

ASTRX/OBLX: Tools for Rapid Synthesis of High-Performance Analog Circuits

Emil S. Ochotta, Rob A. Rutenbar, and L. Richard Carley
Electrical and Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA

Abstract—We describe ASTRX/OBLX, a synthesis system that
can size high-performance analog circuit topologies to meet user-
supplied linear performance specifications without designer-sup-
plied equations. We present synthesis results for a large suite of
circuit benchmarks and show that, when compared to prior ap-
proaches, ASTRX/OBLX can synthesize high-performance cir-
cuits with up to 3 orders of magnitude less initial design effort.

I. I

NTRODUCTION

A surprising number of modern technologies rely on a core of analog
circuitry; cellular telephones, magnetic disk drives, and compact disc
players are just a few such examples. Tomorrow’s neural networks,
speech recognition systems, and ultra low-power personal communi-
cation devices will require more mixed analog/digital Application
Specific Integrated Circuits (ASICs). To maximize profit, ASIC
designers must minimize time-to-market. Digital CAD tools facili-
tate this by providing a rapid path to silicon for large-scale digital
designs. Unfortunately most analog circuits, although small in size,
are still designed manually by experts using time-consuming tech-
niques that have remained largely unchanged in the past 20 years.
With the advent of logic synthesis tools and semi-custom layout tech-
niques to automate much of the digital design process, the analog
section may consume 90% of the overall design time, while consum-
ing only 10% of the ASIC’s die area.

In [1] we outlined a new approach to analog circuit synthesis,

i.e.

,
automating part of the analog design process by translating a specifi-
cation into a circuit schematic with sized devices, and described a pro-
totype implementation called ASTRX/OBLX. The scope of this work
was synthesis for

cell-level

 (10 to 50 devices)

linear

 circuits: starting
from a transistor schematic, we sought both to design a dc bias point
and size all devices to meet performance targets such as gain and
bandwidth. In this paper, we validate our initial work by synthesizing
a suite of benchmark circuits that blankets essentially all the previous
analog cell synthesis results, and by explicitly comparing to these pri-
or results using three critical metrics for any analog synthesis tool:

•

Accuracy:

 the discrepancy between the synthesis tool’s internal
performance prediction mechanisms, and those of a detailed circuit
simulator that uses realistic device models.

•

Synthesis time:

 the CPU time required by the synthesis tool.

•

Preparatory effort:

 the designer-time/effort required to render a
new circuit design in a form suitable for the tool to complete.

In comparison to prior approaches, ASTRX/OBLX typically re-
quires hours, rather than weeks/months to compose a new circuit
problem; tens of lines of constraints, rather than thousands of lines of
executable code; and hours of CPU time on a fast workstation, instead
of seconds or minutes—the price we pay for ease of formulation.

This paper is structured as follows. Section II reviews prior ap-
proaches to analog circuit synthesis. Section III presents the basic for-
mulation underlying ASTRX/OBLX, while Section IV presents a cir-
cuit synthesis example to show how this formulation is applied to a
real synthesis problem. In Section V we revisit some of the more in-
teresting aspects of ASTRX/OBLX in more detail. Section VI de-
scribes results from our suite of circuit benchmarks and compares to
prior approaches. Finally, Section VII offers concluding remarks.

II. R

EVIEW

O

F

P

RIOR

A

PPROACHES

Previous approaches to analog circuit synthesis [2][3][4][5][6][7]
[8][9] have failed to make the transition from research to practice.
This is due primarily to the prohibitive one-time effort required to
derive the complex equations that drive these synthesis tools.
Because they rely on a core of equations, we refer to all previous
approaches to synthesis as “equation-based”. At each step in the syn-
thesis process, performance equations are used to evaluate the evolv-
ing circuit design, determine how well it meets its specifications, and
provide feedback to a search mechanism to guide the synthesis pro-
cess. Because of their reliance on equations, these systems are still
limited in the crucial areas of accuracy and automation. Let us exam-
ine these issues in greater detail.

Accuracy:

 Equation-based approaches rely heavily on simplifica-
tions to circuit equations and device models. The performance of the
synthesized circuit often reflects the limitations of the equations used
to model it, rather than the inherent limitations of the topology. The
need for high performance circuits using the latest technologies inval-
idates the use of many of these simplifications. For example, in a 3

µ

MOS process, is a workable model of
the current-voltage relationship for a device, and equation-based ap-
proaches take advantage of the fact that it can be inverted to allow ei-
ther voltage or current as the independent variable. But this is a gross-
ly inaccurate model for a device with a submicron channel length. The
need to support complex device models and circuit design goals that
push the limits of these models is fundamentally at odds with equa-
tion-based strategies that rely on these simplifications.

Automation:

 Equation-based tools appear to design circuits quick-
ly. But, the run-time of the tools is misleading because it does not con-
sider the time required to derive the circuit equations. Even for a rel-
atively simple analog circuit, these equations are very complex, re-
quire considerable analog design expertise to derive, and must be
entered as thousands of lines of program code. For a textbook design
this process can take weeks [7], while for an industrial design it can
take several designer-years [3], and the process must be performed for
each new circuit topology added to the synthesis tool’s library. More-
over, adding these equations typically requires a user who is a pro-
grammer, an analog designer, and intimate with the internal architec-
ture of the tool. As a result, it is almost always easier for an industrial
mixed-signal ASIC designer to design circuits manually rather than
dedicate the effort required to teach these tools to do it. There have
been several attempts to make it easier to codify these performance
equations. For example: OASYS [5] structures circuit equations hier-
archically in an attempt to provide reusable circuit building blocks,
and ARIADNE [4] provides a symbolic simulator to assist in deriving
transfer functions for linear circuits. However, even the most promis-
ing of these attempts, symbolic simulation, has yet to overcome sub-

IDS K ' W 2L⁄ VGS VT−() 2=

stantial technical obstacles before it can fully automate performance
equation derivation for high-performance circuits. Symbolic simula-
tion of a few tens of devices can generate expressions with tens of
thousands of terms. Despite ongoing efforts [10] with these methods,
we are unaware of any effective pruning strategy that can generate ex-
pressions that are accurate over the range of circuit parameters that
must be explored during synthesis.

