
A Flexible Access Control Mechanism for CAD Frameworks

Alfred van der Hoeven Olav ten Bosch
Rene van Leuken Pieter van der Wolf

Delft University of Technology
DIMES Design and Test Centre

Delft, The Netherlands

The possibility to control access to data and tools is vital
in many organizations where design activities take place.
However, in other organizations a stringent access control
mechanism would seriously hamper the cooperation
among designers. In this paper we present a configurable
and unobtrusive access control mechanism for CAD
frameworks that is flexible enough to support a wide
range of access control policies. Furthermore, we present
the realization of the access control mechanism in the
context of the Nelsis CAD Framework.

1. Introduction
A CAD framework [1][2][3] is a software infra-

structure that provides a common operating environment
for CAD tools. It provides designers with a number of
services that help them to manage their design data and to
control the design process. These services include
concurrency control, version management, design
methodology management and browsing facilities.
Another important framework service is access control.
Access control in a CAD framework is used by designers
and framework managers to specify and enforce access
permissions to resources that the CAD framework knows
about. A resource can be an entire class of objects or it
can be a specific object that is managed by the framework.
Examples of class resources are the class of design
projects and the class of design objects. Examples of
object resources are a specific design project or a specific
design object within a specific design project. In this
paper, we discuss the requirements for an effective access
control mechanism and we derive an information model
that describes the structural semantics of the access
control related information maintained by the CAD
framework. Subsequently we show how this information
model is used to realize the access control mechanism in
CAD frameworks in general and more specifically in the
Nelsis CAD framework [4].

In this paper, we assume frameworks that have been
hhhhhhhhhhhhhhhhhh
This research is supported in part by the commission of the EU under
project 7364 (JESSI-Common-Frame).

designed according to the widely accepted CAD system
architecture of Figure 1. The access control mechanism is
offered as one of the kernel framework services. We also
assume that a CAD framework allows the logical
distribution of design data and design activities via design
projects. A design project is a local environment in which
design activities take place on locally defined design
objects, possibly in accordance with a locally defined
design flow.

KERNEL

Tools
TOOLS

COMPONENT

STORAGE

FRAMEWORK

Domain Neutral Data

Tools

Framework
Integrated Design Tools

Framework services

Domain Specific Data

Encapsulated
Design

Figure 1. CAD system architecture.

2. Access control requirements
Framework users expect different things from an

access control mechanism at different times and in
different environments. In some places, for instance in a
university research environment, people do not want to be
bothered by an access control mechanism. In other
places, for instance in a design company environment
with strict design policies, people want to use the access
control mechanism to limit access to sensitive design
projects and the design objects therein, and to reserve
certain design tasks, such as sign-off tasks, to
distinguished users. Therefore, it is imperative that the
access control mechanism is flexible and configurable so
that it can cater to everyone’s needs.

Furthermore, if people have the proper access
permissions, the access control mechanism should not be
noticeable. The mechanism must do its work
unobtrusively. For instance, it should not enforce a
separate system login mechanism on frameworks that do
not already have this and there should not be any
significant time penalty in the verification of access

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM

copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery.

To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50



permissions. Naturally, if people do not have proper
access permissions, they are to be notified discretely.

An important and obvious property of an access
control mechanism is that it is secure. It must not be
breakable by ordinary users of the framework and the
framework’s underlying operating system. On the other
hand, the access control mechanism of the underlying
operating system may not be in conflict with that of the
CAD framework. Thus, if access to a design object has
been granted by the framework, it should not be denied by
the underlying operating system.

The access control mechanism manages information
that is specific to its own operation. This information also
requires access control, to be performed by the
mechanism itself.

It must be straightforward for framework users to
inspect and modify, if permitted, resources and access
permissions via an interactive access control browser.
The mechanism should allow for the easy modification of
the access permissions of a designer, for instance when he
leaves a company or when his function within a company
changes.

