
A Component Selection Algorithm for High-Performance Pipelines y

Smita Bakshi and Daniel D. Gajski

Department of Information and Computer Science

University of California, Irvine, CA, 92717-3425, USA

Abstract

The use of a realistic component library with multi-

ple implementations of operators, results in cost ef-

�cient designs; slow components can then be used

on non-critical paths and the more expensive compo-

nents on only the critical paths. This paper presents

a cost-optimized algorithm for selecting components

and pipelining a data ow graph, given a multiple-

implementation library, and throughput and latency

constraints. Experiments on a few benchmarks indi-

cate that our algorithm gives results that are within

0.7% of the optimal result.

1 Introduction
An important factor in obtaining cost e�cient designs is

the ability to use multiple operator implementations in the
datapath. Delay paths can then be balanced by using slow
components where possible, and the faster components
only when necessary. For high-performance applications,
such as DSP systems, designers often combine pipelining
with the use of a multiple-implementation library, so as to
satisfy performance requirements at a reasonable cost.

This paper presents an algorithm that combines pipelin-
ing with component selection using such a realistic library.
The aim of the algorithm is to pipeline a given data ow
graph, and balance the use of slow and fast components,
such that the delay of each pipe stage is equal to (or as
close to) a given constraint, and the total cost of the data
ow graph is minimized.

The paper is organized as follows. The next section out-
lines related research in the area of pipelined synthesis and
explains how we compare with it. Section 3 gives a formal
de�nition of the component selection and pipelining prob-
lems while Section 4 describes our proposed algorithm for
solving these problems. Section 5 presents results demon-
strating the quality of our algorithm and �nally, Section 6
concludes the paper with a summary of our major contri-
butions.

2 Previous work
We categorize related research into two classes based on

pipelining and component selection. The �rst class consists

yThis work was supported by the Semiconductor Research

Corporation (grant #93-DJ-146).

of tools such as Sehwa [1], the tools from the GE Corporate
R&D Laboratories [2], and PLS, a pipelined scheduler [3].
These tools pipeline a given DFG so as to optimize area or
performance for given constraints, usually on the through-
put or latency of the design. However, they all assume
a single implementation for functional units which forces
them to use the same component on non-critical and criti-
cal paths, resulting in designs that are ine�cient and more
costly. SLIMOS [4] and MOSP [5] di�er slightly from the
above approach - they start from a multiple implemen-
tation library and then select one single implementation

per operator. Hence their �nal design also contains single
implementations, leading to the same design ine�ciencies
mentioned above.

The second category contains algorithms such as
TBS [6] and the module selection algorithm presented in
[7]. Though these tools use unrestricted libraries that al-
low multiple physical implementations for the same opera-
tor, they combine component selection with non-pipelined
scheduling, rather than with pipelined scheduling.

Our algorithm [8] spans both categories since it
pipelines a data ow graph and, for each pipe stage, de-
termines the best selection of components from a realistic
library containing many di�erent implementations per op-
erator. For a given throughput and latency constraint, our
algorithm thus produces cheaper designs over those pro-
duced by previous pipelining algorithms that use limited
libraries with only one implementation per operator.

3 Problem statement and de�nitions

Given a data ow graph DFG(V; E) where V represents
a set of vertices, and E � V � V a set of directed edges,
a component library CL consisting of a set of three tuples
hComponentType, Area and Delayi, and constraints on
Pipe Stage (PS) delay and Latency, �nd an Assignment

of vertices to components and a Partition of bLatency/PS
delayc stages of delay PS delay, so as to minimize cost
(given by the sum of the area of datapath components).

The terms Latency, PS delay, Assignment and
Partition are de�ned as follows:

De�nition 1: PS delay is the sample inter-arrival delay,
that is the delay between the arrival of two consecutive
input samples. This is also the clock cycle of the design.
Throughput, which is often the prime constraint on DSP
systems, is the inverse of the PS delay.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the

ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or speci�c permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

De�nition 2: Latency is the total execution time (n�PS
delay, for an n-stage pipeline), that is, the time between
the arrival of an input sample and the availability of the
corresponding output.

De�nition 3: If we associate a type (such as �, �, +
etc.) called V ertexType(v), with every vertex, v, then
an Assignment is de�ned as a function from V ! CL,
such that if Assignment(v) = c, then V ertexType(v) =
ComponentType(c). This just states that vertices can only
be mapped to components of the same type.