One simple solution is to replace the equations with a direct simu-
lation technique. This is the approach that was first proposed for ana-
log circuit optimization decades ago [11]. A more recent example,
DELIGHT.SPICE [12], replaces performance equations with SPICE
and employs a gradient-based optimization technique for search.
However, DELIGHT.SPICE is an

optimization

 tool, not a

synthesis

tool, a distinction that has proved insurmountable in the past decade.
The key hurdle that has not been overcome to make this transition
from

optimization

 to

synthesis

 is the inefficiency of simulation and its
impact on starting point sensitivity.

Efficiency/Starting Point Sensitivity:

 Because SPICE-class sim-
ulators are slow, the search mechanism must invoke the simulator as

in

frequently as possible. As a result, simulation-based methods use
local optimization techniques that require few iterations to converge.
These techniques must be primed with a good initial circuit design,
otherwise, an optimization may not converge or may converge to a lo-
cal minima significantly worse than the circuit’s best capabilities [12].
In circuit synthesis, a local optimizer is not practical both because the
search space contains many local but non-global minima [6][12] and
because the user cannot be expected to provide a good initial circuit
design.

In the remainder of this paper, we describe an alternative synthesis
formulation that combines the strengths of both equation-based and
simulation-based approaches.

III. ASTRX/OBLX: B

ASIC

F

ORMULATION

In this section, we present the full synthesis formulation of ASTRX/
OBLX, including core ideas originally presented in [1]. We begin
with the specific design goals that guided the evolution of this formu-
lation and the key ideas that form its foundation. We then outline the
architectural aspects of their realization in ASTRX/OBLX.

A. Design Goals for ASTRX/OBLX

Our design goals for a new analog circuit synthesis architecture are
to address directly the automation, accuracy, and efficiency problems
we identified with previous approaches. First, it should require only
hours rather than weeks/months of preparatory effort to design a new
circuit. Second, our new system should yield accurate performance
predictions for high-performance circuits rather than suffering from
problems due to device model or performance equation simplifica-
tions. And third, the system should find high-quality circuit design
solutions without regard to starting point rather than getting trapped
in the nearest local minima. Our primary goal here is efficiency. We
wish to streamline the path from a circuit idea to a sized circuit sche-
matic. Equation-based synthesis tools use only minutes of CPU time
but require the designer to spend months deriving, coding, and test-
ing equations. We believe the following scenario is more appealing:
after an afternoon of effort, a circuit designer goes home while the
synthesis tool completes the design overnight. Realizing this scenario
is the primary goal behind ASTRX/OBLX.

B. Ideas Underlying the ASTRX/OBLX Strategy

To achieve these goals our circuit synthesis strategy relies on five key
ideas: synthesis via optimization, asymptotic waveform evaluation,
simulated annealing, encapsulated device evaluators, and the
relaxed-dc numerical formulation. We describe these ideas below.

Synthesis via Optimization:

 We perform fully automatic circuit
synthesis using a constrained

optimization formulation, but solved in
an unconstrained fashion. As in [7][8][12], we map the circuit design
problem to the constrained optimization problem of (1). Where isx

the set of independent variables—geometries of semiconductor devic-
es or values of passive circuit components—we wish to change to de-
termine circuit performance; is a set of objective functions that
codify performance specifications the designer wishes to optimize,

e.g.

 power or bandwidth; and is a set of constraint functions that
codify specifications that must be beyond a specific goal,

e.g.

, gain

≥

60dB. Scalar weights,

w

i

, balance competing objectives.

 (1)

To allow the use of simulated annealing, we perform the standard
conversion of this constrained optimization problem to an uncon-
strained optimization problem with the use of additional scalar
weights. As a result, the goal becomes minimization of a scalar cost
function, , defined by (2).

 (2)

The key to this formulation is that the minimum of corre-
sponds to the circuit design that best matches the given specifications.
Thus, the synthesis task becomes two more concrete tasks: evaluating

 and searching for its minimum. However, performing these
tasks is not easy. In equation-based synthesis tools, evaluating
is done using designer-supplied equations. To achieve our automation
goals, we must avoid the months/years of preparatory effort it may
take to derive these equations. Moreover, in searching for the mini-
mum, we must address the issues of starting point independence and
global optimization, since may have many local minima.

Asymptotic Waveform Evaluation:

 To evaluate circuit perfor-
mance,

i.e.

 , without designer-supplied equations, we rely on an
innovation in simulation called Asymptotic Waveform Evaluation
(AWE)[13]. AWE is an efficient approach to analysis of arbitrary lin-
ear circuits that is several orders of magnitude faster than SPICE. By
matching the initial boundary conditions and the first mo-
ments of the actual circuit transient response to a reduced

q

-pole mod-
el, AWE can predict small-signal circuit performance using a reduced
complexity model. AWE is a general simulation technique that can be
applied to any linear circuit and yields accurate results without man-
ual circuit analysis. Thus, AWE replaces performance equations, but
does so at a fraction of the run-time cost of SPICE-like simulation.

Simulated Annealing:

 We have selected simulated annealing [14]
as the optimization engine that will drive our search for the best circuit
design in the solution space defined by . This method provides
the potential for global optimization in the face of many local minima.
Simulated annealing has a theoretically proven ability to find the glo-
bal optimum under certain restrictions [15]. Although these restric-
tions are not enforceable for most industrial applications, the proofs
suggest an algorithmic robustness that has been validated in practice
[16]. Because annealing incorporates controlled

hill-climbing

 it can
escape local minima and is starting-point independent. Annealing has
other appealing properties including its ability to optimize without de-
rivatives. Further, although annealing typically requires more func-
tion evaluations than local optimization techniques, it is now achiev-
ing competitive run-times on problems for which tuned heuristic
methods exist [17]. Because annealing directly solves

un

-constrained
optimization problems, we require the scalar cost function of (2).