3. Access control in other environments
A well-known example of an access control system is

the file access control mechanism of Unix. For each file
or directory in a file system, the user community is
divided into (1) the user who owns the file, (2) a group of
persons related to the user and (3) the other people in the
community. Read, write and execute permissions for each
file or directory can be defined for each of the above
mentioned categories. One might argue that, given the
implementation of a CAD framework in a Unix operating
environment, the files and directories used in that
implementation could also be used to realize the access
control mechanism. This approach is followed in OCT
[5]. Although appealing because of its simplicity, this
approach exhibits two major disadvantages with respect to
CAD frameworks. Firstly, not all resources managed by
the framework can be mapped onto files or directories of
the Unix file system. This applies especially to the class
resources managed by CAD frameworks, such as the class
of design objects that are not yours. Secondly, the access
permissions of files and directories in the Unix file system
do not allow for the distinction of more than one group of
users per file or directory. Hence it is too inflexible.

In some versions of Unix, notably HP-UX [6], it is
possible to specify an access control list (acl) for each of
the files and directories in the file system. In these Unix
versions, the second disadvantage mentioned above no
longer applies.

The Cadence framework [7] provides an access
control mechanism that is similar to that of Unix. The
framework distinguishes between library objects, cell
objects, view objects and cellview objects, each of which
can be protected via access permissions. For each of these
objects an owner, working group and user group needs to
be defined by the creator of the object. The other users

belong to the public. The designer may specify read, edit
and delete permissions for each of the 4 mentioned user
categories. The disadvantages of the Unix access control
system also apply to the Cadence access control system.
It restricts itself to the access control management of
individual objects in the Cadence system and does not
allow for the access control management of CAD
framework class resources.

In the Jessi Common Framework [8] (JCF), the access
permissions to data and tools are organized in user roles.
JCF provides four user roles whose associated capabilities
cannot be modified: FrameworkAdministrator,
MethodologyManager, ProjectManager and Design-
Engineer. Former roles include the capabilities of latter
ones. Each user registered by the framework has one
specific role but can be part of a number of teams. If a
team has been assigned to a project, all members of that
team have access to the project with the privileges as
specified by their roles. Users have to log into the
framework to obtain access to its databases. The JCF
access control system follows an approach that is different
from the Cadence approach. Instead of managing the
access permissions of the specific objects in the
framework, JCF makes it possible to manage access to
more abstract framework class resources. The
disadvantages of this approach are:
` The user roles are fixed. No roles can be added nor can

their list of associated privileges be modified.
` It is not possible for a user to play a certain role in one

team and a different role in another team.
` The access rights of a team that has been assigned to a

project cannot be restricted. It is for instance not
possible to give an existing team, containing members
with write permissions, read-only permissions to a
library project whose contents is being developed or
maintained by another team.
MPCAL [9] is a multi-person calendar system with a

sophisticated access control system. For each calendar in
the MPCAL system, the owner can define a set of users
and a set of roles and specify which users may play which
roles. A role consists of a name and a set of rules
describing access permissions for the operations (e.g.
make appointment or show schedule) supported by
MPCAL. For each calendar, the owner can thus
determine who is allowed access to which calendar
operations in a flexible manner. Although the complexity
of a CAD framework is different from that of a calendar
system, the ideas behind MPCAL’s access control system
are generally applicable. A disadvantage of this approach
is that for each calendar, the roles are defined separately.
This makes it difficult to attach an interpretation to roles
used by the calendar system since roles with the same
name may represent different access permissions in
different calendars.

All of the above described CAD framework access
control mechanisms fulfill one or more of the
requirements that we stated earlier in this paper. However
all of them also fail to satisfy one or more of the specified



requirements.

4. The information model
In this section we describe an access control

mechanism that satisfies the specified requirements. We
adopt a formal data modeling technique to represent the
relevant entity types and their relationships. The
modeling technique used in the figures displayed below is
OTO-D (Object Type Oriented Datamodel) [10]. In this
semantic data model, the boxes represent the object types
(classes) and the lines connecting the centers of these
boxes denote attribute (part-of) relationships.

