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Abstract

This paper presents a multiple-FPGA-based exper-

imentation board. The problem to be solved is that of

implementing a circuit into a set of FPGAs. This

board provides a hardware environment that can be

used either as a prototyping board, allowing to test

circuit designs, or as a hardware support for practi-

cally test and optimize partitioning algorithms. The

former use address the problem of rapid prototyping

while the latter is a contribution to the domain of hard-

ware/software codesign. The environment consists of

the printed circuit board itself, a set of Xilinx FPGAs,

static RAM, a parallel and a serial interface. In this

paper, the structure of the board will be presented, by

pointing out its simplicity, power and exibility.

1 Introduction

Since the �rst appearance of FPGAs in the mid-

eighties, the interest for this new technology has

been continually growing. The main reasons for

this are the relatively high complexity and the user-

programmability of these devices, allowing a designer

to implement a circuit by himself and to do a fast

redesign in the case the circuit did not work as ex-

pected. For an analysis of FPGA architectures see [1].

The �rst problem that has been addressed concern-

ing FPGAs was the problem of technology mapping.

It consists of transforming a circuit description made

up of standard logic gates and RTL elements into a

description using the internal elements of an FPGA.

There has been a lot of research done on this subject.

For more informations, see [2] [3]
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After the problem of technology mapping has been

very well addressed, a new problem has appeared and

is getting more and more into the focus of interest:

It concerns the problem of implementing very large

circuits into FPGAs. New generations of FPGAs have

appeared, faster, more complex, with more and more

gates on a chip, thus allowing designers to implement

more and more larger circuits. However, despite the

degree of sophistication and the number of gates that

FPGAs have reached, they are still too small to imple-

ment larger circuits, with several ten or hundred thou-

sands of gates. Consequently, the idea has appeared

to put a set of FPGAs onto one board, to realize an

interconnecting structure between them, to partition

a large design into smaller ones that can �t into one

single FPGA, and to implement each of these small

designs into the di�erent FPGA devices of the board.

This problem can be divided into two parts. On

the one side there is the software part, which concerns

the partitioning of the circuit. It has the task of di-

viding the circuit into several pieces according to some

criteria, like e.g optimizing the propagation delay or

minimizing the number of interconnections between

two pieces of circuit. Partitioning algorithms are well

konwn [4] but need to be adapted to the technologi-

cal characteristics of FPGAs. On the other side there

must be some hardware support present, for practi-

cally implement a circuit into a set of several FPGAs.

This hardware must provide enough gates to allow the

implementation of large designs, as well as an e�cient

interconnection structure.

This paper presents an experimental hardware envi-

ronment, made up of a printed circuit board on which

are placed a set of Xilinx FPGAs for the computa-

tional and the control part, some memory for the da-

ta storage, and a serial and parallel interface through

which the board can be driven. Unlike other FPGA
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boards [5], this one is not dedicated to a speci�c appli-

cation, but has the purpose to be universal, allowing

designers on the one side to implement various type-

s of circuits, on the other side to test the e�ciency

of partitioning algorithms. Section two presents the

requirements and speci�cation of the board. The de-

tailed structure of the board is then presented in sec-

tion three. Section four describes the physical imple-

mentation of the board and the software environment

used to realize it. Section �ve gives an overview of the

frame within which this work has been done. Finally,

section 6 will give a conclusion to this work.

2 Hardware requirements and struc-

tural speci�cation of the board

This section will examine the required capabilities

of the FPGA hardware environment. Since this envi-

ronment is made up of several FPGA devices and is

therefore closely related to the partitioning problem,

the requirements can not only be expressed in terms

of hardware, but also must consider the architectural

side.

� In order to implement large circuits, it is neces-

sary to have su�cent gate complexity as well as a

large number of I/Os. There are two ways to meet

this requirement: the board must be made up of

either many FPGA devices with average gate and

I/O capacity or only a few ones with larger gate

and I/O capacity. It will be shown in section 3

that newly appeared FPGAs on the market have

led to choose the second possibility.

� Since this board is intended to serve as a hardware

support for implementing various circuits and

test di�erent partitioning algorithms, the FPGAs

which it is made up of must be choosen among the

re-programmable FPGAs, that is those which are

RAM-based.

� The hardware environment must also provide

some memory. On the one side this allows FPGAs

to take initial values out of it or to store interme-

diate results. On the other side, it gives the board

the ability to work standalone, without any da-

ta exchange to the host while computing, which

would inevitably lead to a decrease in term of

speed.