Encapsulated Device Evaluators:

 To model active devices, we
rely on a compiled database of industrial models we call

encapsulated
device evaluators

. These provide the accuracy of a general purpose
simulator while making the synthesis tool independent of low-level
device modeling concerns. As with any analysis of a circuit, we use
models to linearize non-linear devices, generating a small signal cir-
cuit that can be passed to AWE. Using one or two equation approxi-
mations instead of the hundreds of equations used in industrial device
models is no longer a viable alternative in a practical synthesis sys-

f x()

g x()

minimize
x

wi fi x() s.t. g x() 0≤⋅
i 1=

k

∑

C x()

C x() wifi x()
i 1=

k

∑ wjgj x()
j 1=

l

∑+=

C x()

C x()
C x()

C x()

C x()

2q 1−

C x()

tem. Unlike equation-based performance prediction, where assump-
tions about device model simplifications permeate the circuit evalua-
tion process, with encapsulated devices all aspects of the device’s rep-
resentation and performance are hidden and obtained only through
requests to the evaluator. In this manner, the models are completely
independent of the synthesis system and can be as complex as re-
quired. For our purposes we rely entirely on device models adopted
from detailed circuit simulators such as Berkeley’s SPICE 3.

Relaxed-dc formulation:

 To avoid a CPU intensive dc operating
point solution after each perturbation of the circuit design variables,
we rely on a novel re-casting of the unconstrained optimization for-
mulation for circuit synthesis [8] we call the

relaxed-dc formulation

.
Supporting powerful device models is not easy within a synthesis en-
vironment because we cannot arbitrarily invert the terminal relation-
ships of these models and choose which variables are independent and
which are dependent. This critical simplification enables equation-
based approaches to solve for the dc bias point of the circuit analyti-
cally and, as a result, very quickly. In contrast, when the models must
be treated numerically, as in circuit simulation, an iterative algorithm
such as Newton-Raphson is required. For synthesis, this approach
consumes a substantial amount of CPU time that we would prefer not
to waste on intermediate circuit designs that are later discarded. In-
stead we explicitly formulate Kirchhoff’s laws, which are solved im-
plicitly during dc biasing, and include them in , the constraint
functions in (2). Just as we must formulate optimization goals such as
meeting gain or bandwidth constraints, we now formulate dc-correct-
ness as yet another goal to meet.

C. ASTRX/OBLX System Architecture

In ASTRX/OBLX, we combine these five ideas to create an archi-
tecture that provides a fully automated path from an un-sized circuit
topology and a set of performance specifications to a completed, syn-
thesized circuit. This path is comprised of two phases:

•

Compilation by ASTRX:

 Compilation generates code that imple-
ments the cost function, . To evaluate this cost function, AS-
TRX will compile in the appropriate links to the encapsulated de-
vice evaluators and AWE. Because of our relaxed-dc formulation,
ASTRX must also derive the dc-correctness constraints that will
enforce Kirchhoff’s laws and encode them in the cost function.

•

Solution by OBLX:

 This cost function code is then compiled and
linked to OBLX, our solution library, which uses simulated anneal-
ing to numerically find its minimum, thereby designing the circuit.

IV. S

YNTHESIS

E

XAMPLE

In this section we present a complete synthesis example to make con-
crete the entire path from problem to solution. In our example, we
focus on the input the designer must provide to ASTRX and the steps
performed by ASTRX to translate this input into .

A. Describing The Circuit Under Design

Assume we wish to size and bias the simple differential amplifier
topology shown in Fig. 1a to maximize differential gain (A

dm

) such
that unity gain frequency (UGF) is at least 1MHz and the slew rate
(SR) is at least 1V/

µ

s. There are two main parts to the input descrip-
tion file, the topology of the circuit under design, and the perfor-
mance specifications the completed design must achieve. For our
example, assume the dimensions of

M1

 and

M2

 and the values of

I

and

Vb

 are unknown. (

i.e.

,

 M3

 and

M4

 are given.) We begin by list-
ing these independent variables: . Note that we
wish to determine only a single width and length because the circuit
is differential, so the two transistors (

M1

,

M2

) must be matched. We
can describe this to ASTRX with the topological description of the
circuit by listing all the elements, their port nodes, and their values.

M1

 and

M2

 can be automatically matched by using the same expres-
sion for their dimensions. Assuming the variables, {

W

,

L

,

I

,

Vb

}, are
declared elsewhere in the description, this information (whose format
is designed after the familiar SPICE notation) is:

g x()

C x()

C x()

x W L I Vb, , ,{ }=

.subckt oa in+ in- out+ out- nvdd nvss
M2 out+ in- A nvss Ne w=’W’ l=’L’
M1 out- in+ A nvss Ne w=’W’ l=’L’
M3 out+ nvb nvdd nvdd Pe w=2u l=1.2u
M4 out- nvb nvdd nvdd Pe w=2u l=1.2u
vvb nvb nvss ‘Vb’
ib A nvss ‘I’
.ends

Our next task is to describe the performance specifications. Since
ASTRX/OBLX simulates circuit performance with AWE, we must
provide a

simulation oriented

 definition of each specification. To
describe a specification, we need to provide a

test jig

, a set of mea-
surements to make on the jig, and any simple arithmetic that must be
performed to calculate the values we are interested in. The test jig is
important because it supplies the environment (stimulus, load, sup-
plies, etc.) in which the circuit is to be tested. We can use the test jig
shown in Fig. 1b to measure both A

dm

 and UGF. For ASTRX/OBLX,
this would look as follows:

xamp in+ in- out+ out- nvdd nvss oa
vdd nvdd 0 vddval
vss nvss 0 vssval
vin in+ 0 0 ac 1
ein in- 0 0 in+ 1
cl1 out+ 0 Cl
cl2 out- 0 Cl
.pz tf V(out+) vin
.obj Adm ‘dc_gain(tf)’ good = 1000 bad = 10
.spec ugf ‘ugf(tf)’ good = 1Meg bad = 10k

Here, the

.pz

 card tells AWE to determine the transfer function

V(out+)/Vin

 directly. It is then straightforward to write expres-
sions for A

dm

 and UGF using pre-defined functions available in
ASTRX. In the above example, the

good

 and

bad

 values are used
both to specify bounds on specifications and to normalize the contri-
butions of each performance metric to . For our example, we
use a single test jig for A

dm

 and UGF, but in general we can specify
several jigs with which to measure circuit performance with AWE.