4.1 Teams and members

In most design environments, designers are organized
in teams. Designers usually are a member of more than
one team and perform a certain role in each team. The
role they perform may differ between teams. For
instance, in one team a designer may play the role of team
leader, whereas in another team he may play the role of
observer. This is modeled in the dataschema of Figure 2.

Team Designer Role

Member

Figure 2. Dataschema modeling teams and members.

This dataschema specifies that a Designer can be a
Member of a Team and play a specific Role in that
Team. Roles are used to specify the resources a
designer or team has access to and in which manner. For
a further explanation of the type Role, see section 4.2.
In design frameworks that do not have a separate
framework login system, the login system of the
underlying operating system is used to determine the
identity of the designer. Observe that in the JCF
framework, a Designer instead of a Member has a
Role. Also note that, in case of Unix as the underlying
operating system, teams may be configured to coincide
with Unix groups. Figure 3 gives an example of two
teams and their members. The first column of the table
contains the Member object identifiers.

4.2 Roles and privileges

Since we do not target the access control mechanism
for any specific CAD framework nor for any specific
application of the framework, we cannot predict what
resources are required and how they are organized.
Therefore, the access control mechanism should allow the
specification of resources and privileges providing access
to resources and the assignment of privileges to roles.
This is modeled in the dataschema of Figure 4.

In this dataschema, a Privilege is the right to
access its Resource in the manner specified by its
AccessType. Examples of AccessType are create

Member Team

MB15 Nelsis
MB14 JCF
MB13
MB12 Nelsis
MB11 JCF
MB10 JCF
MB9 JCF
MB8 Nelsis
MB7 JCF
MB6 Nelsis
MB5 Nelsis
MB4 JCF
MB3 Nelsis
MB2 JCF
MB1 secretaryNelsis

Nelsis

Designer

Edwin Essenius

Olav ten Bosch

Alfred van der Hoeven
Alfred van der Hoeven

Rene van Leuken
Rene van Leuken

Peter van Putte
Peter van Putte

Ank Russo
Ank Russo

Kees Schot
Wim Tiwon

Peter van der Wekken

Pieter van der Wolf
Pieter van der Wolf

Role

project support
engineer
engineer
team manager
team manager
engineer
framework manager
engineer
engineer
engineer
engineer
framework manager
engineer
secretary

Figure 3. An example listing of team members according to
the schema of Figure 2.

Role Privilege

Resource AccessType

RoleHierarchy

Child

Permission

Parent

Figure 4. Dataschema modeling roles and privileges.

and delete. Examples of Resource are the class of
design objects and the class of projects. A
Permission denotes that the associated Role has
permission to execute the associated Privilege. The
instances of Role and Privilege thus form an
access control matrix whose entries are defined by
Permission. We use Roles for the organization of
privileges because it relieves a team manager from having
to create and delete numerous Permissions when the
position of a designer in a team changes. Instead, he can
just assign him another role. Also, it is often the case that
several members of a team have the same privileges and
this can be modeled via roles. Roles can be organized
hierarchically via the RoleHierarchy object type.
The Parent-Role of a RoleHierarchy also has
the Permissions of the Child-Role of that
RoleHierarchy. This enables the easy specification of
roles, which is especially useful in the definition of team
roles (see section 4.3). A Member of a Team has
access to resources via his Role attribute within the
operating scope of his Team. For an example listing of
role hierarchies and their role attributes, see figure 5.