De�nition 4: A Partition is a collection of subsets of
vertices, such that the union of all subsets is the complete
vertex set, V , and the intersection of any two subsets is
the empty set. Stated mathematically, a partition is a

collection of subsets, Vi, such that Vi � V ,
[

8i

Vi = V , and

Vi
T
Vj = ;, 8i; j where i 6= j.

The example in Figure 1 illustrates the problem. Given
are a DFG, a CL, and constraints on PS delay (10 ns) and
Latency (25 ns). The DFG is partitioned into two stages
of delay 10 ns each and mapped to components so that the
total cost is minimized. The output consists of a mapped
and pipelined DFG and a set of design metrics as shown.

Input:

1. DFG

3. Constraints

Pipe Stage (PS) Delay = 10 ns

Latency = 25 ns

* *

+

+

2. Component Library

Mpy1

Mpy3

Mpy2

Add1

Add2

Add3

100

200

250

50

70

100

30

20

10

20

Area Delay
nsGates

Comp.
 Type

Comp.
Name

*

*

*

+

+

+

 8

2

Output:

1. Mapped and Pipelined DFG

Stage 1

Stage 2 Add2

Mpy3 Mpy3

Add3

2. Design Metrics

PS Delay = 10 ns
Latency = 20 ns

Cost (Fus) = (2x250)+70+100
 = 670 Gates
No. Registers = 3
Thruput = 100 MHz.

Figure 1: An example illustrating the inputs and

outputs of the component selection and pipelining

algorithms.

4 Component selection and pipelining

Having stated the problem, we now present the algo-
rithms for component selection and pipelining. We �rst
give an overview of the complete algorithm and then indi-
vidually explain the tasks of �nding an Assignment and
a Partition. Finally, we explain the pseudo-code of the
complete algorithm with the help of a walk-through exam-
ple.

1. Map vertices to fastest components, pipeline DFG,
and evaluate performance.

2. If (fastest design does not satisfy constraints)
3. exit the program.
4. Else

5. Loop

6. Select the \best" vertex to slow down.
7. Pipeline the DFG, and evaluate performance.
8. If (performance constraints met),
9. accept this slow down, else, reject it.
10. Until (no vertex can be slowed down without

violating constraints).
11. End if

Figure 2: An overview of the component selection

and pipelining algorithm.

4.1 An overview of the algorithm

The algorithm takes as input a non-pipelined DFG,
a component library, and a constraint on the PS delay

and Latency. It outputs a mapped DFG partitioned into
bLatency/PS delayc stages, such that the delay of each pipe
stage is less than or equal to the PS delay and the total
area of the DFG is minimized.

The algorithm (Figure 2) starts by mapping each ver-
tex of the DFG to the fastest available component. It
then slows down vertices by mapping them to progres-
sively slower components. At each slow down the DFG
is pipelined and if constraints are violated, the slow down
is not accepted. This process is repeated until no vertex
can be slowed down without a violation of constraints.

Intuitively speaking, the aim of the algorithm is to slow
down as many vertices by as much as possible, and this is
achieved by balancing the use of slow and fast components
so that the delay of each pipe stage is as close to PS delay

as possible, and the total cost is minimized.

4.2 Component selection

The key to the algorithm lies in judiciously selecting
vertices to be slowed down in each iteration, since slowing
down one vertex may prevent slowing down others due to
graph dependencies. Thus, the desirability of slowing down
a vertex has to be evaluated with respect to all the vertices
that would be a�ected by its slow down. With every vertex
we thus associate a value, called the vertex weight, which
is a measure of its \desirability" or priority in the selection
process. In each iteration of the algorithm, vertex weights
are evaluated and the vertex with the highest weight is
selected to be slowed down.

The vertex weight

We �rst give an intuitive explanation of the vertex
weight by using an example, and then formally de�ne the
terms in the vertex weight formula.

An example

Consider the DFG and CL in Figures 3(a) and (b). Let
the vertices of the DFG be initially mapped to the \fastest
components" (that is all the ? vertices to Mpy1 and all
the + vertices to Add1). This results in a total delay of

40 ns and a cost of 400 ([3� 100]+[2� 50]) gates. Let the
constraint on the PS delay be 50 ns.