Until now, we have neglected the slew rate. This is because mea-
suring slew rate would require a transient simulation, which is not
straightforward with AWE. However, unlike gain and unity gain fre-
quency, slew rate is described with an easily derived expression. If we
assume that we are interested only in the rate at which the output slews
downwards, we can write this expression by inspection as

, where Cd is the capacitance at the output
node due to the transistors. In ASTRX this specification becomes:

.spec SR ‘I/(2*(Cl+xamp.m1.cd+xamp.m3.cd))’ good=1Meg bad=10k

ASTRX supports a complete equation-based description of circuit
performance, thus ASTRX/OBLX has all the flexibility of previous
equation-based techniques but also provides direct support for perfor-
mance measured with AWE. Given a simple circuit, symbolic equa-
tions can be derived for A

dm

 and UGF. However, as experiments with
symbolic simulation have shown, these equations can be huge,

e.g.

,
10,000+ terms for a circuit with 10 devices, and the number of terms
grows exponentially with circuit size. In contrast, AWE uses a numer-
ic technique and can evaluate A

dm

 and UGF in a few tens of millisec-

Fig. 1: Design Example

–
+

Vdd

Vss

+
–

vin

~
Vout

Cl
Cl

(b) Test Jig for Adm, UGF

–
+

Vdd

Vss

R

R
(c) Bias Circuit

Vin–
M1

I

Vout–

Vin+
M2

Vss

Vdd

A

Vout+

(a) Circuit Under Design

M1

I

Vout–

M2

Vss

Vdd

A

Vout+

Id2Id1

(d) Large-signal
Equivalent Circuit

Vb M3 M4 ~

ein
M3 M4

C x()

SR I 2 Cl Cd+()()⁄=

onds for circuits of this size. Moreover, AWE’s algorithmic complex-
ity is roughly that of an LU factorization, approximately O(

n

1.4

)
where

n

 is the number of nodes in the circuit. The speed of AWE and
the ability to describe linear performance specifications without de-
riving circuit equations are two of the chief advantages of ASTRX/
OBLX over previous synthesis approaches.

Our description of the synthesis problem is almost complete. How-
ever, we must also provide one additional circuit, a bias circuit. To un-
derstand the need for this circuit, we must discuss the treatment of
non-linear devices in more detail. Like a detailed circuit simulator,
ASTRX/OBLX must know the node voltages in the circuit to act as
input to the device evaluators. An evaluator converts the dimensions
and port voltages of the device into a set of linear elements that mod-
els the device’s behavior at that operating point. After replacing each
transistor with its model, we can then use AWE to evaluate the cir-
cuit’s performance. To obtain these voltages, we separate the small-
signal and dc bias concerns for the circuit under design—a technique
familiar to analog designers. For our example, we can use the bias cir-
cuit of Fig. 1c. The topology of this bias circuit is the last piece of in-
put the designer must supply to ASTRX.

B. Mapping the Synthesis Problem Into An Optimization Problem

In this section, we show how ASTRX maps the problem description
into the components of the cost function of (2). We begin with the
independent variables, . This is quite simple: we use the indepen-
dent variables specified by the designer. Thus, .
However, we shall see that we must add other variables to as well.

Next we must determine , the set of objective functions. For
our example, the only objective is to maximize A

dm

. Thus, con-
tains only the function that calculates A

dm

, which

we label .
(Following [12], we use the

good

 and

bad

 values given by the user to
transform , such that we

maximize

A

dm

 but

minimize

 .)

To understand the additions we need to make to , we trace the in-
formation required to calculate . Recall that we require a bias
circuit to provide device port voltages as input to the evaluators. How-
ever, we did not discuss how we would solve for the node voltages in
that bias circuit. In ASTRX/OBLX, solving for these voltages is not a
separate procedure, instead we simply include the node voltages in .
Thus, ASTRX adds variables for the independent node voltages in the
bias circuit of Fig. 1c. Now, .
This is the first component of the relaxed-dc formulation.

We complete the relaxed-dc formulation by forcing the node volt-
ages to take values such that Kirchhoff’s laws are obeyed. To accom-
plish this we replace the transistors in the circuit we are trying to de-
sign (Fig. 1a) with large-signal models returned by the device evalu-
ators, giving the circuit of Fig. 1d. Kirchhoff’s current law (KCL) can
then be written at each node in the circuit.

e.g.

, at node A:
. This KCL equation must be met when our opti-

mization is complete. To ensure this, we include the equation in the
set of constraint equations, , in . Specifically, we can write
the KCL equation at node A as the constraint equation:

 (3)

Thus, contributes a penalty to the cost function whenever the

KCL error at node A is larger than some numeric tolerance,

1

.
We formulate the other KCL equations in the same fashion, creating

 and . Together, these three constraints com-
plete the relaxed-dc formulation.

For our example, the other members of correspond to the oth-
er performance specifications we wish to design for. Thus, we need
constraint functions for UGF and SR. Including these final terms, we

1.

The large-signal model and this formulation of the KCL constraint is some-
what simplified for clarity. For more detail, see [18].

x
x W L I Vb, , ,{ }=

x

f x()
f x()
fAdm x()

fAdm x() C x()

x
fAdm x()

x

x W L I Vb Vout+ Vout– VA, , , , , ,{ }=

I Id1− Id2− 0=

g x() C x()

gA x() max 0 I Id1− Id2− τ
abs

−,()=

gA x()
τ
abs

gVout+ x() gVout– x()

g x()

obtain (4), the final form of the cost function ASTRX generates and
OBLX must minimize to complete the circuit design.

(4)

V. ASTRX/OBLX D

ESIGN

I

SSUES

In this section, we revisit the ASTRX/OBLX formulation, presenting
further details of its design. We then focus on some of the interesting
implications the relaxed-dc formulation has on circuit synthesis.

A. Algorithmic Aspects of ASTRX/OBLX

As seen in the example, the tasks performed by ASTRX can be sum-
marized as (a) determine the set of independent variables (), (b)
generate large-signal equivalent circuits for biasing, (c) write KCL
constraints for the large-signal circuits, (d) generate small-signal
equivalent circuits for AWE, (e) generate cost terms for each circuit
performance metric specified by the user, and (f) write all the code
that describes the cost function for this circuit synthesis problem.

