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Abstract – Timing verification ascertains whether timing
checks on components in a circuit are satisfied given compo-
nent delay models. This paper addresses timing verification of
microprocessor-based designs for which previous approaches are
shown to be inadequate. It introduces the concept of sequential
path tracing – tracing paths through both spaceand time– that
forms the basis of themtv tool. mtv has the following novel fea-
tures:
� unlike previous approaches, it considerssequentialbehavior to-

getherwith timing and handles sequential sensitizability and
multi-cycle paths automatically;

� it does not require a predefined clock schedule and can han-
dle circuits with conditional or gated clocks, multiple unrelated
clocks, asynchronous set/reset, and power-up initialization;

� it generatessymbolicconstraints between timing attributes of
components that can be efficiently re-used for small circuit
changes or by a synthesis/optimization tool; symbolic con-
straints also enable common ambiguity removal.

Experimental results demonstrate that mtv takes only a few
CPU minutes to generate symbolic constraints for each of several
microprocessor-based designs.

I. Introduction

A circuit is an interconnection network of components. Each compo-
nent responds to changes in values at its inputs by placing appropriate
values at its outputs after some timing delay. Also, each component
may impose certain restrictions on the ordering of changes in value
at its inputs for correct operation. For example, a D flip flop requires
that data be setup a certain time before and held a certain time after
the clocking signal. Given models of the delays through all compo-
nents, a timing verifier ascertains whether these restrictions ortiming
checksare satisfied for all components in the circuit.

This paper concentrates on timing verification ofmicroprocessor-
based designs. Example circuits are microprocessors connected to
memory chips, other peripherals, and bus interfaces, including glue
logic. Functionality and delay information for these components
is limited to that available in databooks, which support the use of
bus-interface modeling and the min-max delay models. There is a
growing interest in designs with these off-the-shelf components with
the increased emphasis on reducing design cost and time to market.
However, previous timing verification approaches are not adequate
since these designs have several multi-cycle paths (i.e. paths that
are allowed more than one clock cycle to propagate), asynchronous
set/clear, and lack separate clock signals with a predefined schedule
(e.g. relationship between multiple clock phase signals).

Previous approaches and their limitations are discussed in Sec-
tion II. Sequential path tracing is introduced in Section III as a
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novel approach for addressing these limitations. Since sequential
paths are paths through both spaceand time, they handle multi-cycle
paths automatically. Sequential path tracing has been implemented
in mtv, a Multi-cycle Timing Verification tool. mtv includes two
major subtasks: state transition graph (STG) generation sketched
briefly in Section IV and constraint generation detailed in Section V.
Another unique feature ofmtv is that instead of reasoning with
numeric values and indicating whether a timing check is satisfied
or not, it usessymbolicdelay values and generates constraints that
must be satisfied by the symbolic values. The main disadvantage
of an explicit STG is its potentially exponential size; howevermtv
is computationally practical since the worst case does not happen
for microprocessor-based designs1 as demonstrated by experimental
results in Section VI.

II. Previous Approaches

A. Classification
Previous timing verification approaches are broadly classified into

static or dynamic depending on whether they use a value-independent
approach or not. The classification in Figure 1 is more detailed and
is based on two distinct axes – whether input test vectors are needed
or not, and whether the behavior of components is considered or
not. Traditional static approaches are towards the bottom-left and
dynamic approaches are towards the top-right of the table.
� Simulation-based approacheshave the advantage of modeling

signal interactions and logic behavior accurately but also the dis-
advantages of incompleteness, requiring the user or tool to gen-
erate test patterns, and higher computation cost. One reason for
greater cost is the need for repeating the simulation with different
delay values (since worst case delays may not be the maximum
values). Some approaches mitigate the problem by reusing results
in repeated fixed delay simulations [4], using ambiguity delay
simulation [14, 8], or a combination of fixed delay simulation and
path tracing [5].

� In contrast, delay analysis orpath tracing approaches [10] ensure
that the length of the longest (shortest) path in the combinational
network between two synchronizing elements (i.e. flip flops or
latches) is less (more) than some known relationship between the
corresponding clocking signals at the synchronizing elements.

