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Abstract

Asynchronous circuits are crucial in designing low
power and high performance digital systems. In this
paper, we present an e�cient modular partitioning ap-
proach for asynchronous circuit synthesis. This approach
partitions a large circuit speci�cation into smaller and
manageable modules that drastically reduces the synthe-
sis complexity. Experimental results with a large num-
ber of practical asynchronous benchmarks are presented.
They show that, compared to the existing techniques,
this modular partitioning method achieves many orders
of magnitude of performance improvement in terms of
computing time, in addition to a reduced implementa-
tion area. It o�ers a practical solution for complex asyn-
chronous circuit design problems.

1 Introduction

Asynchronous interface circuits are indispensable in
many real-time digital systems. Due to potential ap-
plications in low power and speed-independent sys-
tems, recently, there has been a renewed interest in the
automated synthesis of asynchronous interface circuits
[1, 12, 14, 21]. Previous researchers have developed an
event-based graphical speci�cation [1] and a direct syn-
thesis method [1, 12, 21, 23]. They are unable to syn-
thesize complex designs involving large number of con-
straints. The modular partitioning synthesis approach
proposed in this paper o�ers a practical solution to han-
dle complex asynchronous circuit design problems.

The event-based graphical speci�cations, also called
signal transition graphs (STG) [1], are based on petri
nets. They are very powerful in describing the behav-
ior of asynchronous interface circuits. To implement the
asynchronous behavior into a logic circuit, the STG spec-
i�cations must satisfy complete state coding (CSC) con-
straints. Informally, the CSC constraint means that the
signals speci�ed by the STG completely de�ne the cir-
cuit states. Complete state coding is the most stringent
requirement on STG speci�cations. In general, the STG
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speci�cations that describe asynchronous interface cir-
cuits do not satisfy the CSC constraints. The original
STG must be transformed to satisfy them. Most meth-
ods are limited by the type of asynchronous interface
behaviors they can synthesize. Lin et al. [14], Vanbek-
bergen et al. [21], and Yu et al. [23] proposed synthesis
techniques that are restricted to the STG speci�cations
describing only concurrent asynchronous behavior (i.e.,
marked graphs). These techniques were limited by an ad-
ditional restriction that every signal has exactly one ris-
ing and one falling transition. This restricts the synthesis
of asynchronous circuits from general STG speci�cations.
Lavagno and Moon et al. [13] proposed a new synthesis
framework for STG speci�cations with a limited inter-
play of concurrency and choice (i.e., safe free-choice petri
nets). They solved the STG synthesis problem at the
state graph level by transforming the STG into an FSM
state table. The synthesis problem is then solved with
state minimization [17] and critical race-free state assign-
ment techniques. The algorithm inserts state signals into
the original STG to satisfy CSC constraints. It handles
live-safe free choice nets. Recently, Vanbekbergen et al.
[22] proposed a general framework to solve the complete
state coding problem for general STG speci�cations. It
is not limited to marked graph or safe free-choice petri
nets. They formulated the CSC problem as a boolean
satis�ability (SAT) problem.1 They gave the necessary
and su�cient conditions for the insertion of state signals.
This ensures the CSC property while conserving the orig-
inal STG behavior. It is well-known that many combina-
torial optimization problems can be directly transformed
into the SAT problem. For example, a moderately large
size signal transition graph with 174 states generates a
boolean formula with 35,386 clauses and 1,044 variables.
In our experience [2, 3, 4, 6, 7, 9, 8, 16], it usually takes
prohibitively long time to �nd a satis�able assignment
for very large boolean formulas.

In this paper, we propose a modular partitioning ap-
proach for the synthesis of asynchronous circuits from
signal transition graphs. For a given problem, its STG
is �rst partitioned into a number of simpler and man-
ageable "modules." Each modular graph is then solved
individually. Eventually, the results of these small graphs
are integrated together, which contribute to the solution
of the given problem. This approach of partitioning the

1The boolean satis�ability problem is the problem of �nding a
truth assignment to variables in a given product-of-sums expres-
sion, so that the boolean expression evaluates to be true. SAT was
the �rst problem to be proven NP-complete.



state graph into smaller modules avoids the problem of
solving very large SAT formulas. The modular partition-
ing approach is capable of synthesizing asynchronous cir-
cuits from general signal transition graph speci�cations.
It is not limited to marked graph or safe free-choice petri
nets. Compared to Lavagno et. al.'s [13] and Vanbek-
bergen et al.'s [22] algorithms, this approach achieves
many orders of magnitude of performance improvement
in terms of computing time, in addition to a reduced
implementation area.