For the purposes of this explanation, let us assume that
we slow down a vertex by replacing it with the next slower
component in the library. We now have to pick the �rst
vertex to slow down. Intuitively speaking, this should be
the one that gives the highest cost bene�t or, in other
words, the greatest area reduction. In the example, ver-
tices d and e give an area reduction of 20 gates, as opposed
to 10 gates for the ? vertices, a, b, and c. Let us slow down

any one vertex, say e. Since e exists on all I-O pathsy, slow-
ing down any other vertex would violate the constraint of
50 ns. Thus by slowing down e, we have prevented slowing
down any of the other vertices, a to d, and the �nal design
has a cost of 380 gates and a delay of 50 ns. If we had

(a)

 DFG:

(b)

Component Library−1:

(c)

Component Library−2:

Add1
Add2
Add3

Mpy1
Mpy2
Mpy3

 50
 30
 10

100
 90
 80

10
20
30

20
30
40

Comp. AreaDelay
(ns) (gates)

Add1
Add2
Add3

Mpy1
Mpy2
Mpy3

10
19
20

20
30
40

 50
 30
 1

100
 90
 80

Comp. AreaDelay
(ns) (gates)

+

+

a b c

d

e

* **

Figure 3: DFG and component libraries used to il-

lustrate the vertex weight and the need for a \com-

monality factor".

�rst slowed down node a instead of node e we could still
have slowed down nodes b and c in the next two iterations.
Instead of replacing node e with Add2, we could thus have
replaced each of the nodes a, b and c with Mpy2, resulting
in a cheaper design of 370 gates. Even though individually
the vertices a, b and c give an area reduction of just 10
gates each, together their reduction is greater than that of
vertex e. Thus the comparison we should be making is:

Area Reduction(e) vs. Area Reduction(a)+Area
Reduction(b)+Area Reduction(c)

Assuming, for the time being, that a, b, and c give the
same area reduction, the only reason why we would choose
to slow down e over a, b, and c is if:

Area Reduction(e)
3

> Area Reduction(a)
Thus it is clear that the area reduction by itself is not

a good measure of the vertex weight. Rather, it is the
area reduction weighted by a factor, roughly equal to the
number of unique I/O paths containing that vertex. We
call this factor the vertex commonality factor. The weight
of a vertex, v, is then given by:

W (v) =
Area Reduction(v)

Commonality Factor(v)
(1)

We re�ne this formula after formally de�ning the two
terms, area reduction, also called the area-delay gain
(ADG), and commonality factor (CF).

yAn I-O path is de�ned as a set of operator nodes connecting
an input node to an output node. Thus, the example in Figure 3

has the following I-O paths: a� d� e, b� d� e, and c � e.

The area-delay gain

The components considered in the library in Figure 3
are very \evenly" spread out, that is each component
di�ers from the previous one by a delay of 10 ns. If
this is not the case, as is most likely in a realistic com-
ponent library, then both the area and delay changes
caused by replacing the current assignment of a vertex
with a slower component, should be taken into account
in the selection process. We should really be compar-
ing the area reduction per unit change in delay, rather
than just the area reduction. For instance, for the ex-
ample in Figure 3, if Add2 had a delay of 12 ns instead
of 20 ns, the cost bene�t of vertices d and e should really
be [Area(Add1)-Area(Add2)]/[Delay(Add2)-Delay(Add1)]
= (50-30)/(12-10) = 20/2, and of vertices a, b, and
c it should be [Area(Mpy1)-Area(Mpy2)]/[Delay(Mpy2)-
Delay(Mpy1)] = (100-90)/(30-20) = 10/10. The weight of
d and e would then be higher than that of a, b, and c,
resulting in their slow down (rather than the slow down of
a, b or c), and hence in the less costly design.