� The board is intended to be driven by a host

computer, therefore there must be an interface

providing all necessary signals for con�guring the

FPGAs, preloading the memory, reading out the

results, and controlling the general behaviour of

the board from the host.

� Each circuit that is intended to be implemented

onto the board has di�erent requirements to the

hardware. In order to improve the exibility and

to adapt the board to each circuit, it seems inter-

esting to implement the controller of the board

into another FPGA, thus allowing an easy repro-

gramming.

� Since this board is intended to be an experimental

board, its structure has to be simple yet powerful.

A structure that is simple will also ensure that the

board will be easily expandable.

� With regard to the architecture of the board, it

seems reasonable to provide as many intercom-

munication channels between FPGAs as possible.

The wider the datapath, the easier will be the

partitioning.

� The memory should be shared so that the FPGA

devices can work on the same data. This implies

that there will be a common data and address

bus. As a consequence of this, since every FPGA

will be able to access the same memory, it will be

necessary to provide an arbitration logic, which

will grant the memory access according to some

priorities.

� The interface has to be built so to connect the

board either to a PC or to a SUN workstation,

thus increasing its exibility. This speci�cation

makes it impossible to use the internal bus (ei-

ther ISA or SBUS) of these two computer type-

s. The solution to this problem consists in using

the interfaces that these two computers have in

common, that means the serial and the parallel

interfaces.

3 Composition and structure of the

board

This section presents the architecture of the board

by describing on one side the elements composing it,

on the other side the interconnection structure be-

tween them. It will be shown how the speci�cation

of section two were met. Figure 1 depicts the overall

structure of the board. It consists of several functional

units: the interface, the memory part, the controller

and the FPGA block. Each of them will be described

in the following subsections.
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Figure 1: Overall structure of the board

3.1 The interface

One of the speci�cation presented in section two

prescribed that the interface must be built to con-

nect the board either to a PC or to a SUN worksta-

tion. This requirement prohibits the use of the in-

ternal busses of these two computer types. The only

way to implement this is to use the parallel and seri-

al interfaces which are common to these two types of

computer. As shown in Figure 1 the serial interface

is used for the con�guration of the FPGA block as

well as the controller, since the latter is made up of an

another FPGA device. This con�guration is done by

downloading a bitstream into each of the FPGAs.

Since the serial interface is only used for con�gur-

ing the FPGAs, the board is controlled by the host

through the parallel interface. There is however a

counterpart to the exibility provided by the use of

the serial and parallel interfaces: indeed, due to the

fact that the parallel interface of the host has a limit-

ed number of control and data lines, it would be quite

di�cult to control every part of the board from the

host itself. The solution to this problem consists of

using the parallel interface solely for the communica-

tion between the host and the controller. It is then the

task of the controller to \interpret" the few commands

it receives from the host and to \expand" them in

commands that are comprehensible by the other parts

of the board. The FPGA block and the controller

must obviously be con�gured through the serial inter-

face before any command can be sent by the host to

the controller through the parallel interface.

3.2 The memory part

The memory part consists of 64 Kbytes static RAM

with a data width of 16 bits. Static RAM has been

chosen because of its faster access time and its simpler

connection structure than dynamic RAM. As shown

in �gure 1 the memory can be addressed by both the

controller and the FPGA block, that means by every

single FPGA device of this block. As it was explained

previously, the data exchange between the memory

and the host is solely ensured by the controller. It

is the task of the controller to preload the memory

with initial data and to read out the �nal results. The

memory can be accessed by every FPGA of the FPGA

block through common data and address busses with

respect to the permissions granted by the arbitration

logic of the controller.

3.3 The controller

The task of the controller is twofold: on the one

side it is responsible for the communication between

the host and the board by getting the commands from

the host, interpreting them according to its program-

ming and dispatching commands to the other parts of

the board. On the other side, once the FPGAs are

all con�gured and the data loaded into memory, the

board is given the control to itself and is then working

standalone; the task of the controller is then mostly

to arbitrate the memory access requests coming from

the FPGA block.

The controller is implemented into a Xilinx XC

3090 FPGA, thus respecting the speci�cation. This

allows the designer to adapt the controller to the ap-

plication being implemented into the FPGA block. It

could seem that the counterpart of this exibility re-

sults in additional work for the designer who has to

implement a new controller for every new application.