� Subsequently, approaches that considered combinational behavior
to determinestatic sensitizability of paths and avoid reporting
false paths were developed [3].

� Recently, approaches that consider combinational behavior and
timing together to determine dynamic ortrue sensitizability of
paths have been developed [6, 7].

� Causality graph-based approaches [13] are similar to path tracing
except that they trace paths in a causality graph of events in the
circuit instead of the combinational circuit structure.

These approaches (except simulation) concentrated on combinational
behavior and are referred to asCombinational Path Tracing (CPT).
Since they did not reason with thesequentialbehavior, they could
be overly pessimistic (as illustrated in the next section). Recent
approaches that do consider sequential behavior are listed below:
� Path tracing has been combined with state transition graph(STG)

analysis [12] for a specific class of designs – CPUs partitioned

1In contrast, STGs of gate or register transfer level circuits are too large to be
represented explicitly and/or take too much time to be built.
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Figure 1: Classification of Timing Verification Approaches.

into datapath and controller. This approach is limited to fully
synchronous designs where clock gating (and hence multi-cycle
paths) is allowed only in the datapath using signals generated by
the controller that takes the op-code bits as input.

� Transformationon OEgraphs [1] which model behavior and tim-
ing together is applicable to a general class of designs. However,
the transformation rules are adhoc and do not adequately handle
the large degree of concurrency encountered for a large number
of components.

� Sequential path tracing described in this paper also considers
behavior and timing together. While it generates and analyzes the
STG (similar to [12]), it is generally applicable to any intercon-
nection of finite state machines with delays, and more importantly,
it does not assume fully synchronous operation, predefined clock
phase signals or a predetermined clock schedule; all these factors
are critical for applicability to microprocessor-based designs.
Another significant issue addressed by other researchers [15] is

the ability to handle level-sensitive latches (since coupling of inputs
and outputs when the latch is transparent results in cyclic relations
which are difficult to solve).mtv can handle latches only in limited
cases (where no feedback loops with latches exist), but these cases
have been adequate for microprocessor-based designs encountered
so far2. Again, previous approaches that allow latches also ignore
the sequential behavior of the design (except for the clock schedule
provided by the user) and have the limitations described next.

B. Limitations of CPT approaches
The limitations of CPT are illustrated using the simple CPU ex-

ample in Figure 2. The datapath has a three-ported register file and
an ALU. The controller loads the instruction register from the data
bus, decodes it, and loads the operations and address registers in the
next cycle. The ALU is a standard part from a library with the delay
for the SUB operation larger than that of the ADD operation which
is larger than that for the AND and OR operations. The ALU has not
been specifically designed for for this particular CPU. In particular,
the SUB operation of the ALU is never used by this CPU since it
does not support a SUB instruction. Also, the controller has been
designed such that the ADD operation is allowed two clock cycles
to execute. Clearly, the designer (human or a synthesis tool) has this
information, but it is not directly available to the timing verifier.

Sequential sensitizability
Consider the data setup check for the RIN port on the register file;
the check is valid only when LOAD = 1. CPT indicates that the
longest path is the SUB-path from the address registers A (or B)
through the register file through the ALU for the SUB operation.
CPT checks the sensitizability of the SUB-path and back-propagates
the sensitization criterion to result in S2, S1, LOAD = 001; since

2Note that unlike simulation where one can not ensure that a long enough sequence
has been simulated,mtv can analyze delays of paths that span loops in the STG in
a manner similar to cross-frame constraints [11]; these extensions are not straightfor-
ward (sincemtv does not assume a predetermined clock schedule) and need further
investigation.