The rest of this paper is organized as follows. In
Section 2, we give some basic de�nitions and notations
that simplify our discussion. In Section 3, we describe
the modular partitioning synthesis approach in detail.
Experimental results with practical asynchronous STG
benchmarks and performance comparisons with existing
methods are given in Section 4. Section 5 concludes this
paper.

2 Preliminaries

A petri net [15] is a bipartite directed graph <

P; T; F;M0 >, consisting of a �nite set of transitions T
(represented as bars), a �nite set of places P (represented
as circles), and a ow relation F � P�T [ T�P (repre-
sented as directed arcs) specifying a binary relation be-
tween transitions and places. The dynamic behavior is
captured by the petri net markings and the �ring of net
transitions, which transforms one marking into another.
A marking M is a collection of places corresponding to
the local conditions which hold at a particular moment.
It is graphically represented as solid circles called tokens,
residing in these places. The initial marking is denoted
as M0. A transition t is said to be enabled in a marking
M , when all its fanin places are marked with at least
one token. An enabled transition must eventually �re
and its �ring removes one token from each fanin place
and deposits one token in each fanout place. The trans-
formation of a markingM into another markingM 0, by

�ring a transition t, is denoted by M
t
!M 0.

Signal transition graphs use petri nets as the under-
lying formalism to specify the behavior of digital control
circuits. In an STG, petri net transitions are interpreted
as rising and falling transitions in the asynchronous in-
terface circuits. Transitions si+, si�, and si� denote
a rising, a falling, and a rising or falling transitions on
signal wire si respectively. The set of input signals and
the set of non-input, i.e., output and internal signals, is
denoted by SI and SNI . The set of all the signals in
the STG, i.e., SI [ SNI , is denoted by S. In an STG,
every place with a single fanin and fanout transition is
represented by an arc between these transitions.

A signal transition graph contains the behavioral in-
formation of an asynchronous interface circuit. To de-
rive a logic circuit, the STG must be transformed into
a state graph [1]. The state graph is a �nite automa-
ton that represents all the states. It captures all the
possible transition sequences in the STG. A state graph
can be derived by exhaustively generating all possible

markings, i.e., states, of the STG [15]. A state graph
can be mapped into a circuit by satisfying the CSC con-
straints, i.e., assigning a unique binary code to each state
in the state graph. The state graph can be mapped into
a speed independent asynchronous logic circuit by deriv-
ing the state code from the values of STG signals. Such
a state encoding is represented by the consistent state
assignment constraint.

Consistent state assignment: For STG signals
fs1; s2; : : : ; sng, a state M in the state graph is assigned
a binary code < M (s1);M (s2); : : : ;M (sn) >. If a tran-

sition t is enabled in state M , i.e., M
t
! M 0, then

t = si+ implies M (i) = 0 and M 0(i) = 1; t = si�
implies M (i) = 1 and M 0(i) = 0.

In a state graph with consistent state assignment, the
CSC constraint is de�ned as follows.

Complete state coding (CSC): A state graph satis�es
the CSC constraint if and only if (1) no two states have
the same binary code assignment, and (2) two states hav-
ing the same binary code enable the same non-input sig-
nals.

The CSC constraint is the necessary and su�cient
constraint to derive the logic circuit functions from the
state graph [18]. A CSC violation must be corrected
by inserting new signals in the state graph, so as to
distinguish between the states violating CSC constraint
[13, 22]. These new signals are called state signals.
They must satisfy an additional constraint called semi-
modularity constraint to preserve the given circuit be-
havior. The semi-modularity constraint is de�ned as fol-
lows.

Semi-modularity: A transition t is semi-modular if and
only if transitions t and t0 are enabled in a marking M
and transition t will still be enabled in marking M 0, ob-
tained after �ring transition t0.

The insertion of state signals in the state graph must
preserve the semi-modularity of the state graph tran-
sitions. The most general framework to solve the CSC
problem for general STG speci�cations by inserting state
signals into the state graph was proposed by Vanbekber-
gen et al. [22]. They formulated the CSC problem as a
boolean satis�ability (SAT) problem.

In the following section, we briey describe a SAT
formulation of the CSC constraint satisfaction problem.