The area delay gain (ADG) of a vertex is de�ned as
follows:
De�nition 5: Let the current assignment of a vertex, v,
be the component c0. If the new assignment of the vertex
is c00, then the area-delay gain of v with respect to c00,
ADG(v; c00) is de�ned as:

ADG(v; c00) =
Area(c0)�Area(c00)

Delay(c00)�Delay(c0)
(2)

In the previous example, we slowed down a vertex by
replacing it with the next slower component. This may
not always be the best choice to make. Consider the com-
ponent table in Figure 3(c). If we only consider Mpy2 and
Add2 as possible replacements forMpy1 and Add1 respec-
tively, we would end up replacing nodes a, b and c with
Mpy2. However, we get a cheaper design by replacing ei-
ther of d or e with Add3 (area 351 vs. 370 gates). We could
have obtained the cheaper design had we conducted a more
global search of the component table and for all vertices,
determined the component with the greatest area-delay
gain. This component is also called the BestAssignment
for a vertex v. It is formally de�ned as follows:
De�nition 6: The BestAssignment for a vertex v, is the
unique component c00 that satis�es the following proper-
ties:

ComponentType(c00) = V ertexType(v) (3)

ADG(v; c00) � ADG(v; c); (4)

8c 2 CL satisfying (3)

In other words, c00 is the component that gives the maxi-
mum ADG.
Re�ning the vertex weight de�nition

We now re�ne the vertex weight de�nition given in (1),
to include all the factors mentioned above, namely, the
area-delay gain, the BestAssignment component and the
vertex commonality factor.

De�nition 7: The weight of a vertex, v, is given by:

W (v) =
ADG(v; c00)

CF (v)
(5)

where c00 is its BestAssignment (i.e. the unique com-
ponent satisfying the properties (3) and (4) listed above).

Next, we give a method of obtaining the commonality
factor of all vertices in the DFG.
The commonality factor

The commonality factor is determined by making two
traversals of the DFG. In the �rst traversal (from input to
output), we assign a forward weight (FW) to every node.
The forward weight of an output node indicates the num-
ber of unique paths from input nodes to that output node.
In the second traversal (from output to input nodes) we
propagate the forward weight of nodes to their predeces-
sors and assign a backward weight (BW) to every node.
The backward weight of a node is also its commonality
factor.

a

b

c d

e

i1 i2

i3

i4 i5

o1

0 0

0 1

1

1 1

2

0 0

2

a

b

c d

e

i1 i2

i3

i4 i5

o1

0 0

0

1 1

2

0 0

2

2

2

(a) (b)

Assigning forward weights Assigning backward weights

Figure 4: Determining the commonality factor by

assigning a forward and backward weight to ver-

tices.

This method is illustrated with the help of an example
(Figure 4). As an initialization step all input nodes, i1 to
i5, are assigned a FW of 0, and all operator nodes with
only input node predecessors (node a in the example) are
assigned a FW of 1. The forward weight of a node is then
split equally amongst its successors. This split value is
rounded up to 1, if it is less than 1. The FW of a vertex is
then the sum of the split values from all its predecessors.
Using this method, nodes b, c, d and e get assigned a FW
of 1, 1, 1 and 2 respectively,

In the backward traversal, we distribute the back-
ward weight of a node to its predecessors in the ratio of
their forward weights. The backward weight of a node
is then the sum of these partial BWs from all its succes-
sors. As an initialization step, we equate the backward
weight of all output nodes to their forward weights. Thus
BW(o1)=FW(o1)=2. We then assign e a BW of 2 since
e is the only predecessor of o1. The BW of e is then dis-
tributed amongst c and d in the ratio of 1:1, resulting in

a BW assignment of 1 each. This process is continued
resulting in BW(b)=2 and BW(a)=2.

Thus far we have explained how to associate a weight
with every vertex, which is used as a priority function in
selecting the most favorable vertex to slow down in each
iteration of the loop (step 6 in Figure 2). We now explain
the next step (step 7) of the combined component selection
and pipelining algorithm, namely the algorithm for parti-
tioning or pipelining the DFG into equal delay stages.

4.3 Pipelining

Given a DFG, an Assignment for the DFG, and a PS

delay constraint, the pipelining algorithm partitions the
DFG into a minimal number of stages that meet the PS

delay constraint. It traverses the graph in two directions,
downward (from the input to the output nodes), and up-
ward (from output to input nodes). As it traverses the
graph it keeps accumulating the delay from the boundary
of the last pipe stage. A new boundary is set when the
performance constraint can no longer be satis�ed. The
traversal is repeated for both directions, and the pipeline
with the fewer number of \cuts" is selected. A \cut" refers
to the intersection of an edge of the DFG with the pipe
stage partition, and it corresponds to a pipeline register.
Hence, the fewer the number of cuts, the fewer the pipeline
registers.

4.4 Pseudo-code of the combined algo-
rithm

Having de�ned the vertex weight and the algorithm for
pipelining (steps 6 and 7), we now present the pseudo-code
of the complete algorithm (Figure 5) and walk through it
by using a simple example.