Resources can be defined within the scope of a design
environment (framework-wide) or within the scope of a
design project (project-wide). Framework-wide resources
are usually class resources. Examples are the class of
design objects and the class of projects. Project-wide
resources are usually specific objects. Examples are a
specific design object within a specific project or a specific



project support
project observer
engineer
framework manager

RH1
RH2

engineer

RH3

Child-Role

RH4
RH5

Role-
Hierarchy

framework manager
framework manager
project owner
team manager
project owner

Parent-Role

Figure 5. An example listing of role hierarchies according
to the schema of Figure 4.

design task within a specific project. We thus need a
mechanism to specify resources and privileges and verify
the permissions to use them at the framework level as well
as at the level of a project. For now, we will restrict
ourselves to resources specified at the framework level
and defer the topic of project-wide resources and
privileges to section 4.6.

4.3 Projects and project partners

In the introduction, we stated that design information
is organized in design projects. A project can be a library
containing design components or a project may contain a
top level design description consisting of design
components from a library (projects may also be used in
other ways). Since projects may be used differently by
different teams, these teams may require different access
permissions to the same project. Team 1 may for instance
be a library development team and thus needs write
permissions for its library projects. Team 2 may be a chip
development team using the libraries of team 1 and thus
only needs read access to these libraries, independent of
the roles of its members. This is modeled in the
dataschema of Figure 6.

Project Team Role

ProjectPartner

Figure 6. Dataschema modeling projects and project
partners.

In this dataschema, a Team can be a partner in a
Project with a specific Role via the object type
ProjectPartner. Members of that team do not have
access to resources in the project other than those
specified by the ProjectPartner’s Role attribute.
As specified in Figure 4, the role of a project partner may
be composed of child-roles. Observe that the JCF
framework follows a similar approach here, but differs in
that a ProjectPartner does not have a Role
attribute. JCF hence lacks the possibility to restrict the
access permissions of a team per project.

4.4 The overall access control schema

Figure 7 displays the overall dataschema of the access
control mechanism, showing the integration of projects,
teams and roles.

Project Team

ProjectPartner Member

Designer

RoleHierarchy

Role

Resource AccessType

Parent

Permission

Privilege

Child

Figure 7. The overall access control dataschema.

4.5 Framework-wide resources

The framework-wide resources are divided into two
groups. The first group contains the resources that are
defined and verified within the scope of a framework
instance. This group includes various resources that deal
with the access control mechanism itself. The second
group contains the resources that are defined within the
scope of a framework instance but whose use is
implemented and verified within the scope of a specific
project. An example of this group is the class of design
objects that are not yours. The use of these resources is
thus restricted via the role of the project partners. A list of
possible privileges is given in the table of figure 8.

create

AccessType

modify
delete
create
modify

create

delete

create
delete
access

delete
add

create
delete
delete
read

Privilege

PR8 Privilege
PR7 Privilege

Resource

PR2 Team
TeamPR3

delete

PR4

PR18

Role
PR5 Role

PR1 Team

PR6 Role

PR9 Project
PR10 Project*

* PR11 Project

PR14* Team-Project
* PR12 Team-Project

PR15* Design Object
PR16* Design Object
PR17* D.O. not yours

D.O. not yours*

Figure 8. List of privileges specified at the framework level.
The marked privileges (PR10-PR18) are verified
at the project level.

Note that many of these privileges are vulnerable to
the bootstrapping problem which is that as long as no one
has the privilege to use a certain resource then no one has
permission to give others the privilege to use that
resource. Take for instance the resource Team with
access type modify which allows a team member to add or
remove members to/from his team. A newly created team
will initially be empty, and thus no one will have the
privilege to add members to that team. Therefore, for a
number of privileges we need to adopt the policy that:

If no one has been explicitly granted the privilege to
use a resource within the appropriate scope (project,
team or both), then everybody may use that resource.

Thus in the case of an empty team, everybody may add
designers to that team. An additional benefit of this
approach is that in an unrestricted design environment,
very few privileges need to be granted. Note that this



policy does not apply to every privilege. For instance the
privilege PR17 with resource Design Object not yours and
access type delete should not be usable by everyone if no
one has been explicitly given permission to use it. Hence,
Privileges also need a Policy attribute to specify
what to do if nobody has explicit access to a privilege.

