
Modeling Shared Variables in VHDL �

Jan Madsen Jens P. Brage

Department of Computer Science
Technical University of Denmark

DK2800 Lyngby, Denmark

Abstract

A set of concurrent processes communicating through
shared variables is an often used model for hardware sys-
tems. This paper presents three modeling techniques for
representing such shared variables in VHDL, depending
on the acceptable constraints on accesses to the variables.
Also a set of guidelines for handling atomic updates of
multiple shared variables is given.

1 Introduction

It is often desirable to partition a computational system
into discrete functional units which cooperates to solve a
given task. In order to be able to cooperate, it is necessary
for the functional units to communicate information; the
communication can be based on various models, one of
which is shared variables.

The primary characteristic of shared variables is that
multiple functional units may access a given variable for
reading and writing; between updates, the shared variable
retains the most recently written value. For the class of
shared variables considered here, multiple simultaneous
write accesses are not permitted.

Shared variables can be used for several different pur-
poses, at various levels of abstractions. A few examples of
these uses are:

� In the language model Synchronized Transitions [7],
shared variables are used as the medium of commu-
nication between a set of transitions, i.e., guarded,
atomic variable assignments.

� During high-level synthesis from a procedural defined
functional unit in VHDL (i.e., a high-level process),
the sequential behavior is transformed into a set of
concurrent functional units. As VHDL allows an out-
put to be updated from several points in the sequential

�This research has been sponsored by the Danish Technical Research
Council.

Shared variable

P3
P2P1

Compute

Control

Figure 1: Inter process communication through shared variables.

Control:
Process P3:

var 15;
suspend until var = 1;
var 0.

Compute:
Process P1:

forever
suspend until var 6= 1^ odd(var);
var var * 3 + 1.

Process P2:
forever

suspend until var 6= 0^ even(var);
var var / 2.

Listing 1: Pseudo code to test 15 for wondrousness [3].

code, this leads to a requirement for a given output
to be updated from several of the resulting functional
units [1]. This is naturally modeled as a shared output
variable.

� The parasitic capacitances inherent in the CMOS tech-
nology allows buses to store values on the signal lines.
Shared variables is a reasonable model for this behav-
ior.

Listing 1 shows a simple example of an algorithm [3,
pp. 400 – 401] which uses a shared variable for communi-
cation between independent processes (see figure 1).

In many cases it is interesting to be able to model the
shared variable concept in VHDL. As figure 1 illustrates,
a shared variable exists, in a sense, independently of the
design hierarchy. This creates problems for the modeling
in VHDL.

One possible approach might be to use the global vari-

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50



ables of VHDL’93 [4];1 however, the global variables are
primarily intended for system level modeling, permitting
any process in the hierarchy to access a few select vari-
ables. In hardware models, where the shared variable con-
cept is the main communication mechanism, this kind of
global visibility is unacceptable; all communication should
be explicitly stated in the interface declaration.

This paper presents three different models for shared
variables; using the built-in support for registers in VHDL,
modeling hierarchical shared output variables and a model
providing full shared variables. Finally some usage guide-
lines for the latter model is presented.

2 Using the register Based Shared Variables

VHDL partly supports shared variables through the spe-
cial signal kind called register [6, pp. 209–211]. A reg-
ister signal retains its last value when all its drivers have
been disconnected (i.e., when null is assigned to the signal
driver).

BRF
I

O O

I
P1 P2

O
Outer

P3 I

O
Inner

Figure 2: Modeling shared variables using the register construct.

subtype VariableType is ValueType;
type VectorType is array (INTEGER range < > ) of VariableType;
function Resolver(Input : VectorType) return VariableType;
subtype SharedVariableType is Resolver VariableType;
procedure SharedWrite(signal SharedVar : out VariableType,

Value : in ValueType);

Listing 2: Type definitions for register based shared variables.

Having multiple sources for the signal makes a bus reso-
lutionnecessary (see listing2; theValueTypemay be any
user type). However, as only one driver may be connected
(non-null) at a given time, the bus resolution function is
very simple, as illustrated in listing 3. A shared variable
may be updated through the procedure shown in listing 4.

1While global variables have been included in the standard, the access
mechanism has not been finalized, effectively making global variables
unavailable at the time of writing.

function Resolver(Input : VectorType) return VariableType is
begin

assert Input’LENGTH=1 or NOW=0 NS
report " Multiple drivers" severity ERROR;

return Input(Input’LEFT);
end;

Listing 3: The bus resolution function for register based shared
variables.

procedure SharedWrite(signal SharedVar : out VariableType,
Value : in ValueType) is

begin
SharedVar < = Value;
wait for 0 NS;
SharedVar < = null;

end;

Listing 4: Procedure for updating a register based shared variable.