2.1 A SAT model for CSC satisfaction

The satis�ability (SAT) model for CSC satisfaction,
SAT-CSC, has four components:
� A set of N states in the state graph:

M1;M2; : : : ;MN .
� A set of m state variables: a state Mi

with m state signals n1; n2; : : : ; nm is denoted by
Mifni;1gfni;2g : : :fni;mg.
� A four value tuple which are possible assignments

to the state variables: f0, 1, Up, Downg.
� A set of constraints including CSC constraints,

consistent state assignment constraints, and semi-
modularity constraints (as de�ned above).



The SAT-CSC model has N states and
N:dlog2(Maxcsc)e state variables.2 The number of state
variables, m=dlog2(Maxcsc)e, is the lower bound on the
number of state signals required to satisfy the CSC con-
straints, where Maxcsc denotes the maximum number
of states in the state graph that have the same state en-
coding. The complexity of the extracted boolean for-
mula depends on the number of states N , the num-
ber of concurrent transitions, and the number of CSC
constraints. For a state graph with N states and E

edges, the boolean formula will have m�(c1.E + c2.Nct

+ Nusc.c3m + Ncsc.c4m) clauses and 2�N�m variables
where m is the number of state signals required to sat-
isfy the CSC constraints, Nct is the number of concurrent
transitions, Nusc is the number of state pairs that have
the same binary encoding, Ncsc is the number of CSC
constraints, and c1, c2, c3, and c4 are constants.

The SAT formula represents the CSC, consistent state
assignment, and semi-modularity constraints. If the for-
mula is unsatis�able, we add a new state signal. This
generates a new SAT formula. The goal is to �nd a
truth assignment to the state variables so that all the
constraints are satis�ed.

The following section describes our modular partition-
ing approach to asynchronous circuit synthesis.

3 A Modular Partitioning Approach for

Constraint Satisfaction

Most techniques proposed for the synthesis of asyn-
chronous circuits from signal transition graphs are re-
stricted in practical applications [14, 21, 23]. Some
of them try to satisfy all the constraints in the state
graph directly, which, in most cases, is clearly intractable
[13, 22]. Vanbekbergen et al.'s SAT formulation of the
STG constraints is general in synthesizing an STG. The
sizes of SAT formulas directly generated from the STG
constraints are usually very large. In practice, it is much
easier to satisfy several smaller boolean formulas rather
than a single large one. It is natural to use a modular
partitioning approach to handle this problem.

3.1 A model for modular partitioning

A constraint satisfaction problem has three compo-
nents: variables, values, and constraints. The goal is to
�nd an assignment of values to variables such that all
the constraints are satis�ed [5].

In a modular constraint graph model, the complete
graph is partitioned into smaller and simpler graphs [5].
Various local, smaller graphs can be manipulated in-
dividually. An integration mechanism is used that �ts
these local modules together into a global network. Mod-
ularity refers to the ability of a constraint satisfaction

2Since, a state variable ni;k is a multi-valued variable, its
boolean encoding requires dlog2(4)e = 2 binary variables, de-
noted as ni;ka ; ni;kb

. The binary variable assignments fni;ka =
0; ni;kb = 0g, fni;ka = 0; ni;kb = 1g, fni;ka = 1; ni;kb = 0g, and
fni;ka = 1; ni;kb = 1g represent the state variable ni;k values 0, 1,
Up, and Down, respectively.
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Figure 1: Asynchronous circuit synthesis (a) Direct ap-
proach. (b) A modular partitioning approach.

model to decompose a complex system into easily un-
derstood modules.

An important aspect of modularity is constraints [5].
Modularity of constraints refers to the ability of a con-
straint satisfaction model to enable complex information
to be represented in terms of modules of local informa-
tion. Each individual module of constraint relations may
be handled separately. However, the constraint satisfac-
tion representations di�er with respect to how a module
of local information communicates with another. In our
model, the assignment information in each local module
is communicated to other local graphs as well as with
the global graph. It is this interaction which allows the
complete solution to be built from the solutions of the
individual local modules.

In this modular partitioning approach, for a given
problem, the state graph is �rst partitioned into a num-
ber of simpler and manageable state graphs. Each modu-
lar graph is then solved individually. The results of these
small graphs are integrated together, which contribute to
the solution of the given large problem.