An important restriction is that only those people that
have permission to create, modify or delete a role, can
give permission to others to do the same. These privileges
are typically reserved for framework managers and should
not be accessible by others.

4.6 Project-wide resources

In the dataschemas displayed above we only modeled
framework-wide resources, privileges and their
assignment to roles. The specification of project-wide
resources cannot be done at the framework level because
that level is beyond their scope. It is for instance not
possible, nor desirable, to limit access to a specific design
object in a specific project via a framework-wide resource.
To model project-wide resources and their use at the
project level, we use the roles that were defined at the
framework level. The roles used at the project level thus
are a subset of the roles used at the framework level. See
Figure 9.

FlowPermission ModulePermission

FlowPrivilegeRole ModulePrivilege

AccessTypeFlowgraph Module

Figure 9. Definition and use of resources within the scope
of design projects.

The resources defined at the project level are usually
objects that exist within the context of a specific project.
For example, the Nelsis CAD Framework contains
flowgraphs, describing design tasks within a design flow
configuration, and modules, which are containers for the
different versions of a design description [4][11]. Access
control is required for flowgraphs as well as modules.
Other frameworks may need the ability to restrict access
to workspaces. The Nelsis case has been modeled in
Figure 9 where we allow flowgraphs and modules to be
used as resources in the access control system. Examples
of the AccessType attribute of a FlowPrivilege
are execute and open. Examples of the AccessType
attribute of a ModulePrivilege are read and write.
Observe that the ability to define privileges at the project
level and to assign them to roles, requires the specification
of resources and privileges giving access to this ability.
These privileges are specified framework-wide but their
use is verified within the scope of an individual project.

5. Realization
In this section, we discuss the implementation of the

access control mechanism and its integration into the
Nelsis CAD Framework. Most of the discussion applies
to other CAD frameworks, as well. For the
implementation of the access control mechanism we use
the widely accepted CAD system architecture of Figure 1,
which is also used in the Nelsis CAD framework.

5.1 The framework process structure

Because part of the data managed by the access
control mechanism must be framework-wide available and
maintained (e.g: team information, resource
specifications) we have chosen to implement the access
control mechanism as a dedicated server which
communicates with the project servers. In CAD
frameworks that already have framework-wide processes,
the access control mechanism may also be implemented as
part of one of these processes. The resulting process
structure of the Nelsis CAD framework is depicted in
Figure 10.

Objects
Design

Server

1

Project

Browser
Access Control

Server
Framework

Framework

Schema Data

Project

Schema Data

Tool

q

p

1

n

1

m

[0,1]

Figure 10. Process structure in the Nelsis CAD Framework.
Circles denote processes, ’files’ denote data.

For each instance of the Nelsis CAD framework there
is a separate framework server process which incorporates
the access control manager. For each (active) design
project, there is a project server process, connected to the
framework server, which manages project-specific data.
In frameworks that do not have separate processes for
managing design data at the project level, the framework
server and the project servers collapse into one process.

Since the resource and privilege information is
distributed between the framework server and the project
servers, the verification of access permissions is also
distributed. For privileges defined within the scope of a
project, the project server first determines the roles that



have access to the requested privilege. Next, the project
server verifies with the framework server that a designer
who requests the privilege is permitted to play one of
these roles and that the team in which he plays that role is
also allowed to play one of these roles within the project.
For privileges defined at the framework level but used at
the project level (e.g. the right to create design objects),
the project server simply establishes with the framework
server that the designer has access to that privilege.
Privileges defined and used at the framework level are
handled entirely by the framework server.

An important aspect of the implementation of an
access control mechanism is its security as discussed in
section 1.1. We feel that security can merely be reached if
designers can only obtain access to data managed by the
framework through tools connected to the framework. To
obtain that goal, all design data need to be owned,
unaccessible for others, by a special user (e.g. nelsis) and
all tools that have access to the design data and design
meta data must run under the ownership of that special
user.

