRUE;
Resul t : =Vari abl eType’ (I nput (I). Val ue, Val i d);
when Weakval i d =>
assert not W\eak Seen
report” Miltiple bleeders" severity WARNI NG
WeakSeen : = TRUE;
if (not Val i dSeen) then
%e%ul t :=Variabl eType’ (I nput(1).Val ue, Weakvalid);
end if;
when I nval i d =>
null;
end case;
end loop;
return Resul t;
end;

Listing 12: The bus resolution function for the full shared vari-
ables.

entity Bl eeder is
port( Shar ed : inout Shar edVari abl eType : =
(Def aul t Val ue, WeakVal i d));
end Bl eeder;

architecture Bl oody of Bl eeder is

begin
process( Shar ed)
variable St or edVval ue : Val ueType : = Def aul t Val ue;

begin
if Shared. Drive =Val i d then
St or edVal ue : = Shar ed. Val ue;
end if;
Shared < =Vari abl eType’ (St oredVal ue, Weakval i d);
end process;
end Bl oody;

Listing 13: Memory function for the full shared model.

Listing 14 shows the Shar edRead function which is
used to sample the value of a shared variable, hiding the
implementation details.

Listing 15 shows a full-scale example using this model
for shared variables. The | nner structure contains two
processes, which cooperate to produce a sequence of num-
bers from a given seed value, using a shared variable to
store the values. If this sequence resultsin the number 1,
the original seed value was a wondrous number. The third
process, placed higher in the hierarchy, places the original
seed value on the shared variable and checks for wondrous-
ness. When wondrousness has been detected, it stops P1
and P2 by setting the variableto 0.

function Shar edRead( signal Shar edVar :
return Val ueType is
begi

egin
return Shar edVvar . Val ue;
end;

in Vari abl eType)

Listing 14: Procedure for reading the full shared variables.



entity | nner is
port(Var : inout Shar edVari abl eType : =
(Def aul t Val ue, I nvalid));
endi nner;

architectureWondr ous of | nner is
begin

P1: process

begin
wait until Shar edRead(Var) /=1 and

Shar edRead( Var) mod 2 /=0;

wait for 5 NS;
SharedW it e( Var, SharedRead( Shared)*3 +1);
end process;

P2: process
begin

wait until Shar edRead(Var) /=0 and

Shar edRead( Var) mod 2 =0;

wait for 5 NS;

SharedW i t e( Shar ed, SharedRead(Var) / 2);
egd process;

end;

entity Qut er is
port ( Qut put :

out Val ueType) ;
endouter;

architectureWondr ousness of Qut er is
component Bl eeder
port ( Shared : inout SharedVari abl eType) ;
end component;
component | nner
port (Var : inout Shar edVar i abl eType) ;
end component;
bsig_nal Var : SharedVari abl eType : = (Def aul t Val ue, I nval i d);
egin
P3: process

begin
SharedWi t e( Var, 15) ;
wait until Shar edRead(Var) =1;
assert FALSE report” |'s wondrous" severity NOTE;
wait for 2 NS;
SharedWi t e( Var, 0);
wait;
end process;

Shared: Bl eeder portmap (Var);
cl: Inner port map(Var);

Qut put < =Shar edRead( Var) ;
end;

Listing 15: Example showing the use of the full shared variables.

5 Usng Shared Variables

The example shownintheprevioussectionisfairly sim-
ple, asit does not require atomic updates of multipleshared
variables. This is due to the fact that the processes in the
example agorithm only updates a single shared variable
each, and that the algorithm fulfillsan exclusive write con-
dition, i.e, for no value of the shared variable state, ismore
than one process trying to update the same shared variable.

If adesign does not fulfill these conditions, certain addi-
tional stepsmust betaken to avoidindeterministicbehavior.
If the exclusive write condition is not fulfilled, the specific
timing of the processeswill affect the execution of thea go-
rithm. Inthiscase guard conditionsontheShar edWit e
may be sufficient; an example of thisisthe processin list-
ing 16, which isavariant of process P1 from listing 15.

If atomic update of multipleshared variablesisrequired,
e.g., in order to exchange the contents of two shared vari-
ables, a possible solutionis given in listing 17. The wait

P1: process
begin
wait until Shar edRead( Shared) mod2/=0;
wait for 5 NS;
if Shar edRead( Shar ed) /=0 then
Sdhar edW it e( Shar ed, Shar edRead( Shared) *3 + 1) ;
end if;
end process;

Listing 16: The processP1 is now also sensitive to thevalue 0, as
isprocessP3 (listing 15). Inorder to resolvetheresulting multiple
writes, a guard condition has been added on the Shar edW i t e
call.

signal Req : Shar edVari abl eType :
signal Ack : Shar edVari abl eType :

= (Def aul t Val ue, I nval i d);
= (Def aul t Val ue, I nvalid);
process
begin
Req < =Vari abl eType
Ack < =Vari abl eType
wait for O NS;
Req < =Vari abl eType
Ack < =Vari abl eType

Ack. Val ue, Val i d) ;
Req. Val ue, Val i d) ;

Def aul t Val ue, I nval i
Def aul t Val ue, I nval i

¢
(
¢ dy;
¢ d);

end;

Listing 17: Implementing a swap operation by explicit inclusion
of await in the user code.

which updates the shared variables is no longer elided, but
provided explicitly in the user’s code.

An dternative solution is to arbitrate access to a set of
shared variables by using some synchronization scheme.
One such scheme [2] can be based on the atomic swap
implemented by the Shar edSwap shownin listing 18.

procedure Shar edSwap( signal SV1 : inout Shar edVari abl eType;
b signal SV2 : inout Shar edVari abl eType) is
egin
SV1 < =Vari abl eType’ (SV2. Val ue, Val i d);
SV2 < =Vari abl eType’ (SV1. Val ue, Val i d);
wait for 0 NS;
SV1 < =Vari abl eType’ (Def aul t Val ue, I nvalid);
83/2 < =Vari abl eType’ (Def aul t Val ue, I nval i d);
end;

Listing 18: The atomic swap operation for use as a synchroniza-
tion primitive.



6 Conclusion

This paper demonstrates that designs utilizing shared
variables can adequatdly be modeled in VHDL. Using the
bus-resolution function of VHDL allows the mechanics of
implementing shared variables to be hidden from the user.

Three different implementations of shared variables
have been presented:

e Using the register construct of VHDL, a model for
handling non-hierarchical shared variables has been
given [6].

e Animproved model whichallowshierarchical updates
was then presented; this model does not provide for
read accesses withinthe hierarchy.

e Thislimitationwasthenliftedinthelast model, which
providesshared variableswith full hierarchical access.

The three models correspond to different levels of require-
ments for shared variable behavior. Finally, some guide-
lines for handling atomic update of multiple shared vari-
ables has been given for the full shared variable model.
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