The ‘wait for 0 NS’ ensures that the shared variable will
be updated before the driver is disconnected again.

The main limitation of using the register construct is that
a hierarchy of drivers for the signal cannot be modeled (as
a resolution function cannot return null), i.e., it is possible
to propagate a value up through the hierarchy for reading,
but not for writing. This situation is shown in Figure 2:
Process P1 and P2 share a variable Var which is a signal
of kind register. Var may only be written from within the
entity Inner. The signal may however be read in process
P3 which is at the next hierarchical level.

Another problem is due to the restriction that null can-
not be used to initialize signal drivers (the null literal is
always of an access type). To work around this problem,
the implicit loop of each process have to be translated into
an explicit loop. Listing 5 shows the structure of a process
statement, in which all output drivers are first set to null and
the actual execution is then placed in the explicit infinite
loop.

: : :

signal Var : SharedVariableType;
: : :

process
begin
Var < = null;
: : :

loop
: : :

SharedWrite(Var,Var + 1);
: : :

end loop;
end process;

Listing 5: The structure of a process statement using the regis-
ter based shared variables (in the examples the ValueType is
assumed to be an integer).



3 Modeling Shared Output Variables

The main limitation of the register based shared vari-
ables is that hierarchical output drivers cannot be handled.
If this is an unacceptable restriction, a slightly more com-
plicated solution must be chosen. In this case the shared
variables are modeled by a record (listing6) containing the
value as well as drive information. Encoding the drive in-
formation within the signal enables the resolution function
to propagate disconnection status.

BRF

BRF
P1 P2

O
Inner

O O

O

O

I

Outer

Latch

P3 O

Figure 3: Modeling shared output variables.

As seen from listing 7, it is now necessary for the reso-
lution function to scan the complete list of inputs; this was

type DriveType is (Invalid, Valid);
type VariableType is record

Value : ValueType;
Drive : DriveType;

end record;
type VectorType is array (INTEGER range < > ) of VariableType;
function Resolver(Input : VectorType) return VariableType;
subtype SharedVariableType is Resolver VariableType;
procedure SharedWrite(signal SharedVar : out VariableType,

Value : in ValueType);

Listing 6: Type definitions for shared output variables.

function Resolver (Input : VectorType) return VariableType is
variable ValidSeen : BOOLEAN := FALSE;
variable Result : VariableType;

begin
Result := (DefaultValue,Invalid);
for I in Input’RANGE loop

case Input(I).Drive is
when Valid =>

assert not ValidSeen
report " Multiple sources" severity ERROR;

ValidSeen := TRUE;
Result := VariableType’(Input(I).Value,Valid);

when Invalid =>
null;

end case;
end loop;
return Result;

end;

Listing 7: The bus resolution function for shared output vari-
ables. DefaultValue is the desired default value for the
ValueType.

procedure SharedWrite(signal SharedVar : out VariableType,
Value : in ValueType) is

begin
SharedVar < = VariableType’(Value,Valid);
wait for 0 NS;
SharedVar < = VariableType’(DefaultValue,Invalid);

end;

Listing 8: Procedure for updating a shared output variable.

entity Latch is
port(Shared : in VariableType;

Output : out ValueType);
end Latch;

architecture Sticky of Latch is
begin

process(Shared)
variable StoredValue : ValueType := DefaultValue;

begin
if Shared.Drive = Valid then
StoredValue := Shared.Value;

end if;
Output < = StoredValue;

end process;
end Sticky;

Listing 9: Memory function for the shared output model.

implicitly handled by the simulator kernel in the previous
model. Notice that in case of no Valid driver, the res-
olution function will propagate an Invalid value. The
procedure for shared write (listing 8) is much the same as
before, only the drive information is now explicitly set in
the signal assignment.

For the register based shared variable, the language se-
mantics provides the necessary memory function for shared
variables. In the shared output model, this function must be
provided explicitly; listing 9 shows an output latch which
performs this function. The latch must be instantiated at
the topmost hierarchical level and also provides the type
conversion to ValueType (see Figure 3).

From listing 10 it can be seen that the explicit loops in
the processes of the previous model is no longer required,
as the initialization can be made in the signal declaration.

: : :

signal Var : SharedVariableType := (DefaultValue,Invalid);
: : :

process
begin
: : :

SharedWrite(Var, 42);
: : :

end process;

Listing 10: The structure of a process statement using the shared
output variables.



4 Modeling Full Shared Variables

The shared output model can easily be extended to han-
dle hierarchical writing and reading, permitting full shared
variables to be modeled; this is illustrated in Figure 4. The
main extension is the inclusion of a weak driving value,2 in
addition to the Valid and Invalid values, as illustrated
in listing 11.