IR[15]

IR[14]

S2 S1 LOAD

LOAD_IN

IRLE_

OPLE_

IR
[1

1:
8]

IR
[3

:0
]

A B

RA RB

RIN

CLK

CLK

CLKC
LK

DATA

Q_

Q

D

Register
File

C

00
1

0

01 10 11

ANDOR ADDSUB

CLK

IR
[7

:4
]

D D D

Q Q Q

IR[15]  IR[14]  Operation    Sym
    S2      S1
    0          0         NOP            N
    0          1          OR             R
    1          0         ADD            D
    1          1         AND            A

INV

AND1

Instruction
Register

Operations
Register

Address
Registers

Figure 2: A simple CPU example.

no conflicts are detected in the back-propagation, CPT considers the
SUB-path as a true sensitizable path and generates the constraint:

Clock period� Delay of SUB-path + Setup time of register file

But this constraint is erroneous! Attempting to back-propagate the
S2, S1, LOAD values to the inputs of the flip flops (i.e. look back one
clock cycle) quickly generates a conflict. Thus, the SUB-path isnot
sensitizable if back-propagation is done in one previous clock cycle.
Looking beyond the synchronizing elements for the sensitizability
of the path is termedsequential sensitizability. We would need to
propagate backwards to the initial reset state to ensure that a path is
sequentially sensitizable.

In general,combinational sensitizabilityassumes that all input
vectors to the combinational logic can be applied, which might be
incorrect since some states might be unreachable from the reset state.
Only recently, other researchers have exploited this property to prune
multi-cycle false paths[2].

Multi-cycle paths
The next longest path is the ADD-path (similar to the SUB-path but
for the ADD operation through the ALU) giving the constraint:

Clock period� Delay of ADD-path + Setup time of register file

The path starts with a new value being loaded in the address reg-
isters at a clock edge when OPLE= 0 and terminates at a clock
edge with LOAD = 1 when the result is written back to the reg-
ister file. The above constraint implicitly assumes that there is
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Figure 3: Simple Intel 8085-based design.

one clock period between these clock edges. However, sensitizing
S2, S1, LOAD = 101 in the previous clock cycle yields OPLE= 1
in the previous clock cycle, requiring yet another clock cycle for
OPLE = 0. Thus, there are in fact two clock periods between the
clock edge in which OPLE= 0 and S2, S1, LOAD = 101, resulting
in the correct constraint:

2 � Clock period� Delay of ADD-path + Setup time of reg file

Paths that have several clock cycles to propagate signals are termed
multi-cycle paths (i.e. paths whose input is stable for more than one
clock cycle before the output is required). No previously reported
timing verification approach addresses multi-cycle paths automati-
cally for a general circuit.

Symbolic vs Numeric Delay Attributes
Timing verifiers use one of several component delay models – fixed,
unbounded, min-max, mean-variance, or slew-rate-based. Each
model represents the delay as one or more parameters. Numeric
values for these parameters are used by most timing verifiers. So if
some component is replaced with a faster or slower version, the veri-
fier has to rerun. Incremental timing verifiers mitigate this limitation
by reusing previous results. Our approach is to treat delay parame-
ters as symbolic variables. Symbolic constraints could be generated
once; on each iteration different numeric values could be substituted
into these symbolic constraints to ascertain if the circuit satisfies the
timing checks. Symbolic constraints could be used in the reverse
manner – obtaining the fastest possible clock given a set of circuit
delays. The constraints could also be used in the synthesis process
during component selection. Symbolic delays enables the modeling
of blocks that are not yet designed; the generated symbolic con-
straints would provide design constraints for the block. Only one of
the existing timing verifiers [1] generates symbolic constraints.mtv
uses min-max delays, but can be extended to other delay models.

Microprocessor-based Designs
The inability to handle sequential sensitizability and multi-cycle
paths is especially critical for microprocessor-based designs. Con-
sider the circuit in Figure 3 which has an Intel 8085 connected to a
static memory chip. Since the data bus is multiplexed with the lower
byte of the address, a latch is used to demultiplex these signals. The
D flip flops generate a single wait-state and the RC network generates
a power-on reset pulse. The read transaction to memory is allowed 7
half clock cycles for address delay, and 5 half clock cycles for read
delay, where the number depends upon the D flip flop circuitry and
the 8085 bus interface. Note that the design uses asynchronous clear
for the first D flip flop (a manufacturer recommended design style!),
has timing checks relative toWEand ALE (not just CLOCK), and
several unreachable states (e.g. READY is always asserted in 8085
bus-stateTw). All these circuit features cannot be supported by pre-
vious approaches (except simulation). The next section introduces
mtv’s approach for handling such circuits.

sreset e1

e2

iTaK

path in space

path in time

tR ti

tj

nk n1

nl
n2

•••

•••

••••••

Figure 4: Constraint generation using sequential path tracing.