We wish to select a design with a PS delay of 30 ns and
a Latency of 60 ns (or 2 pipe stages) for the DFG and a CL
in Figure 6. We �rst determine the commonality factor of
all vertices and map each vertex to the fastest component,
i.e. all multiplier vertices toMpy1 and all adder vertices to
Add1. Next, we determine the BestAssignment and the
weight of all vertices (shown in the table in Figure 6(b)).

After evaluating all vertex weights, the vertices are ar-
ranged in the order of decreasing weights, and the �rst
vertex, that is, the one with the highest weight is selected
to be slowed down. This is node d in the example (shown
as the boxed entry in Figure 6(b)). However, with this
slow down and with a PS delay constraint of 30 ns, the
DFG can only be pipelined in 3 stages of delay 10, 30 and
10 ns each. Since this is not acceptable, the slow down
is rejected and we look for the next BestAssignment for
vertex d with a delay less than 30 ns. Add2 satis�es these
properties. We update weight(d) to 1.0 (20/(10�2)) and
return it to the list.

In the next iteration, either of nodes a, b, and c can
be selected since they all have the same weight of 1.25.
First node a is selected to be replaced by Mpy2. Since the
graph is successfully pipelined into 2 stages, one of delay
30 ns and the other 20 ns, the move is accepted. The next
BestAssignment for a, Mpy3, has a delay (40 ns) greater

Algorithm Component Selection and Pipelining

Determine commonality factor of all vertices.
Map each vertex, v, to the fastest (or least delay
component) of type V ertexType(v).
Determine the BestAssignment and all vertex weights.
Make a list of vertices in order of decreasing weights.
Loop until (empty list)

Assign the �rst vertex in the list to current vertex.
Pipeline the DFG, and evaluate performance.
Are performance constraints met?
If (no)

Do not \accept" this change.
Else If (yes)

\Accept" this change.
End If

Update Vertex List(current vertex).
End Loop

End Algorithm

Procedure Update Vertex List(current vertex)

Find the next BestAssignment for current vertex.

If (not found OR not acceptable)
Remove current vertex from list.

Else if (found AND acceptable)
Update current vertex weight and return to list,
maintaining the sorted order.

End if

End Procedure

Figure 5: Pseudo code of the combined component

selection and pipelining algorithm.

(a)

a b c

d

e

* **

+

+

 DFG:

(b)

 Vertex Commonality Factor and Weights:

 Component Selection Process:

(c)

a
b
c
d
e

1
1
1
2
3

1.25
1.25
1.25
1.75
1.16

 −
 −
 −
 −
 −

Vertex (v) CF(v) W(v)

1.25
1.25
1.25
1.00
1.16

 −
1.25
1.25
1.00
1.16

 −
 −
1.25
1.00
1.16

 −
 −
 −
1.00
1.16

 −
 −
 −
1.00
0.66

 −
 −
 −
 −
0.66

a b c

d

e

Mpy1 Mpy1 Mpy1

Add1

Add1

Initial Assignment:

a b c

d

eAdd1

Mpy2 Mpy2 Mpy2

Add2

Final Assignment & Partition:

Component Library:

Add1
Add2
Add3
Add4

Mpy1
Mpy2
Mpy3

10
20
30
40

10
30
40

100
 80
 30
 25

200
175
150

Comp. Delay Area
(gates)(ns)

PS Delay Constraint = 30 ns
Latency = 60 ns

Figure 6: A walk-through example to illustrate the

component selection and pipelining algorithm.

than the PS delay (30 ns), hence node a is dropped from
the list (indicated by a \-" in the table). Vertices b and c

undergo the same process. In the �fth iteration, vertex e is
selected to be replaced with Add3 - this too is not accepted
since it violates constraints. Next, node d is replaced with
Add2 and removed from the list, and in the �nal iteration,
node e is also removed from the list. The algorithm then
terminates, since there are no nodes left to consider. The
�nal Assignment and Partition is shown in Figure 6(c).

5 Experimental results

We have implemented the component selection and
pipelining algorithms in C on a SUN SPARC station.
The component selection algorithm has a complexity of
O(N2C) where N is the number of vertices in the DFG,
and C is the maximum number of implementations of any
operator type in the given component library. The pipelin-
ing algorithm has a complexity of O(N) and the combined
algorithm for component selection and pipelining also has
a complexity of O(N2C).