The partitioning of a large state graph into smaller
state graphs has several unique advantages:
� It signi�cantly reduces the number of constraints

by several orders of magnitude. For example, for STG
benchmark mmu0, the direct SAT formulation requires
the solution of a very large SAT formula with 35,386
clauses. In comparison, our modular partitioning ap-
proach requires the only three very small formulas having
954 clauses, 954 clauses, and 85 clauses.
� It leads to a reduction in the two-level implementa-

tion area. This is due to a good starting point for the
logic minimizer and a reduced interaction among circuit
signals.
� It simpli�es the circuit veri�cation process.
The modular partitioning approach is illustrated in

Figure 1. It consists of the following several steps :
� Determine the input signal set (denoted as IS(oi)),

belonging to output oi by greedily removing signals from
complete graph (denoted as

P
) to decrease the CSC

conicts. Similarly, greedily remove the state signals.
� Derive a smaller modular state graph (denoted asP
oi
) from the complete graph

P
, for the input set,

IS(oi).
� Find the new state signals and their assignments (0,

1, Up, Down) to the states of graph
P

oi
by �nding a

truth assignment to the SAT formula representing the



procedure determine input set(
P
, oi, IS (oi)) f

state graph
P

temp := state graph
P
;

determine number of CSC conicts Ncsc in
P

temp;

determine the lower bound Lb on number of
state signals in

P
temp;

derive the immediate input set I of output signal oi;
initialize input signal set IS(oi) :=

immediate input set I;
for each signal si not in immediate input set I [ oi f

merge states connected with � or si
transitions in

P
temp;

determine new CSC conicts Ncsc(new);
determine new lower bound Lb(new);
if (Ncsc(new) <= Ncsc and Lb(new) <= Lb) f

/* signal si is not required for
logic function of output oi */

Ncsc := Ncsc(new); Lb := Lb(new);
label all the transitions of signal si inP

temp as � transitions;

g
else IS (oi) := IS (oi) [ si;

g
for each state signal ni in

P
temp

if (removing ni increases CSC conicts in
P

temp)

IS (oi) := IS (oi) [ ni;
g

Figure 2: An algorithm for input set derivation.

consistent assignment, semi-modularity, and CSC con-
straints.
� Propagate the truth assignments to the new state

signals from graph
P

oi
to the complete graph

P
.

� Repeat the above steps for every output signal.
The above procedure yields a modular topology as

shown in Figure 1(b). It is equivalent to the complete
state graph

P
.

This modular synthesis method does not guarantee an
optimal solution, i.e., it does not guarantee the minimum
number of state signals to satisfy CSC constraints. The
number of state signals required to synthesize the STG
may increase due to the integration of local solutions
from the modular state graphs. However, in practice, we
have achieved global optimum in all other asynchronous
benchmarks, except two. Although for STG mr0, our
solution requires more state signals, the two-level imple-
mentation area of the synthesized circuit is less than the
area required to implement the state graph with mini-
mum state signals.

In the following, we discuss the major steps in our
modular partitioning approach in detail.

3.2 Determining the input signal Set

The input signal set belonging to output oi is de�ned
as the minimum number of STG signals required to im-
plement its logic circuit. The input signal set consists
of an immediate input set and some other STG signals
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Figure 3: The derivation of state signal assignments in
the modular state graph.

required to satisfy CSC constraints. The immediate in-
put set of output oi is determined by STG signals whose
transitions immediately precede a positive or negative
transition of output oi. A signal si is in the immedi-
ate input set, if and only if, the STG speci�es a direct
causal relationship between transitions si� and oi�. To
minimize the CSC conicts, the remaining signals in the
input set are determined by greedily removing STG sig-
nals from the complete state graph

P
. A signal si (6=

output oi), that is not in the immediate input set of out-
put oi, can be removed from the state graph if it does
not increase the number of CSC conicts and the state
signals required to resolve these conicts. A signal is
removed from the state graph by labeling all its transi-
tions as the silent transition, i.e., � . The removal of the
STG signal implies that it is not required to implement
the logic circuit corresponding to output oi. A signal si
cannot be removed from the state graph if a state signal
nk assigns an Up value to state Mi and a Down value

to state Mj in the transition Mi
si�! Mj, or vice-versa.

This ensures that the modular state graph has a well-
de�ned assignment of state signal nk. The derivation of
state variable assignment in the modular state graph is
described in Section 3.3.