5.2 The access control browser

Via the access control browser, designers can view
and modify the information related to the access control
mechanism through a navigational user interface as
depicted in Figure 11.

JCF, team manager

Nelsis, team manager

Designer Memberships (Team, Role)

Peter van der Wekken

Project Team Designer Role Resource

Alfred van der Hoeven

Rene van Leuken

Peter van Putte

Ank Russo

Kees Schot

Olav ten Bosch

Edwin Essenius

Figure 11. The Access Control Browser of the Nelsis CAD
Framework

A framework user can start with any one of the 5 lists
as displayed at the top of figure 11. From each list
displayed by the browser, he can select an item and have a
list of related items displayed. For instance, a designer
can have the list of project partners (team, role) of a
selected project displayed or the list of privileges a
selected role has access to.

For each list or sub-list there are appropriate
commands for adding entities to, deleting entities from or
modifying entities of that list. There are also commands

for saving changes, and for connecting to or disconnecting
from projects. If a designer is not authorized to apply
some specific browser command, the associated command
button is disabled.

6. Conclusion
We have derived a generally applicable access control

mechanism from a comprehensive set of requirements. In
the course of this derivation we have used the OTO-D
datamodel to arrive at a dataschema with a formally
defined semantics. In this schema, we assign privileges to
roles and we use teams to organize framework users,
resulting in a high level of flexibility of the access control
system. An access control browser can be used to inspect
and modify access control data. The security of the access
control system partly stems from the scoping of privileges
as a result of which teams can control access to their own
design environments, and partly stems from the fact that
access to data managed by the framework is only allowed
via tools managed by the framework. As a result, the
access control management system we described and
employ in the Nelsis CAD Framework, is robust against
misuse, easy to configure, nonobtrusive, and has a hardly
discernible performance penalty. Furthermore, its
concepts can also be applied to other CAD frameworks.

References
1. CFI Architecture Technical Subcommittee, ‘‘CAD

Framework Users, Goals, and Objectives, Version 0.92’’,
CAD Framework Initiative, (December 1990).

2. P. van der Wolf, ‘‘Architecture of an Open and Efficient
CAD Framework’’, Ph.D. Thesis, Delft University of
Technology, Delft (June, 1993).

3. T.J. Barnes, D. Harrison, A.R. Newton, and R.L.
Spickelmier, Electronic CAD Frameworks, Kluwer
Academic Publishers, Boston (1992). ISBN
0-7923-9252-3

4. P. van der Wolf, P. Bingley, and P. Dewilde, ‘‘On the
Architecture of a CAD Framework: The NELSIS
Approach’’, Proc. of the European Design Automation
Conference, pp. 29-33 (1990).

5. Mario Silva, David Gedye, Randy Katz, and Richard
Newton, ‘‘Protection and Versioning for OCT’’, Proc.
IEEE 26th Design Automation Conference, (1989).

6. Hewlett Packard, HP-UX Release 8.0 Reference, Volume
3, Hewlett Packard, England (January 1991).

7. Cadence, ‘‘Design Framework II Reference Manual’’,
Cadence Design System Documentation, Cadence Design
System, Inc. (October 1991).

8. Siemens Nixdorf Informationssysteme AG, ‘‘Jessi
Common Frame V2.0’’, Desktop User’s Guide, Siemens
Nixdorf Informationssysteme AG (1993).

9. I. Greif and S. Sarin, ‘‘Data Sharing in Group Work’’,
Proceedings of the First Conference on Computer-
Supported Cooperative Work, pp. 175-183 Austin, Texas
USA (December 1986.).

10. J.H. ter Bekke, Semantic Data Modeling, Prentice Hall,
Englewood Cliffs, N.J. (1992). ISBN 0-13-806050-9.

11. K.O. ten Bosch, P. Bingley, and P. van der Wolf, ‘‘Design
Flow Management in the NELSIS CAD Framework’’,
Proc. 28th ACM/IEEE DAC, pp. 711-716 (1991).


	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index