But this is actually not the case. Despite the fact

that the controller is programmable, it however has

an overall structure, which is shown in �gure 2.

arbitration

control path
Other control signals

FPGA Block

Parallel interface

arbitration

Memory access

data

read/write

addressInterface controller Memory

Controller

controldata

Figure 2: Controller



3.3.1 The interface controller

The interface controller is responsible for tranfering

data from the host to the board memory and vice ver-

sa. Since the parallel interface has an eight bits wide

datapath while the memory has sixteen bits wide ad-

dress and data busses, some multiplexing and demul-

tiplexing of these data must be performed. To achieve

this, the interface controller is simply made up of a

sixteen bit counter which is responsible for counting

up the addresses, as well as some bu�ers and latches

which are in charge of the multiplexing / demultiplex-

ing part.

As the board and the host do not work at the

same clock rate, all the communication between them

is asynchronous, which means that for each data ex-

change there must be some handshake. At �rst glance,

this seems to be a factor slowing down the perfor-

mance of the board. But the data exchange between

the host and the board is only occuring before the

computation, for the purpose of preloading the mem-

ory, and after the computation, for reading out the

results. Since there is no data exchange with the host

while the board is computing, the asynchronism of the

host-board communication is not a problem.

3.3.2 The memory access arbitration

As it was said previously, the second main task of the

controller is the arbitration of the memory access. In-

deed, since the FPGAs of the FPGA block share the

same data and address busses, there must an arbi-

tration logic which grants the access to the memory

according to some priority schedule. The method that

has been chosen to achieve this is a local bus arbitra-

tion with central arbiter [6]. The functioning mode is

very simple: each FPGA has a priority which is shifted

on a circular way each time one of the FPGA got ac-

cess to the memory. If an FPGA needs memory access,

it sends a bus request to the controller. If this FPGA

is the only one requiring the memory, no arbitration

is necessary and the memory access is granted to it. If

more than one FPGA require memory access, the one

with the highest priority obtains it. The only problem

that could arise with this simple method is the possi-

bility for an FPGA to keep the memory access as long

as desired once it has been granted to it, preventing

the other ones to get it also. If this should occur, then

it would be necessary to implement a more complicat-

ed arbitration method avoiding this problem. Since

the FPGA serving as controller is a Xilinx XC 3090,

with a gate capacity of 5000, this should be possible

without further complications.

3.4 The FPGA block

The FPGA block constitutes the computational

core of the board. Providing that the application to

be run on the board has been correctly partitioned,

place and routed, it is then downloaded into the FPGA

block which has the task to execute it. In accordance

with the speci�cations, the board must have a com-

fortable gate capacity and a large number of I/Os. To

achieve this, it has been decided to build the FPGA

block from Xilinx XC 3195 FPGAs of the new 3100

serie. This family o�ers optimized performance rela-

tively to the 3000 serie. The most interesting improve-

ments of the XC 3195 are a higher clock rate and ad-

ditional gate and I/O capacity. As depicted in �gure

3, the FPGA block consists of a 2x2 array of XC 3195.

The only direct connection of the FPGA block to the

host is through the serial interface, for the purpose

of con�guration. Each FPGA device is connected to

his two neighbours by thirty-two bit wide datapaths,

thus respecting the speci�cation of having a datapath

as large as possible. The lower right FPGA on �g-

ure 3 is representative for each FPGA and shows the

connections to the other parts of the board. The con-

nection to the memory consists of the common data

and address busses, each sixteen bits wide, and the

read/write signals. The connection to the controller

consists of the bus arbitration signals, which are spe-

ci�c to each FPGA, and a common control path.

FPGA Block

FPGA FPGA
Memory

Controller

FPGA FPGA

32 32

32

32

Figure 3: FPGA block

4 Realization and characteristics of

the board

4.1 Design considerations

The realization of the printed circuit board, from

the schematic entry to the layout, has been fully

achieved with the Mentor Graphics Board Station

software environment, running on a SUN workstation.



The con�guration of the FPGAs is made in a slave

serial mode. To achieve this, all the FPGAs have been

daisy chained as recommended in [7], getting their

con�guration bitstream from the host through the se-

rial interface.

One of the very interesting characteristic of the X-

ilinx XC 3000 / 3100 series is their power-down mode,

allowing them to stop their normal operation and re-

tain their con�guration data. In order to implement

this feature, the power part has been designed so the

board can be connected to an external power supply

as well as a battery that is �xed on the board itself.

The power supply provides the necessary current for

normal operation. If it is turned o�, the battery auto-

matically takes over and the FPGAs enter the power-

down mode. When the power supply is again turned

on, the FPGAs return to the normal operation mod-

e, and are ready for a new computation, without the

necessity to con�gure them again.