The above procedure to determine the input set is
summarized in algorithm determine input set() in Figure
2.

3.3 Modular state graph generation and con-

straint satisfaction

The input signal set belonging to an output is used to
derive a modular state graph. The modular state graph
is generated by labeling all the transitions of input set
signals as � transitions in the complete state graph

P
.

The values of the input set signals are removed from the
state codes in the complete state graph. Then, the states
connected by � transitions are merged together. For ex-
ample, stateMi and stateMj in the complete state graph

transition, Mi
�
! Mj , can be merged into a single state

MiMj . Removal of � transitions from the state graph
is similar to the conversion of a �nite automata with
� transitions to a �nite automata without � transitions



procedure partition sat(
P
,
P

oi
, ns(new)) f

merge states in state graph
P

connected
with IS (oi) transitions;

derive modular state graph
P

oi
;

for each state signals in IS(oi)
derive the assignment for states in

P
oi

from
the states in

P
;

new state signals ns(new) := lower bound on
state signals to resolve CSC conicts;

while (no truth assignment found) f
derive a boolean constraint formula from

P
oi

with ns new state signals;
�nd truth assignment for the ns new state signals;
if (the boolean formula is unsatis�able)

add a new state signals to ns(new);
g

g

Figure 4: An algorithm for modular state graph genera-
tion and constraint satisfaction.

[10].

The assignment values of every state signal in the in-
put signal set are propagated to the modular state graph
as follows:

Consider the state assignment of states Mi and Mj

in the complete state graph transition
Mifni;1gfni;kg : : :fni;Ng

�
!Mjfnj;1gfni;kg : : :fni;Ng.

Case 1 : If states Mi and Mj have the same assign-
ment value for state signal nk, i.e., ni;k = nj;k, then the
merged state MiMj in the modular state graph will also
have the same assignment value for state signal nk. This
is illustrated in Figures 3(a), (b), (c), and (d).

Case 2 : If state Mi has the assignment value ni;k = 0
and state Mj has the assignment value nj;k = Up (Fig-

ure 3(f)), then the transitionMifni;k = 0g
�
!Mjfnj;k =

Upg can be expanded into a transition sequence Mi[0]
�
!

M 0

j [0]
nk+! M 00

j [1]. This new transition sequence is gener-
ated by including state signal nk into the modular state
graph and including its value into the state code. This
process divides state Mj into two di�erent states, M

0

j[0]
and M 00

j [1]. States Mi[0] and M 0

j[0] have the same state
code and they are related by an � transition. Thus,
they can be merged together in the modular state graph.

Finally, the transition sequence MiM
0

j [0]
nk+! M 00

j [1] is
merged into a single state MiM

0

jM
00

j (i.e., MiMj) with
an Up assignment to state signal nk. Similarly, if states
Mi andMj have assignment values fni;k = Up, nj;k = 1g
fni;k = Down, nj;k = 0g, and fni;k = 1, nj;k = Downg,
then the merged state MiMj will have an assignment
value Up, Down, and Down, respectively. This is illus-
trated in Figures 3(g), (h), and (i).

Case 3 : The rest of the state signal assignments (Fig-
ure 3(j)) are inconsistent with the consistent state assign-
ment constraints. Thus, they cannot be assigned by the

procedure propagate(
P

oi
,
P
, ns(new)) f

for each state Mk of state graph
P

f
if (state Mk can be merged in state M 0

l of
modular state graph

P
oi
)

cover(Mk) := state M 0

l of modular
state graph

P
oi
;

g
for each state Mk of complete state graph

P

add new state assignments ns(new) from
state "cover(Mk)" of

P
oi

to state Mk;
g

Figure 5: An algorithm for assignment propagation.

SAT algorithm. The remaining CSC constraints in the
modular state graph are satis�ed by deriving a boolean
satis�ability formula (Section 2.1). The solution of this
SAT formula gives the state signal assignment values for
every state in modular state graph. The new assign-
ments resolve all the CSC conicts in the modular state
graph. These assignments from the modular state graph
are then communicated with the complete state graphP
.
The above procedure to generate the modular state

graph and to satisfy STG constraints is summarized in
the algorithm partition sat() in Figure 4. The propaga-
tion of new state signal assignments from the modular
state graph to the complete state graph is described in
the following section.