In all our experiments we have used a modi�ed version
of the DTAS library [9] shown in Table 1 for multiplier
and adder/subtractor components. Component cost is in
terms of the number of equivalent ND2 (2-input NAND)
gates from the LSI Logic Library, while delay is in ns.

We have conducted two types of experiments:

Experiment #1 demonstrates the quality of results pro-
duced by the component selection algorithm by com-
paring it with optimal results produced by an exhaus-
tive search. These results have been limited to fairly
small sized examples (the HAL benchmark and an
8th-order FIR �lter) because the exhaustive search
takes exponential time (O(CN)), which becomes pro-
hibitive for larger examples (even after pruning the
search space).

Experiment #2 demonstrates the importance of the
commonality factor during the vertex weight assign-
ment for component selection. This experiment has
been conducted on the 5th-order elliptical-wave �lter
benchmark.

TABLE 1
MODIFIED DTAS COMPONENT LIBRARY

Component Component Delay. Cost
Type Name (ns) (eqv. ND2 gates)

? Mpy1 57.97 2368
? Mpy2 44.21 2400
? Mpy3 36.21 2600
? Mpy4 32.98 2710
? Mpy5 28.57 2978
? Mpy6 25.00 3500
? Mpy7 22.50 4000
? Mpy8 20.50 4500

+/- Add1/Sub1 25.80 62
+/- Add2/Sub2 20.00 125
+/- Add3/Sub3 13.50 187
+/- Add4/Sub4 10.00 250
+/- Add5/Sub5 5.50 375
+/- Add6/Sub6 3.00 500

5.1 Experiment #1: Quality of results

In order to measure the quality of results produced by
the component selection algorithm, we coded an exhaus-
tive algorithm that gives the optimal solution since it tries
all possible combinations of vertices and components, and

selects the one with minimum cost within performance
constraints.

We executed the two algorithms for the HAL bench-
mark and the FIR �lter. While our algorithm took a few
seconds on a SUN SPARC, the exhaustive algorithm took
several days on some of the examples. The results of both
algorithms are presented in Table 2. The \PS Delay Con-
straint" column gives the constraint we speci�ed to the
two algorithms, while the \PS Delay" columns give the PS
delay of the designs produced by the two algorithms. Each
example was evaluated for 8 di�erent PS delay constraints.
For the HAL benchmark, our algorithm produced designs
with an area that was, at worst, 0.1% higher than those
produced by the exhaustive algorithm. For the FIR �l-
ter the two algorithms gave identical results except in two
cases, one in which the design produced by our algorithm
was 0.01% more costly and the other in which it was 0.7%
more costly.

We have been unable to compare our results with those
produced by other algorithms since most algorithms as-
sume a single implementation of components. Though
TBS [6] is an exception, it combines component selec-
tion with scheduling rather than with pipelining. We
attempted to compare our results for the elliptical �lter
benchmark; whereas our algorithm produces designs with
a PS delay of as low as 200 ns, the fastest design that TBS
produces has a delay of 1700 ns. This is an unfair com-
parison - it simply serves to corroborate the e�ciency of
pipelined designs over non-pipelined designs.

TABLE 2
OUR ALGORITHM VS. AN EXHAUSTIVE ALGORITHM

PS Delay PS Delay (ns) Cost (ND2gates) % error
Example Constraint Our Exh. Our Exh. in

(ns) Alg. Alg. Alg. Alg. Cost

71 70.5 70.5 28062 28062 0.0
90 88.6 89.5 20452 20438 0.06
110 109.3 109.5 17525 17525 0.0
130 129.9 129.9 16222 16207 0.1

HAL 150 149.4 149.4 15567 15567 0.0
170 169.9 169.9 15054 15054 0.0
200 199.5 199.4 14709 14709 0.0
240 237.6 237.6 14488 14488 0.0

40 37.6 37.6 13912 13912 0.0
50 47.7 47.7 12150 12150 0.0
70 68.7 68.7 10724 10724 0.0

FIR 90 87.7 89.0 10287 10286 0.01
Filter 100 97.0 97.0 10098 10098 0.0

110 109.3 109.3 9973 9973 0.0
130 121.6 129.6 9848 9783 0.7
140 135.4 135.4 9720 9720 0.0