III. Sequential Path Tracing

CPT stops tracing paths at the synchronizing elements.Sequential
path tracingcontinues tracing beyond the synchronizing elements to
the next or previous state and continues regular path tracing in the
combinational network for the next or previous time step3. These
paths are throughboth space and timeand are termedsequential
paths – a term borrowed from sequential test pattern generation [14].
Each sequential path starts with a sequence of transitions denoted by
tx : : : ty (which is the sub-path in time and can be null) followed by
a sequence of nets denoted bynp : : : nq (which is the sub-path in
space for the last transition in the sub-path in time). The delay of
a sequential path is the sum of the delays of the combinational sub-
paths and delays of each state transition in the path. For synchronous
edge-triggered designs, the delay of each transition would be one
clock cycle. For other designs, the delay is not as simple and is
computed by the procedure in Section V.C.

Consider a timing check:

(e1 whenC1) before (e2 whenC2) atleast (�iTa )

that requires an evente1 under conditionC1 to occur before event
e2 under conditionC2 by at least some timing attribute�iTa . For
example, the register file in Figure 2 has the check:

(RIN V) before (CLK 1 when LOAD = 1)atleast (�RF;Ts).

The timing verifier must ensure that when conditions are satisfied,

(Earlieste2) - (Lateste1) � �iTa

The corresponding constraints are generated as below (see Figure 4):

1. find all sequential pathstR : : : tink : : : n1 from the reset state
to evente1 on netn1.

2. find all sequential pathsti : : : tjnl : : : n2 to evente2 on netn2

such thate1 does not happen again along this path.

3. for each pair of paths, the timing check is satisfied if (Earliest
e2) - (Lateste1) � �iTa which gives the relation:

pti :::tj + dtjn2 �Dtin1 � �iTa

wherepti:::tj is the minimum delay of path fromti to tj, dtjn2

is the minimum delay of combinational path ton2 relative to
start oftj , andDtin1 is the maximum delay of combinational
path ton1 relative to start ofti.

Since only paths that start from the reset state are traced, all paths
considered are sequentially sensitizable. Also, in the case where the
combinational path toe1 is activated multiple clock cycles before
the combinational path toe2, path ti : : : tj includes the appropriate
number of state transitions in addition to the combinational path, and
the constraint has the correct number of clock cycles computed au-
tomatically. Thus, this approach does not have any of the limitations
described previously.

The above procedure requires repeated explorations of the STG.
mtv builds the STG once and uses it for all subsequent processing.
Some might consider building anexplicit STG a throwback to early
formal verifiers, but we have found the explicit representation nec-
essary to support circuits with timing-dependent logic behavior [9].

3Looping may occur if the same state is reached again; such paths are allowed if
one can exit the loop for some primary input combination.
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Figure 6: State Transition Graph for the simple CPU example.

The overall organization ofmtv is illustrated in Figure 5. The
netlist and component logic behavior are used in STG generation as
sketched in Section IV. The STG is used to generate constraints in
four steps detailed in Section V. Due to space limitations, we will
avoid unnecessary details of the model of a microprocessor and other
complex VLSI components, and use simpler gate-level components
to explain themtv approach. Application to microprocessor-based
designs is demonstrated in Section VI.

IV. STG Generation

The circuit consists of an interconnection of combinational and se-
quential components. For each sequential component, changes in its
internal state and outputs are caused by changes on one or more of
its inputs that are termedtrigger eventson trigger nets. For exam-
ple, for a positive-edge triggered D flip flop, the net connected to the
CLK input is the only trigger net and its transition to 1 is the trigger
event. Note that the overall circuit may have any number of trigger
nets, which may be outputs of other components or primary inputs.
Unlike a traditional STG for synchronous circuits where transitions
correspond to events on a global clock, transitions in our enhanced
STG correspond to events on one of the trigger nets. The defini-
tion of STG below is based on the notion of thecircuit state in a
logic simulator – it includes the value of all nodes in the circuit
and future values of these nodes on the event queue; each transition
corresponds to selecting an event from the front of the queue and
propagating the new events. This concept of state is simplified into
the definition below based on the reasoning that we are interested
in the net values only at discrete points in time when trigger events
happen; the non-trigger nets are assumed to settle to the stable val-
ues – this assumption limits the class of circuits but also drastically
reduces the complexity of the STG [9]; timing constraints ensure
that the assumption is indeed satisfied.