BRF

BRF
O

I
P1 P2

Inner

P3

OI

Outer

O

I
Bleeder

I

O

I

O

O

Figure 4: Full shared variables.

type DriveType is (Invalid, Weakvalid, Valid);
type VariableType is record

Value : ValueType;
Drive : DriveType;

end record;
type VectorType is array (INTEGER range < > ) of VariableType;
function Resolver(Input : VectorType) return VariableType;
subtype SharedVariableType is Resolver VariableType;
procedure SharedWrite(signal SharedVar : out VariableType;

Value : in ValueType);
function SharedRead(signal SharedVar : in VariableType)

return ValueType;

Listing 11: Type definitions for full shared variables.

Having introduced the Weakvalid drive value, the
resolution function has to be extended to correctly han-
dle the relative strength of the input signals. Listing 12
shows the extended resolution function, which ensures that
a Valid signal value will override a Weakvalid value,
as a Weakvalid value overrides an Invalid value. The
strongest value present will thus propagate up through the
hierarchy.

As in the previous model, the strong value originates
from the SharedWrite procedure. The Weakvalid
value is generated by a ‘bleeder’ component, which is
instantiated once for each shared variable (the resolution
functionchecks for the occurrence of more than one bleeder
per shared variable). The bleeder component, see listing 13,
may be placed anywhere in the hierarchy and serves to
maintain the value of the shared variable between updates.

2This is inspired by shared variable implementations in CMOS [5].

function Resolver (Input : VectorType) return VariableType is
variable ValidSeen : BOOLEAN := FALSE;
variable WeakSeen : BOOLEAN := FALSE;
variable Result : VariableType;

begin
Result := (DefaultValue,Invalid);
for I in Input’RANGE loop

case Input(I).Drive is
when Valid =>

assert not ValidSeen
report " Multiple sources" severity ERROR;

ValidSeen := TRUE;
Result := VariableType’(Input(I).Value,Valid);

when Weakvalid =>
assert not WeakSeen

report " Multiple bleeders" severity WARNING;
WeakSeen := TRUE;
if (not ValidSeen) then
Result := VariableType’(Input(I).Value,Weakvalid);

end if;
when Invalid =>

null;
end case;

end loop;
return Result;

end;

Listing 12: The bus resolution function for the full shared vari-
ables.

entity Bleeder is
port(Shared : inout SharedVariableType :=

(DefaultValue,WeakValid));
end Bleeder;

architecture Bloody of Bleeder is
begin

process(Shared)
variable StoredValue : ValueType := DefaultValue;

begin
if Shared.Drive = Valid then
StoredValue := Shared.Value;

end if;
Shared < = VariableType’(StoredValue,Weakvalid);

end process;
end Bloody;

Listing 13: Memory function for the full shared model.

Listing 14 shows the SharedRead function which is
used to sample the value of a shared variable, hiding the
implementation details.

Listing 15 shows a full-scale example using this model
for shared variables. The Inner structure contains two
processes, which cooperate to produce a sequence of num-
bers from a given seed value, using a shared variable to
store the values. If this sequence results in the number 1,
the original seed value was a wondrous number. The third
process, placed higher in the hierarchy, places the original
seed value on the shared variable and checks for wondrous-
ness. When wondrousness has been detected, it stops P1
and P2 by setting the variable to 0.

function SharedRead(signal SharedVar : in VariableType)
return ValueType is

begin
return SharedVar.Value;

end;

Listing 14: Procedure for reading the full shared variables.



entity Inner is
port(Var : inout SharedVariableType :=

(DefaultValue,Invalid));
end inner;

architecture Wondrous of Inner is
begin
P1: process
begin

wait until SharedRead(Var) /= 1 and
SharedRead(Var) mod 2 /= 0;

wait for 5 NS;
SharedWrite(Var,SharedRead(Shared)*3 + 1);

end process;

P2: process
begin

wait until SharedRead(Var) /= 0 and
SharedRead(Var) mod 2 = 0;

wait for 5 NS;
SharedWrite(Shared,SharedRead(Var) / 2);

end process;
end;

entity Outer is
port ( Output : out ValueType);

end outer;

architecture Wondrousness of Outer is
component Bleeder

port ( Shared : inout SharedVariableType);
end component;
component Inner

port (Var : inout SharedVariableType);
end component;
signal Var : SharedVariableType := (DefaultValue,Invalid);

begin
P3: process
begin
SharedWrite(Var,15);
wait until SharedRead(Var) = 1;
assert FALSE report " Is wondrous" severity NOTE;
wait for 2 NS;
SharedWrite(Var,0);
wait;

end process;

Shared: Bleeder port map (Var);
c1: Inner port map (Var);
Output < = SharedRead(Var);

end;

Listing 15: Example showing the use of the full shared variables.