A somewhat subtle aspect of compilation is determining the set of
independent variables, . The user specifies most of these, but AS-
TRX must find a set of independent node voltages to include in as
part of the relaxed-dc formulation. To do so, ASTRX performs a tree-
link analysis of the large-signal equivalent circuit, which is built from
the input netlist with the help of device templates provided by the en-
capsulated device evaluators. Whenever a node voltage cannot be
trivially determined, its value becomes another variable in .

To completely describe the annealing formulation used in OBLX,
we must describe its four principal components: the

representation

 of
the synthesis problem manipulated by the annealer; the

moves

 used to
transform one circuit configuration into another; the

cost function

 that
evaluates the quality of each visited circuit configuration; and the

con-
trol mechanisms

 that direct the overall cooling process.

Representation:

 The problem representation is conceptually
straightforward: the variables in map to aspects of the evolving cir-
cuit design, such as device sizes and node voltages. However, we do
not represent all the variables in as continuous values. Node voltage
values must clearly be continuous to determine an accurate bias point.
Device sizes, however, can reasonably be regarded as discrete quan-
tities, since we are limited by how accurately we can etch a device.
Moreover, there is considerable advantage to be had from properly
discretizing device sizes: the coarser the discretization, the smaller the
space of reachable sizes that must be explored. Because small changes
in device sizes make proportionally less difference on larger devices,
we typically use a logarithmically spaced grid.

Move-Set:

 Given the present state, , the

move-set

 is the set of al-
lowable perturbations on it, . The basic problem is the need for an
efficient mechanism to generate each perturbation. For discretized
variables there is always a smallest allowable move, an

atomic

 pertur-
bation. The problems here are what larger moves should be included
in the move-set for efficiency and how to decide when to use these
larger moves. For continuous variables the situation is more complex.
For an

 n

-dimensional real-valued state, , determining the right

smallest

 is itself a difficult issue. In OBLX, we may need to ex-
plore across a voltage range of several volts and then converge to a dc
bias point with an accuracy of a few microvolts. We aid this conver-
gence by augmenting our move-set with moves that employ the New-
ton-Raphson algorithm. Newton-Raphson moves all node voltages si-
multaneously, using the gradient information in the bias circuit’s nod-
al admittance matrix to move toward dc-correctness. A simulator
performs a complete Newton-Raphson before it evaluates circuit per-
formance. However, because we are using a relaxed-dc formulation,
we do not require a full Newton-Raphson solve after each move
OBLX proposes. Instead, we combine random moves of members of

 with full and partial Newton-Raphson solves to create a palette of

move classes

 from which the annealer must select. We then use an au-
tomatic move selection method adapted from Hustin [19] that allows

C x() wAdm fAd m x() wU GFgUG F x() wSRgSR x()+ + +=

wA gA x() wVout+ gVout+ x() wVout– gVout– x()+ +

x

x
x

x

x

x

x
∆x

x Rn∈
∆x

x

the annealer to determine the most appropriate move class—purely
random, gradient-directed, or a combination—at a given point in the
optimization process. The use of partial gradient-based moves within
an annealing formulation is not new,

e.g.

, the theoretically globally-
convergent continuous annealing strategy in [20]. In practice, this
technique allows OBLX to converge to a dc operating point at least as
reliably as a detailed circuit simulator.

Cost-Function:

 The heart of the annealer is the circuit specific cost
function, , generated by ASTRX, which maps each visited cir-
cuit configuration to a scalar cost. The cost function was described
by example in Section IV. In general, it has the form:

(5)

Where each term in (5) represents a group of related terms. There are
two distinct kinds of terms: the

 objective

 terms implement in (2)
and must be minimized, while the

penalty

 terms implement and
must be driven to zero. Here,

 C

obj

 and

C

perf

 implement the user sup-
plied figures of merit;

C

dev

, forces devices to be in particular regions
of operation; and

C

dc

, implements the relaxed-dc formulation.

Control Mechanisms:

 To control the annealing process, we have
implemented the general purpose cooling schedule of Lam [17] as
modified by Swartz [21]. Our freezing criteria, which determines
when the annealing has completed, has been developed specifically
for our analog synthesis application. The design is complete when
both the discrete variables have stopped changing and the changes in
the continuous variables are within a specified relative tolerance.

Another aspect of the annealing control process is the issue of nu-
meric constants. Numeric algorithms often require large numbers of
constants that tune the algorithm such that it reliably produces high-
quality solutions. If these algorithms are poorly designed, the con-
stants will need to be adjusted for each new problem solved. Substan-
tial effort has been spent designing ASTRX/OBLX such that it is truly
an automation tool,

i.e.

, the user is not required to provide problem-
specific constants. One key aspect of this process is the use of adap-
tive algorithms to replace the majority of the numeric constants that
would otherwise be needed within OBLX. For example, the scalar
weights in have been replaced with an adaptive weight algo-
rithm. These techniques ensure that an analog circuit designer can use
ASTRX/OBLX without understanding its internal architecture. See
[18] for a complete discussion of these techniques.

B. Implications Of The Relaxed-DC Formulation

As a result of the relaxed-dc formulation, early in the optimization
process the sum of the currents entering a given node has a signifi-
cant, non-zero value. An important issue to address is what it means
to evaluate the performance of a circuit that is not dc-correct. One
way to view this circuit is to imagine an additional current source at
each node. This current source sinks the current required to ensure
dc-correctness. Then, the goal of the Kirchhoff’s law constraints
added to is to reduce the value of these currents sources to zero.
When evaluating circuit performance, the fact that these current
sources will not be in our final design means that our predicted per-
formance will differ slightly from the final performance. This error
factor allows us to visit many more possible circuit configurations
within a given period of time, albeit evaluating each a little less accu-

C x()
x

C x() Cobj Cper f Cdev Cdc+ ++=

objective penalty terms

f x()
g x()

C x()

Fig. 2: Discrepancy From KCL Correct Voltages During Optimization
Annealing Progress (Temperature Steps)

Voltage
Error for
Several
Nodes

Completed
Design

10µV

100 µV

1mV

10mV

100mV

1V

10V

g x()

rately. As the optimization proceeds the current sunk by these sources
goes to zero and the performance prediction becomes completely
accurate. This evolution is shown in Fig. 2. By the end of the anneal-
ing process, the circuit will be dc-correct within tolerances not unlike
those used in circuit simulation.