Thestateof the circuit is defined as a set of values of all internal
states of components, all nets, and values to be scheduled on the
trigger nets. A trigger event is activated in a state if the scheduled
value on the net is different from the current value. Given a state
s and an activated trigger evente, the next statens is the result of

evaluating the sequential elements that have triggere and evaluat-
ing all combinational elements in the fanout4. The STG contains
transitions froms to ns for all possible input vectors. An event on
a net is defined to bereal in a transition if the value of the net is
not stable in that transition; there are flags with each transition to
indicate real events for each net. Note that a change in the value is
sufficient, but not necessary for an event to be real (since hazards
may occur as determined by delay functions [9], see V.B for an ex-
ample). STG generation starts with the reset state that has all nets
(except the power supply) at unknown value; hence, timing during
power-up initialization sequence is also verified.

Figure 6 shows a portion of the STG generated for the CPU
example; a timing diagram is provided to illustrate events in one
path in the STG. For example, in transitiont13, CLK changing from
0 to 1 is the trigger event and IR stays stable at operation D (ADD),
OP changes from operation R (OR) to D (ADD), RIN changes from
some valid value (V) to another V, and LOAD changes from 1 to 0;
all events in the transition happen sometime after the trigger event;
the string_**** with t13 indicates that there is no real event on
IR (i.e. it is stable), and there are real events on all other nets (OP,
RIN, LOAD, and CLK).

V. Constraint Generation

Multiple relations are generated for each check:

(e1 whenC1) before (e2 whenC2) atleast (�iTa )

The relations contain delays of event instances that need to be simpli-
fied into functions of timing attributes of components in the design.
This process may introduce delays of paths in the STG into the re-
lation, which in turn need to be simplified into functions of timing
attributes of the components. Each of these steps is described below.
Terminology used in this section is summarized in Figure 7.

A. Relation Generation
For each transitiont in which e1 is real andC1 is satisfied, there
are two possibilities for the next real instance ofe2 whereC2 is
satisfied:
� it is in t after e1: The relation is:

dte2 �Dte1 � �iTa

� it is in transition t2 after sequence of transitionst : : : t2: The
relation is:

pt:::t2 + dt2e2 �Dte1 � �iTa

For the data setup timing check on the register file in Figure 2 and
the portion of STG in Figure 6, relations are generated as below:
� for t11, RIN V is real; next CLK 1 when LOAD=1 is int13 after

path t11t12t13; hence relation is:

pt11t12t13 + dt13;CLK �Dt11;RIN � �RF;Ts

� for t12, RIN V is is not real;
� for t13, RIN V is real; next CLK 1 when LOAD=1 is int11 after

path t13t14t15t16t11; hence relation is:

pt13t14t15t16t11 + dt11;CLK �Dt13;RIN � �RF;Ts

At this stage, each relation is in terms of variables – delays of event
instances and delay of paths. They are to be computed next and
substituted into the relation to generate the constraint.

B. Delay of an Event Instance
An event on a net is caused by the component whose output pin is
connected to that net. Its delay can be computed using functions
provided in the component’s model that express the output delay in
terms of the component’s timing attributes and delay of input events.

4Feedback between combinational elements is not supported.
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Figure 9: Delay expression computation example for an AND gate.

depends on the current input condition (i.e. input condition cube
that the current state is within) as given below:

dtn = !icn jsto(t)�c Dtn = 
icn jsto(t)�c

Figure 8 provides the model of a D flip flop and illustrates delay
expressions for an example STG.