5.2 Experiment#2: E�ectiveness of com-
monality factor

In Section 5 we gave an intuitive explanation of the
importance of the commonality factor in assigning vertex
weights during component selection. To get a quantitative
measure of this importance we conducted an experiment to
compare two cases for the 5th-order elliptical wave �lter
benchmark: Case 1, which uses the commonality factor
as described in Section 5, and Case 2, which assigns all
vertices a commonality factor of 1, thereby removing its
e�ect from the vertex weight formula given by equation
(5). Table 3 presents results obtained for several di�erent
PS delay and pipe stage constraints. For most constraints,
Case 1 produces results that are far superior than those
produced by Case 2, and in some cases the ratio of Case

1:Case 2 is even as high as 2.5, indicating the importance
of the commonality factor.

TABLE 3
EFFECT OF COMMONALITY FACTOR (CF)

PS Delay (ns)/ Cost (ND2gates) % difference
Example Pipe Stage Case 1: Case 2: in

Constraint With CF Without CF Cost

35 / 2 6809 6999 2.8
50 / 2 3806 5498 44.5
75 / 2 1680 3680 119.0
100 / 2 1428 3365 135.6
125 / 2 1178 2802 137.9

5th-order 150 / 2 1302 1428 9.7
Elliptical 175 / 2 1364 1364 0.0
Wave 35 / 3 5932 6373 7.4
Filter 50 / 3 2056 4308 109.5

75 / 3 1553 3178 104.6
100 / 3 1178 2053 74.3
125 / 3 1302 1302 0.0
150 / 3 1364 364 0.0

6 Conclusions
To summarize, we have presented a cost-optimized al-

gorithm for pipelining a data ow graph and selecting
components, given a multiple implementation library and
throughput and latency constraints. This allows our de-
signs to use fast components only for critical operations
and the slower components for less critical ones. To test
our component selection algorithm, we have compared its
results with optimal results produced by exhaustively enu-
merating all possible designs. For the examples considered
our algorithm gave results that were no more than 0.7%
o� from the optimal result. Whereas the exhaustive algo-
rithm has an exponential time-complexity of O(CN) and
took several days to execute on some of these examples, our
algorithm has a polynomial time-complexity of O(N2C)
and executed in less than a second for these examples.

References

[1] N. Park and A. C. Parker, \Sehwa: A software package for
synthesis of pipelines from behavioral speci�cations," IEEE
Transactions on Computer Aided Design, vol. 7, pp. 356{
370, Mar. 1988.

[2] K. S. Hwang, A. E. Casavant, C.-T. Chang, and M. A.
d'Abreu, \Scheduling and hardware sharing in pipelined
data paths," in Proceedings of the IEEE International Con-
ference on Computer Aided Design, pp. 24{27, 1989.

[3] C.-T. Hwang, Y.-C. Hsu, and Y.-L. Lin, \PLS: A scheduler
for pipeline synthesis," IEEE Transactions on Computer
Aided Design, vol. 12, pp. 1279{1286, Sept. 1993.

[4] R. Jain, A. Parker, and N. Park, \Module selection for
pipelined synthesis," in Proceedings of the 25th Design Au-
tomation Conference, pp. 542{547, 1988.

[5] R. Jain, A. Parker, and N. Park, \MOSP: Module selec-
tion for pipelined designs with multi-cycle operations," in
Proceedings of the IEEE International Conference on Com-
puter Aided Design, pp. 212{215, 1990.

[6] L. Ramachandran and D. D. Gajski, \An algorithm for com-
ponent selection in performance optimized scheduling," in
Proceedings of the IEEE International Conference on Com-
puter Aided Design, pp. 92{95, 1991.

[7] A. H. Timmer, M. J. M. Heijligers, L. Stok, and J. A.
G.Jess, \Module selection and scheduling using unrestricted
libraries," in Proceedings of the European Design Automa-
tion Conference, pp. 547{551, 1993.

[8] S. Bakshi and D. D. Gajski, \A component selection al-
gorithm for high-performance pipelines," Tech. Rep. 94-01,
Dept. of Information and Computer Science, University of
California, Irvine, 1994.

[9] N. D. Dutt and J. R. Kipps, \Bridging high-level synthe-
sis to RTL technology libraries," in Proceedings of the 28th
Design Automation Conference, 1991.

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