This analogy points out a seeming inconsistency in our overall syn-
thesis formulation. We clearly do not intend that each annealing move
visits a dc-correct circuit,

i.e.

, where the current sources ensuring dc-
correctness are zero-valued. Nevertheless, we evaluate each circuit
using detailed device models and highly accurate AWE techniques.
Clearly this accuracy is not fully exploited early in the optimization
when these error currents are substantial. Simpler models could be
used in these early stages, but, practically, the evolution from simple
to accurate models would be difficult because different models often
predict significantly different performance, so changing models
might substantially alter the value of . Moreover, this accuracy
is not entirely wasted: the annealer still learns much from these early
circuits. For example, if we need to achieve more gain in our circuit,
we probably need to increase the

g

m

 on some critical device. We do
not need a precise dc bias point to know that we must either increase
that device’s width, its current, or both. We can successfully make
coarse decisions such as this even in the presence of the extra current
sources introduced by the relaxed-dc formulation.

VI. R

ESULTS:

C

IRCUIT

B

ENCHMARKS

The primary goal of ASTRX/OBLX is to reduce the time it takes
to size and bias a new circuit topology to meet performance specifica-
tions. Fig. 3 summarizes a representative selection of previous analog
circuit synthesis results. Here, each symbol represents synthesis re-
sults for a single circuit topology. The length of the symbol’s “tail”
represents the complexity of the circuit, which we quantify as the sum
of the number of devices in the circuit and the number of the variables
the user asks the synthesis tool to determine. Note that this graph in-
cludes two circuits published in [22], including the most complex re-
sult of which we are aware. The other axes represent metrics for accu-
racy and automation. The prediction error axis measures accuracy by
plotting the worst case discrepancy between the synthesis tool’s cir-
cuit performance predication and the predictions of a circuit simula-
tor. The time axis measures automation by plotting the sum of the pre-
paratory time spent by the designer and CPU time spent by the tool to
synthesize a circuit for the first time. (In [6] where preparatory time
was not published, we equated 1000 lines of circuit-specific custom

C x()

■

✚✪■
★

■
✪
★
◆
✚
●

◆

◆

■
■

■

■■

✪

●
★
✚

■

ASTRX/OBLX

STAIC [6]

IDAC [3]

OPASYN [7]

OASYS [5]

Maulik [8]

Year
Month

Week
Day

1

Preparatory + CPU
Time (log Hours)0

200
150

100

50Prediction
Error (%)

C
om

pl
ex

ity
(D

ev
ic

es
 +

 V
ar

ia
bl

es
)

100

50

0

Fig. 3: Complexity, Error and First Time Design Effort. ASTRX/OBLX
Compared with Prior Approaches

code to a month.) Fig. 3 reveals three distinct classes of synthesis re-
sults. The first class is on the right and contains the majority of previ-
ously published work. Here, the synthesis tool predicts performance
with reasonable accuracy, but only because a designer has spent
months to years of preparatory time deriving the circuit performance
equations. The limited range and performance of these prior results is
perhaps the best indicator that the first-time effort to design a circuit
has always been a substantial barrier to obtaining a broader range of
results. The second group of results, those on the left, trade reduced
preparatory effort for substantially reduced circuit performance pre-
diction accuracy. Finally, the center group of results is for ASTRX/
OBLX. In contrast to the other two groups, generating each new de-
sign with ASTRX/OBLX typically involved an afternoon of prepara-
tion followed by 5-10 annealing runs performed overnight, yet pro-
duced designs that matched simulation with at least as much accuracy
as the best prior approaches.

Results of ASTRX’s analyses of our complete suite of benchmark
circuits are listed in Table 1. Note that just 5 of these topologies (Sim-
ple OTA, OTA, Two-Stage, Folded-Cascode, and Comparator) cover
essentially all previously published synthesis results. (We make the
reasonable assumption that a circuit topology can represent topolo-
gies that vary in only minor detail.) Because detailed synthesis results
for circuit Comparator appear in [22], we confine our discussion to the
remaining circuits. For our complete suite, Table 1 gives the number
of lines required for each synthesis problem description and the re-
sults of ASTRX’s analysis of the problem. Recall that ASTRX com-
piles the problem description, generating the cost function as C code
that will be compiled and linked with OBLX. The number of lines is

reported as two separate values: (1) the lines required for the netlists
of the circuit under design and the test jigs (about the number of lines
that would be required to simulate the circuit with SPICE), and (2) the
lines for the independent variables and performance specifications
(lines specific to ASTRX/OBLX). In all, the amount of time and ef-
fort required to create an ASTRX/OBLX input description is quite
modest. Table 1 also includes the number of independent node volt-
age variables added by ASTRX to codify the relaxed-dc formulation.
Because the device models we employ contain internal nodes, these
added variables typically outnumber the user-specified variables. Fi-
nally, Table 1 shows the size of the linearized small-signal test jig cir-
cuit(s) generated by ASTRX to be evaluated by AWE for each new
circuit configuration and the size of the bias circuits generated by AS-
TRX using the large-signal models for the non-linear devices.

The schematics for our benchmark circuits are shown in Fig. 4 and
the basic synthesis results for this suite are in Table 2. CPU times giv-
en are on an IBM RS/6000-550. It is impossible to compare directly
circuit performance of these ASTRX/OBLX synthesized circuits with
that of circuits synthesized with other tools because of the unavailabil-
ity of device model parameters to describe the processes for which
they were designed. As a result, we compare the

accuracy

 of ASTRX/
OBLX to that of previous approaches. Because of the simplifications
made during circuit analysis, results from equation-based synthesis
tools differ from simulation by as much as 200% (see Fig. 3). In con-
trast, for the small-signal specifications where AWE predicts perfor-
mance, ASTRX/OBLX results match simulation almost exactly. By
simulating linearized versions of these circuits we have determined
that these minor differences are due to differences between the models

TABLE 1. RESULT OF ASTRX’S ANALYSES

a. Type ‘A’ is a linearized, small-signal AWE circuit. Type ‘B’ is a bias circuit.

a. ↑ means maximize, while ↓ means minimize.