3.4 Propagation of state signal assignment

In order to reduce CSC conicts in the state graphP
, the new state signals in the modular graph must

be propagated through state graph
P
. The process of

CSC constraint satisfaction in the modular graph and
the state assignment propagation to the complete state
graph is repeated for every output. Therefore, all the
CSC conicts can be removed from complete state graphP
. In the worst case, all the CSC conicts in the com-

plete state graph will be removed after all the modular
state graphs for the output signals are derived.
De�nition: A set of states fM1;M2; : : : ;Mkg in

P

covers a state M in a modular state graph if states
M1;M2; : : : ;Mk can be merged into M in the modu-
lar state graph generation process. This is denoted by
cover(M1) = cover(M2) = : : : = cover(Mk) = M .

The state assignments are simply propagated by
adding the new state signal assignments of state M to
states M1;M2; : : : ;Mk that cover state M .

The above procedure to propagate new state signal
assignments from modular state graph to complete state
graph

P
is summarized in algorithm propagate() in Fig-

ure 5.

3.5 Logic function derivation

The partitioning process to generate modular state
graphs from the complete state graph

P
with new state

signal assignments is repeated for every output in the



procedure modular synthesis(STG) f
derive complete state graph

P
from the given STG;

initialize the state signals in the complete
state graph

P
:= f g;

for each output signal oi f
/* determine the input signal set IS(oi)

belonging to output oi */
determine input set(

P
, oi, IS (oi));

/* derive modular state graph
P

oi
and

�nd new state signals, ns(new), and
their assignments in

P
oi
*/

partition sat(
P
,
P

oi
, ns(new));

/* propagate the assignment of new
state signals from

P
oi
to
P

*/
propagate(

P
oi
,
P
, ns(new));

g
expand state graph

P
to include state

signal transitions;
derive logic circuit from expanded state graph;
return logic circuit;

g

Figure 6: An algorithm for modular synthesis of asyn-
chronous circuits from STGs.

STG. The modular state graph for every output can then
be expanded by a simple procedure to include the state
signal transitions into the state graph [22]. Alternatively,
we can expand the complete state graph

P
with the state

signal assignments and derive the output logic functions.
The logic function of an output, which is in the sum-of-
products form, can then be obtained by simply �nding
the implied values of the STG outputs in every state of
the expanded state graph [1]. A prime-irredundant cover
of the output logic function can be obtained by employ-
ing a standard logic minimizer, e.g., espresso. This cover
may contain static and dynamic hazards which can be re-
moved by using some known hazard removal techniques
[12].

The complete procedure for modular synthesis of
asynchronous circuits from signal transition graphs is
summarized in the algorithmmodular synthesis() in Fig-
ure 6.

4 Experimental Results

The algorithm for modular synthesis of asynchronous
circuits was implemented in C language. We employed
an e�cient implementation of a branch and bound
algorithm3 to solve the SAT formulas [20]. We tested
our algorithm on a large number of STG benchmarks
including the HP-benchmarks [13]. All the experiments
were performed on a SUN-SPARC 2 workstation. We
also compared the performance of our algorithm with
other well known techniques, e.g., Lavagno et al. [13]

3The SAT program is providedwith the U.C.Berkeley logic syn-
thesis tool SIS.

and Vanbekbergen et al.'s [22] algorithms. The results
of these experiments are given in Table 1. The results
indicate that our algorithm outperforms both Lavagno
et. al.'s [13] and Vanbekbergen et al.'s [22] algorithms in
terms of execution time and implementation area. For
example, in the case of a large STG example, i.e., mr0,
our algorithm requires 2:80 seconds to yield a two-level
implementation area of 41 literals, as compared to 1084:5
seconds and an area of 86 literals with Lavagno et al.'s
algorithm. For this example, Vanbekbergen et al.'s al-
gorithm cannot yield a solution within 3600 seconds and
the program was aborted due to backtracking limit. For
another STG benchmark, i.e., mmu0, the direct SAT
formulation requires the solution of a large SAT formula
with 35,386 clauses and 1,044 variables. In comparison,
our modular synthesis approach requires the solution of
only three very small SAT formulas, one with 85 clauses
and 18 variables and the other two with 954 clauses, 96
variables each. These formulas can be solved in 0:87 sec-
onds, as compared to a pre-aborted 406:3 seconds for the
brute force approach [22].