For combinational components5, the delay is computed by a novel
scheme. The function of the combinational element is represented
as a list of cubes for the ON and OFF sets. With each cubec, there
is a delay expression for the latest the cube turnson and earliest the
cube turnsoff, denoted by
on

icn and!off
icn respectively. The delay

expressions of the real output event in transitiont are:

dtn = max
c2C(i);sfrom(t)�c

!
off
icn

i.e. latest all cubes in
previous state turn off;

Dtn = min
c2C(i);sto(t)�c


on
icn

i.e. earliest some cube in
next state turns on.

Figure 9 provides the model for an AND gate and delay expressions
for the output for several transitions in a sample STG portion (which
is also illustrated by the timing diagram). The delay expressions
are also used during STG generation to detect false hazards (when
dtn > Dtn e.g. in transitiont6 of Figure 9). Numeric min-max delay
values may be needed for hazard detection resulting in preconditions
for the validity of the STG.

In some cases, the delay of the output event in a transition might
depend on the delay of an input event in a previous transition. This
phenomenon ofhidden causation is particularly significant when
there is a large difference in the delays from two inputs. For example,
consider the case where ADDR is input to a SRAM chip and OE is
asserted on the next clock cycle; the DATA output stays tristated in
the first clock cycle (i.e. no effect due to ADDR event) and becomes
stable after OE is asserted in the second clock cycle; however, the
delay of DATA being stable depends upon not only the delay of the

5Level-sensitive sequential components are similar except that their outputs are al-
lowed to stay at rest.



OE event but also on the delay of the previous ADDR event (since
the delay from ADDR to DATA is usually much larger than that from
OE and the difference might be larger than one clock cycle). Such
hidden causation is not accurately addressed by most simulation-
based approaches, but is correctly handled by the procedure above.
For example in Figure 9, the expression forDt4Y includesDt4B.
Now, in t4, the event on B is not real and the extra step below is
used to compute its delay.

For a virtual evente in t, all backward pathsBP (t; e) in the STG
are found such that for eacht1 : : : t 2 BP (t; e):
� evente in transitiont1 is real, and
� for all transitionsti within t1 : : : t, evente is not real.
There is a set of delay expressions for the virtual event as follows:

Dte = fDt1e � pt1:::t j t1 : : : t 2 BP (t; e)g

In the example in Figure 9,Dt4B = Dt3B � pt3t4

C. Delay of a Path in the STG
A path is a sequence of transitions in the STG. The delay of the path
is the time between the trigger of the first transition to the trigger of
the last transition. If the next value on�(t2) is scheduled in transition
t1, thent1 trigger-causest2 and the minimum delay of any path from
t1 to t2 is dt1�(t2). A trigger causal chaint1 : : : titi+1 : : : tn of a path
is an ordered list of transitions within the path such thatti trigger-
causesti+1, 1 � i < n. The delay of the trigger causal chain
is:

ct1:::tn =

n�1X

i=1

dti�(ti+1)

If TCC(�) denotes the set of all possible maximal trigger causal
chains in path�,

p� = max
t1:::tn2TCC(�)

ct1:::tn ;

since the path must be at least as long as the chains it contains. The
algorithm for computingTCC(�) for multi-synchronous designs is
omitted due to space restrictions. For synchronous designs, the com-
putation is straightforward since for designs with no races between
triggers,TCC(�) = f�g. For the example from Section V.A,

pt13t14t15t16t11 = dt13CLK + dt14CLK + dt15CLK + dt16CLK

= 4� �CLKGEN;Thalfcyc

D. Constraint Simplification
A set of constraints are generated by substituting expressions for
delay of an event instance and delay of a path into the relations
generated for each timing check. These constraints are reduced to
a canonical form. For the register file timing check, the relation
derived for transitiont13 in Section V.A results in the constraint:

4� �CLKGEN;Thalfcyc �max( �A:DFF;Tp +�RF;Ta +�ALU;Tadd,
�B:DFF;Tp +�RF;Ta +�ALU ;Tadd,
�S2:DFF;Tplh +�ALU;Ts2s1bar,
�S1:DFF;Tphl +�ALU;Ts1) � �RF;Ts

which is reduced to the conjunction of the following constraints in
the canonical form:

4� �CLKGEN;Thalfcyc � �A:DFF;Tp ��RF;Ta ��ALU ;Tadd � �RF;Ts � 0

4� �CLKGEN;Thalfcyc ��B:DFF;Tp ��RF;Ta ��ALU ;Tadd � �RF;Ts � 0

4� �CLKGEN;Thalfcyc � �S2:DFF;Tplh ��ALU ;Ts2s1bar� �RF;Ts � 0

4� �CLKGEN;Thalfcyc � �S1:DFF;Tphl ��ALU ;Ts1 � �RF;Ts � 0

Duplicate and dominated constraints are removed. For example,
constrainta � b � 0 algebraically dominatesa � b + c � 0 if

Table I: Experimental Results Summary

Design S T Tg TC C P CPU time (s)
mtv Math

CPU ex (Figure 2) 30 62 2 18 54 0 141.2 130.7
6809-based designs
SRAM@0w 37 53 3 16 20 4 58.5 55.0
SRAM@1w 42 58 3 16 20 4 65.6 61.4
SRAM@0w, SRAM@1w 42 58 3 32 41 5 130.9 124.6
SRAM@1w, SIO@0w 43 60 3 35 39 5 87.3 81.4
8085-based designs
SRAM@0w, SIO@0w 34 47 3 41 43 3 50.6 47.3
SRAM@0w, SRAM@0w 34 47 3 46 42 3 58.8 55.9
SRAM@1w (Figure 3) 42 52 5 28 26 7 47.3 43.8
SRAM@1w, SRAM@1w 67 92 5 50 46 8 129.6 122.0
SRAM@0w, SRAM@1w 101 124 6 50 52 15 388.5 332.7
80188-based designs
SRAM@0w 40 53 3 27 25 2 37.3 34.8
SRAM@0w, SRAM@0w 62 99 3 49 50 3 90.7 85.0
SRAM@0w, PAL 65 105 3 27 26 5 86.9 80.9
SRAM@0w, ATbus (no IO) 312 423 8 46 43 22 1608.9 1368.1
SRAM@0w, ATbus 343 458 10 46 49 22 2619.5 2011.3

c is known to be non-negative; hence the latter constraint is deleted.
Also, if the delays to the two events in the timing check are corre-
lated since they pass through the same causation link in a component,
then the constraint would have�ij and�ij (i.e. max and min of
the same timing attribute) which can be canceled out; thus symbolic
constraints also enable correct handling of common ambiguity (other
verifiers would be overly pessimistic). Symbolic expression manip-
ulation rules are used for all these transformations. The final output
is a minimal simplified set of constraints for each timing check.

E. Preconditions
Note that delay expressions used so far were in terms of symbolic
minimum and maximum delay attributes. To determine the order-
ing between events (during relation generation and also during STG
generation), delay expressions of two event instances have to be
compared. In some comparisons, numeric min-max values of the
delays might have to be used. The relationships satisfied by the nu-
meric values are stored as preconditions for the validity of the STG
and the generated constraints.

VI. Experimental Results

mtv has been implemented in C++ with the symbolic expres-
sion manipulation and simplification inMathematica [16]. mtv
takes as input an EDIF netlist and component models from a library
and generates a set of constraints for each check in the component
models. Results of usingmtv for several example circuits are sum-
marized in Table I. For each circuit, the table provides the number
of states and transitions in the STG generated bymtv, the number of
triggers in the circuit, the number of distinct timing checks, the num-
ber of constraints generated for the checks, the number of precondi-
tions, and the totalmtv CPU time and that forMathematica on an
Ultrix DEC5000/200. Note that a large fraction of totalmtv time is
spent inMathematica, underscoring the large processing overhead
for symbolic delays. No comparisons are included since no other tool
can automatically handle microprocessor-based designs with multi-
cycle paths. Observe that the STG size does not grow exponentially
with the number of components for microprocessor-based designs;
this can be explained by the bus-oriented design style in which the
complexity increases linearly with the number of components on the
bus. The experiments show thatmtv is computationally feasible
for embedded controller boards. Workstation boards may have upto
an order of magnitude more components (after removing multiple
instances of identical components); current data shows that the CPU
time per timing check increases linearly with the product of the num-



Table II: Details of Paths and mtv-generated Constraints for Some Examples

Design Timing Check Logical Paths Simplified Output Constraints
# total # False paths # symbolically # domi- # total # paths