Circuit

Simple
OTA OTA Two-Stage

Folded
Cascode Comparator

BiCMOS
Two-Stage

Novel Folded
Cascode

In
pu

t
(l

in
es

) Netlist/Models 30 34 43 65 131 39 68

Synth. Specific 28 33 40 56 68 33 51

User-Supplied 7 11 19 28 19 12 27

Node Voltages 14 24 26 70 57 26 84

Terms 56 85 88 212 169 86 246

Lines of C 1443 1809 1894 3408 3088 1723 3960

C
ir

cu
it

s Circuit Typea:
nodes, elements

B: 20, 31 B: 28, 49 B: 34, 54 B: 75, 138 B: 65, 126 B: 33, 54 B: 90, 167
A: 20, 67 A: 29, 114 A: 33, 118 A: 75, 324 A: 63, 265 A: 32, 105 A: 90, 395

A: 64, 266
A: 29, 115

TABLE 2. BASIC SYNTHESIS RESULTS, BSIM AND GUMMEL-POON MODELS, 1.2µ PROCESS

Specification: OBLX / Simulation

Attribute Simple OTA OTA Two-Stage Folded Cascode BiCMOS Two-Stage
Cload (pF) 1 1 1 1.25 1
Vdd 5 5 5 5 5
dc gain (dB) ↑ a: 36.6 / 36.6 ↑: 40.4 / 40.2 ≥60: 66.4 / 66.4 ≥70: 70.1 / 70.1 ↑: 99.1 / 99.1
gain bandwidth (MHz) ≥50: 50.1 / 50.6 ≥25: 25.0 / 25.4 ≥10: 10.6 / 10.6 ↑: 72.4 / 72.1 ≥50: 73.7 / 75.1
phase margin (º) ≥60: 71.4 / 74.8 ≥45: 57.9 / 57.8 ≥45: 87.3 / 86.5 ≥60: 80.0 / 80.0 ≥45: 45.2 / 49.6
PSRR (Vss) ≥20: 21.9 / 21.9 ≥40: 42.1 / 42.0 ≥20: 31.0 / 30.9 ≥105: 107 / 107 ≥60: 78.9 / 79.0
PSRR (Vdd) ≥20: 36.8 / 36.8 ≥40: 52.8 / 52.8 ≥40: 45.8 / 45.8 ≥105: 125 / 125 ≥40: 52.2 / 52.2
output swing (V) ≥2.3: 3.7 / 3.6 ≥2.5: 4.0 / 4.0 ≥2: 2.7 / 2.8 ≥±1.0: ±1.5 / ±1.5 ≥2: 3.3 / 4.0
slew rate (V/µs) ≥10: 130 / 131 ≥10: 51.6 /48.2 ≥2: 3.8 / 4.0 ≥50: 67 / 57 ≥10: 10 / 9.5
active area (103µ2) ↓ : 2.8 ↓: 0.9 ↓ : 2.1 ↓: 46 ↓: 11.9
static power (mW) ≤1: 0.72 / 0.72 ≤1: 0.33 / 0.34 ≤1: 0.16 / 0.16 ≤15: 10 / 10 ≤20: 1.3 / 1.5
time/ckt. eval (ms) 36 37 38 116 38
CPU time (min. / run) 6 9 16 120 12

x
C

x(
)

used during simulation with HSPICE [23] and our models adopted
from Berkeley SPICE.

Presently ASTRX/OBLX employs 3 different encapsulated device
models: the level 3 MOS model from SPICE, the BSIM MOS model
[24] and the Gummel-Poon model for BJT devices. To demonstrate
the importance of supporting different models, we synthesized the
same circuit (Simple OTA) with three different model/process combi-
nations: BSIM/2

µ

, BSIM/1.2

µ

, and MOS3/1.2

µ

. ASTRX/OBLX was
given (and achieved) the same specifications for each but was told to
minimize active area. As expected, the BSIM/2

µ

 design required the
largest area (580

µ

2

). But, surprisingly, the two designs for the

same

1.2

µ

 process also differed substantially in area: 300

µ

2

 for BSIM and
140

µ

2

 for MOS3. Clearly the choice of device model greatly affects
circuit performance prediction accuracy.

The final two circuits in our benchmark suite show the ability of
ASTRX/OBLX to design high-performance and novel circuit topolo-
gies. The first such circuit, a BiCMOS two-stage amplifier, shows the
ability of ASTRX/OBLX to handle a mix of MOS and bipolar devic-
es. Synthesis and simulation results appear as the last column of
Table 2.

Our final design, a novel folded cascode fully differential opamp,
is a new high-performance design recently published in [25] and as
such is a significant test for any synthesis tool because the perfor-
mance equations cannot be looked up in a textbook. Moreover, the
performance of the circuit is difficult to express analytically, and as
many as 6 poles and zeros may non-trivially affect the frequency re-
sponse near the unity gain point. Table 3 is a comparison of a redesign
of this circuit using ASTRX/OBLX with the highly optimized manual

Simple OTA OTA

Two-Stage

Fig. 4: Circuit Schematics

BiCMOS Two-Stage

Novel Folded Cascode

Folded Cascode

a. ↑ means maximize, while ↓ means minimize.