We also calculated the two-level area of the logic cir-
cuit synthesized by �nding a prime-irredundant cover
from logic minimizer espresso. We ran espresso with
single output exact minimization option, i.e., espresso
-Dso -S1. The results of two-level area from Lavagno
et al.'s algorithm were also calculated from the prime-
irredundant cover of the network logic function. We em-
ployed astg syn -r option in the U.C.Berkeley logic syn-
thesis tool SIS to �nd the prime-irredundant cover. On
average, our modular partitioning algorithm reduces the
two-level implementation area by 12% than that of the
Vanbekbergen's direct synthesis method. As compared
to Lavagno et al.'s algorithm, we obtained an average
area improvement of 9%. The two-level implementation
area results are summarized in Table 1. The implemen-
tation area was further reduced by developing a BDD
based constraint satisfaction approach [19].

5 Conclusion

An e�cient modular partitioning approach for asyn-
chronous circuit design is presented. This approach par-
titions a large STG into smaller and manageablemodules
that signi�cantly reduce the design complexity. In prac-
tice, signal transition graphs with very large number of
states can be synthesized in a very short execution time.
Experimental results with a large number of practical
STG benchmarks indicate that, compared to existing
techniques, this modular partitioning method achieves
many orders of magnitude of performance improvement
in terms of computing time, in addition to a reduced
implementation area. It o�ers a practical solution to
complex asynchronous circuit design problems.
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Table 1: Experimental results with practical STG benchmarks on a SUN SPARC-2 workstation.
STG Speci�cations Our Method Vanbekbergen et al. [22] Lavagno and Moon
Name (Decomposition) (No Decomposition) et al. [13]

Initial Initial Final Final 2level CPU Final Final 2level CPU Final 2level CPU

no. of no. of no. of no. of Area time no. of no. of Area time no. of Area time

states signal states signal literalsy sec. states signal literalsy sec. signal literalsy sec.

mr0 302 11 469 14 41 2.80 SAT Backtrack Limit > 3600 13 86 1084.5

mr1 190 8 373 12 55 1.73 SAT Backtrack Limit 872:9 10 53 237.5

mmu0 174 8 441 11 49 0.87 SAT Backtrack Limit 406:3 Internal State Error�

mmu1 82 8 131 10 50 0.37 SAT Backtrack Limit 101:3 10 37 47.8

sbuf-ram-write 58 10 93 12 59 0.36 90 12 74 5.21 12 35 54.6

vbe4a 58 6 106 8 37 0.19 116 8 40 0.25 8 41 5.5

nak-pa 56 9 59 10 25 0.20 58 10 32 0.08 10 41 20.8

pe-rcv-ifc-fc 46 8 50 9 48 0.24 53 9 50 0.13 9 62 14.3

ram-read-sbuf 36 10 44 11 28 0.15 53 11 44 0.06 11 23 65.2

alex-nonfc 24 6 31 7 26 0.05 28 7 22 0.03 Non-Free-Choice STG

sbuf-send-pkt2 21 6 26 7 20 0.04 27 7 29 0.04 7 14 8.6

sbuf-send-ctl 20 6 32 8 33 0.09 28 8 35 0.03 8 43 3.4

atod 20 6 26 7 15 0.02 24 7 16 0.01 7 19 2.9

pa 18 4 34 6 18 0.12 31 6 22 0.06 Internal State Error�

alloc-outbound 17 7 29 9 33 0.09 24 9 27 0.04 9 23 2.5

wrdata 16 4 20 5 17 0.03 19 5 18 0.01 5 21 0.9

�fo 16 4 23 5 15 0.03 20 5 17 0.02 5 15 0.7

sbuf-read-ctl 14 6 18 7 16 0.06 16 7 20 0.01 7 15 1.5

nousc 12 3 16 4 12 0.01 16 4 12 0.01 4 14 0.5

vbe-ex2 8 2 12 4 18 0.08 12 4 18 0.03 4 21 0.5

nousc-ser 8 3 10 4 9 0.02 10 4 9 0.01 4 11 0.4

sendr-done 7 3 10 4 8 0.02 10 4 8 0.01 4 6 0.4

vbe-ex1 5 2 8 3 7 0.01 8 3 7 0.01 3 7 0.3

y The number of literals were calculated from the unfactored prime-irredundant cover obtained using espresso -Dso
-S1 options.
� The state splitting technique of [13] has not yet been implemented in the U.C.Berkeley logic synthesis tool SIS,
which results in an internal state error in some cases [11].
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