Comb. Seq. identical nated (# half-cycles)

CPU ex RFILE setup 22 0 5 3 0 14 9 (2), 5 (4)
Figure 2 IRLE DFF setup 6 0 0 0 2 4 4 (2)

IRLE DFF hold 6 0 0 0 3 3 3 (2)
LOAD IN DFF setup 10 0 0 4 0 10 8 (2), 2 (4)

8085 + Proc data setup 7 0 1 0 1 5 1 (5), 3 (7), 1 (8)
SRAM Mem data setup 7 0 6 0 0 1 1 (5)
@1wait Mem data hold 7 0 6 0 0 1 1 (1)
state Mem addr setup (start write) 3 0 0 0 0 3 3 (2)
Figure 3 Mem addr setup (end write) 3 0 0 0 0 3 3 (7)

Mem addr hold 3 0 0 0 1 2 2 (1)
Mem write pulse width 1 0 0 0 0 1 1 (5)
Bus contentiony: Mem Z before Proc V 4 0 3 0 0 1 1 (1)
Bus contentiony: Proc Zbefore Mem V 6 0 5 0 0 1 1 (0)

y These checks are introduced automatically when there is more than one driver on a net.

ber of transitions and number of trigger nets; hence, we project that
mtv would be suitable for workstation designs also.

Let us consider a few examples in more detail as shown in Ta-
ble II. For each check on the components in the circuit, the table
gives: the total number of logical paths; the number of these paths
that are false since they are not combinationally or sequentially sen-
sitizable; the number of paths that are simplified out since they are
symbolically identical or dominated; the number ofmtv-generated
constraints which is the total number of paths minus the number
of false and simplified paths. Some of these constraints involve
multi-cycle paths (i.e. other than 2 half-clock cycles); the num-
ber of paths together with the number of half-clock cycles they are
allowed to propagate is listed. Several rows of the table have sequen-
tially unsensitizable false paths and multi-cycle paths underscoring
the usefulness ofmtv.

Consider the first row of Table II for the register file setup timing
check in Figure 2. There are 22 logical paths from a rising clock
event to RIN of the register file: 4 from CLK to A through register
file and ALU (one for each ALU operation), similarly 4 from B, 4
from register file CLK to RA through ALU, similarly 4 through RB,
2 from rising S2 through ALU to RIN (one for each Boolean value
of S1), similarly 2 for falling S2, 1 from rising S1 through ALU, and
similarly 1 from falling S1. All of these paths are combinationally
sensitizable. However, since the SUB-path through the ALU is not
sequentially sensitizable, one path each from A, B, RA, RB, and
the path from falling event on S2 when S1 = 0 is false. Also,
since the delay from CLK to RA and RB is identical for the register
file, symbolically identical constraints for 3 additional paths can be
removed. The number of remaining constraints is (22 - 0 - 5 -
3) = 14, which is the number of constraints reported bymtv. Since
the controller allows two clock cycles for the ADD-operation in the
ALU, 5 paths, one each from A, B, RA (or RB), rising S2, and
falling S1 is a multi-cycle path; this fact is automatically computed
by mtv. Other rows can be explained similarly.

VII. Conclusions

This paper has shown that by ignoring the sequential behavior of
components in the design, previous static timing verification ap-
proaches could be overly pessimistic by reporting sequentially un-
sensitizable paths and assuming that all paths are limited to one clock
cycle. These limitations make them inadequate for microprocessor-
based designs. Sequential path tracing handles both these limitations
and forms the basis of themtv approach.mtv handles multi-cycle
paths automatically, does not require a predefined clock schedule,
and handles conditional or gated clocks, unrelated clocks, asyn-
chronous set/reset, and power-up initialization. Another novel fea-

ture ofmtv is that it generates symbolic constraints between timing
attributes instead of determining if a set of numeric values of the
timing attributes satisfy all timing checks; symbolic processing also
enables common ambiguity removal and could be used to account for
correlated delays. Experimental results demonstrate thatmtv takes
only a few CPU minutes for moderately-sized microprocessor-based
designs.
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