5 Using Shared Variables

The example shown in the previous section is fairly sim-
ple, as it does not require atomic updates of multiple shared
variables. This is due to the fact that the processes in the
example algorithm only updates a single shared variable
each, and that the algorithm fulfills an exclusive write con-
dition, i.e., for no value of the shared variable state, is more
than one process trying to update the same shared variable.

If a design does not fulfill these conditions, certain addi-
tional steps must be taken to avoid indeterministic behavior.
If the exclusive write condition is not fulfilled, the specific
timing of the processes will affect the execution of the algo-
rithm. In this case guard conditions on theSharedWrite
may be sufficient; an example of this is the process in list-
ing 16, which is a variant of process P1 from listing 15.

If atomic update of multiple shared variables is required,
e.g., in order to exchange the contents of two shared vari-
ables, a possible solution is given in listing 17. The wait

P1: process
begin

wait until SharedRead(Shared) mod 2 /= 0;
wait for 5 NS;
if SharedRead(Shared) /= 0 then
SharedWrite(Shared,SharedRead(Shared)*3 + 1);

end if;
end process;

Listing 16: The processP1 is now also sensitive to the value 0, as
is processP3 (listing 15). In order to resolve the resulting multiple
writes, a guard condition has been added on the SharedWrite
call.

signal Req : SharedVariableType := (DefaultValue,Invalid);
signal Ack : SharedVariableType := (DefaultValue,Invalid);
: : :

process
begin
: : :

Req < = VariableType’(Ack.Value,Valid);
Ack < = VariableType’(Req.Value,Valid);
wait for 0 NS;
Req < = VariableType’(DefaultValue,Invalid);
Ack < = VariableType’(DefaultValue,Invalid);
: : :

end;

Listing 17: Implementing a swap operation by explicit inclusion
of a wait in the user code.

which updates the shared variables is no longer elided, but
provided explicitly in the user’s code.

An alternative solution is to arbitrate access to a set of
shared variables by using some synchronization scheme.
One such scheme [2] can be based on the atomic swap
implemented by the SharedSwap shown in listing 18.

procedure SharedSwap(signal SV1 : inout SharedVariableType;
signal SV2 : inout SharedVariableType) is

begin
SV1 < = VariableType’(SV2.Value,Valid);
SV2 < = VariableType’(SV1.Value,Valid);
wait for 0 NS;
SV1 < = VariableType’(DefaultValue,Invalid);
SV2 < = VariableType’(DefaultValue,Invalid);

end;

Listing 18: The atomic swap operation for use as a synchroniza-
tion primitive.



6 Conclusion

This paper demonstrates that designs utilizing shared
variables can adequately be modeled in VHDL. Using the
bus-resolution function of VHDL allows the mechanics of
implementing shared variables to be hidden from the user.

Three different implementations of shared variables
have been presented:

� Using the register construct of VHDL, a model for
handling non-hierarchical shared variables has been
given [6].

� An improved model which allows hierarchical updates
was then presented; this model does not provide for
read accesses within the hierarchy.

� This limitationwas then lifted in the last model, which
provides shared variables with full hierarchical access.

The three models correspond to different levels of require-
ments for shared variable behavior. Finally, some guide-
lines for handling atomic update of multiple shared vari-
ables has been given for the full shared variable model.

References

[1] Jens P. Brage. Foundations of a High-Level Synthesis System.
PhD thesis, Technical University of Denmark, 1993.

[2] E.W. Dijkstra. Co-operating sequential processes. In
F. Genuys, editor, Programming Languages.Academic Press,
1965.

[3] Douglas Hofstadter. Gödel, Escher, Bach: An EternalGolden
Braid. Penguin Books, 1979.

[4] The Institute of Electrical and Electronics Engineers,Inc., 345
East 47th Street, New York, NY 10017, USA. IEEE Standard
VHDL Language Reference Manual; IEEE Std. 1076 – 1992,
1993.

[5] Alain J. Martin. Synthesis of asynchronous VLSI circuits.
In J. Staunstrup, editor, Formal Methods for VLSI Design,
chapter 6. North-Holland, 1990.

[6] Ken Scott. Anomalies in VHDL and how to address them. In
Randolph E. Harr and Alec G. Stanculescu, editors, Applica-
tions of VHDL to Circuit Design, chapter 7, pages 197–228.
Kluwer Academic Publisher, 1991.

[7] Jørgen Staunstrup. A Formal Approach to Hardware Design.
Kluwer Academic Publisher, 1994.


	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index