TABLE 3. COMPARISON WITH MANUAL DESIGN FOR
CIRCUIT NOVEL FOLDED CASCODE

Attribute
Manual
Design

Automatic
Re-Synthesis

Spec: OBLX / Sim
Cload (pF) 1 1
Vdd (V) 5 5
dc gain (dB) 71.2 ≥ 71.2: 82 / 82
gain bandwidth (MHz) 47.8 ↑ a: 89 / 89
phase margin (º) 77.4 ≥ 60: 91 / 91
PSRR (Vss) 92.6 ≥ 93: 112 / 112
PSRR (Vdd) 72.3 ≥ 73: 77 / 77
output swing (V) ± 1.4 ± 1.4: ± 1.4 / ± 1.3
slew rate (V/µs) 76.8 ≥ 76: 92 / 87
active area (103µ2) 68.7 ↓ : 56
static power (mW) 9.0 ≤ 25.0: 12 / 12
time/ckt. eval (ms) 83
CPU (min. / run) 116

design for the same 2

µ

 process. Surprisingly, ASTRX/OBLX finds a
design with higher nominal bandwidth at the cost of less area. Al-
though we are pleased with the ability of OBLX to find this corner of
the design space, this does not mean that ASTRX/OBLX out-per-
formed the manual designer. In fact, the manual designer was willing
to trade

nominal

 performance for better estimated yield and perfor-
mance over varying operating conditions. Adding this ability to AS-
TRX/OBLX is one of our highest priorities for future effort.

VII. C

ONCLUSIONS

We have presented ASTRX/OBLX, tools that accurately size high-
performance analog circuits to meet user-supplied specifications but
do not require prohibitive preparatory effort for each new circuit to-
pology. For a suite of benchmark analog circuits that covers nearly all
previously published synthesis results, we have validated our formu-
lation by showing that ASTRX/OBLX requires several orders of mag-
nitude less preparatory effort yet can predicts results more accurately.

Acknowledgment:

 This work was funded by the Semiconductor
Research Corporation and the National Science Foundation.

R

EFERENCES

[1] E.S. Ochotta, R.A. Rutenbar, and L.R. Carley, “Equation-Free Synthesis
of High-Performance Linear Analog Circuits,”

Proc. 1992 Brown/MIT
Conf.

, The MIT Press.
[2] E. Berkcan,

et al.

, “Analog Compilation Based on Successive Decompo-
sitions,”

Proc. of the 25th IEEE DAC

, pp. 369-375, 1988.
[3] M. Degrauwe

et al

., “Towards an analog system design environment,”

IEEE JSSC

, vol. sc-24, no. 3, June 1989.
[4] G. Gielen,

et al.

, “Analog circuit design optimization based on symbolic
simulation and simulated annealing,”

IEEE JSSC

, vol. 25, June 1990.
[5] R. Harjani, R.A. Rutenbar and L.R. Carley, “OASYS: a framework for

analog circuit synthesis,”

IEEE Trans. CAD

, vol. 8, no. 12, Dec. 1989.
[6] J. P. Harvey,

et al.

, “STAIC: An Interactive Framework for Synthesizing
CMOS and BiCMOS Analog Circuits,”

IEEE Trans. CAD

, Nov. 1992.
[7] H.Y. Koh, C.H. Sequin, and P.R. Gray, “OPASYN: a compiler for MOS

operational amplifiers,”

IEEE Trans. CAD

, vol. 9, no. 2, Feb. 1990.
[8] P. C. Maulik, L. R. Carley, and R. A. Rutenbar, “A Mixed-Integer Nonlin-

ear Programming Approach to Analog Circuit Synthesis,”

Proc. DAC

, pp.
693-703, June 1992.

[9] B.J. Sheu,

et al.

, “A Knowledge-Based Approach to Analog IC Design,”

IEEE Trans. Circuits and Systems

, CAS-35(2):256-258, 1988.
[10] F. V. Fernandez,

et al.

, “Accurate Simplification of Large Symbolic For-
mulae,”

Proc. IEEE ICCAD

, pp. 318-321, Nov. 1992.
[11] R.A. Rohrer, “Fully Automatic Network Design by Digital Computer,

Preliminary Considerations,” Proc. IEEE vol. 55, Nov. 1967.
[12] W. Nye,

et al.

, “DELIGHT.SPICE: an optimization-based system for the
design of integrated circuits,”

IEEE Trans. CAD

, vol. 7, April 1988.
[13] R.A. Rohrer,

et al.

, “AWE Inspired,”

Proc. IEEE CICC

, May 1993.
[14] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, “Optimization by simulated

annealing,”

Science

, vol. 220, no. 4598, 13 May 183.
[15] F. Romeo and A. Sangiovanni-Vincintelli, “A Theoretical Framework for

Simulated Annealing”,

Algorithmica (1991), 6: 302-345.

[16] J. M. Cohn,

et al

., “KOAN/ANAGRAM II: New Tools for Device-Level
Analog Placement and Routing,”

IEEE JSSC,

vol. 26, no. 3, March, 1991.
[17] J. Lam and J.M. Delosme, “Performance of a New Annealing Schedule,”

Proc. 25th ACM/IEEE DAC

, pp. 306-311, 1988.
[18] E.S. Ochotta, “Synthesis of High-Performance Analog Cells in ASTRX/

OBLX,” Ph.D thesis, Carnegie Mellon University, 1994.
[19] S. Hustin and A. Sangiovanni-Vincentelli, “TIM, a new standard cell

placement program based on the simulated annealing algorithm”, pre-
sented at IEEE Physical Design Workshop on Placement and Floorplan-
ning, Hilton Head, SC, April 1987.

[20] S.B. Gelfand and S.K. Mitter, “Simulated Annealing Type Algorithms for
Multivariate Optimization,”

Algorithmica (1991), 6: 419-436.

[21] W. Swartz and C. Sechen, “New Algorithms for the Placement and Rout-
ing of Macrocells,”

Proc. IEEE ICCAD

, pp. 336-339, Nov. 1990.
[22] E.S. Ochotta, L.R. Carley, and R.A. Rutenbar, “Analog Circuit Synthesis

for Large, Realistic Cells: Designing a Pipelined A/D Converter with
ASTRX/OBLX,”

Proc. CICC

, May 1994.
[23] Metasoft Corp. HSPICE manual, 1990.
[24] B. Sheu,

et al

., “BSIM: Berkeley short-channel IGFET model for MOS
transistors,” IEEE JSSC, vol. sc-22, no. 4, Aug. 1987.

[25] K. Nakamura and L.R. Carley, “A current-based positive-feedback tech-
nique for efficient cascode bootstrapping,”

Proc. VLSI Circuits Sympo-
sium

, June 1991.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