4.2 Physical characteristics of the board

Since the board is intended to be an experimental

board, its size is not a critical element. So it has been

decided to make the board large enough to allow a con-

fortable placement and routing of the board elements.

The result was a 200x160 mm 4-layers board.

The two external layers, on both sides of the board,

are signal layers. Although the board is relatively

large, the routing on these signal layers is very dense.

This is due to the fact that each FPGA of the FPGA

block is implemented into a Xilinx XC 3195, which

has 176 I/O pins, almost all of them being used.

The two internal layers are used for the power sup-

ply. The Mentor Graphics Board Station o�ers the

possibility to split one layer into two or more area �lls.

This feature was used to put the two power supplies

of the board (the external one and the battery) on one

layer, by splitting one of the internal layers into two

power �lls. All the components having a power-down

mode are connected to the battery power �ll, the oth-

er ones are connected to the power �ll corresponding

to the external power supply.

4.3 Implementation of the controller

The controller, as described previously, is made up

of several parts, which have been implemented with

di�erent tools. The following will give a short descrip-

tion of the way the controller was realized.

The controller consists of two parts: the operation

unit and the control unit. The former has been de-

scribed as a schematic with the Mentor Design Archi-

tect tool and then simulated with Mentor Quicksim

II. The latter has been implemented and simulated as

a �nite state machine with the Log/IC tool.

The two descriptions has then been converted into

the Xilinx format and then merged together with help

of the the Xilinx software. Once the description of the

controller has been converted into a unique netlist, it

is then mapped into the appropriate device target, in

this case a Xilinx XC 3090.

The last step consists of place and route the cir-

cuit, which is then ready to be downloaded into the

controller on the board.

5 System integration

As it was said previously, this hardware environ-

ment is intended to serve as a support for prototyping

and partitioning. Moreover the result of this work is

one part of a set of tools that has been developed at the

FZI over the last few years. This section will briey

describe how these tools are linked together and which

is their contribution in the design ow.

As shown in �gure 4, the design entry is realized

with a VHDL description. This description is then

passed on to CADDY, a high level synthesis system.

CADDY takes a VHDL description and synthesizes it

into a description on the RT level. In 1993 Gutberlet

et al. [8] described some optimization that had been

done on CADDY.

The next step in the design ow is the technology

mapping. It consists of transforming the RT descrip-

tion into a description using the internal structure of

an FPGA. At the FZI, Weinmann et al. [9] has ad-

dressed this problem by building mapping tools for

Lookup-Table-Based FPGAs.

Provided that the circuit being mapped is too large

to �t into a single FPGA, it has to be partitioned. A

partitioning tool is under developement at the FZI. It

allows the designer to choose the number of pieces into

which the circuit has to be partitioned, as well as the

maximum number of connections between two pieces.

It further partition the circuit according to some cri-

teria like e.g. optimizing the propagation delay or not

breaking the critical path. First results are about to

be published.

Once the circuit has been partitioned into subcir-

cuits, each of them has to be placed and routed into its

corresponding FPGA device (in this case a XC 3195

part). This is done with help of the Xilinx software.

As depicted in �gure 4, the FPGA board described

in this paper constitutes the last step of the design



ow. Once it has been placed and routed, the circuit

is downloaded into the board. The application is then

ready to be run and tested.

High Level Synthesis
(CADDY)

VHDL Entry

Technology Mapping

Partitioning

Place and Route

Download

Control

Figure 4: System integration

6 Conclusion and future work

This paper presented a hardware environment in-

tended to address the problem of implementing a cir-

cuit into a set of several FPGAs. The main goals of

this environment is on one side to serve as a support

for prototyping, on the other side to allow the testing

of partitioning algorithms.

The structure of this board has been kept simple

and exible. With only 4 FPGA devices for imple-

menting the applications, it is nevertheless powerful,

thanks to the use of the new Xilinx 3195, providing a

capacity of about 36000 gates. The use of an FPGA

as controller makes it also exible.

The next step in this work consists of practically

implement circuits onto the board. One interesting

question is to know wether some types of applications

are more suitable than others for being partitioned in-

to several FPGAs. The idea is here to do a qualitative

study by implementing various types of combinatorial

and sequential circuits. The conclusions should allow

among others to optimize partitioning algorithms and

to make suggestions about possible improvements to

a future version of this hardware environment.
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