
Functional Test Generation for FSMs by Fault Extraction

Bapiraju Vinnakota�and Jason Andrewsy

Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455

Abstract

Recent results indicate that functional test pattern gener-
ation (TPG) techniques may provide better defect coverages
than do traditional logic-level techniques. Functional TPG
algorithms utilize a functional description of a circuit. Multi-
level TPG algorithms attempt to realize the advantages of
both approaches through fault translation. In such systems,
gate-level faults are translated to functional faults and TPG
is performed at the functional level. We develop and present
new techniques for fast e�cient fault translation from the logic
to the functional level. These techniques are implemented in
a multi-level sequential circuit test generation system. Perfor-
mance results for benchmark circuits are presented.

I Introduction

Test sets are usually graded by the stuck-at fault cover-
age they provide. In product manufacture, it is the defect
coverage that is of importance. Recent research indicates
that for sequential circuits a high stuck-at fault coverage
may not guarantee a high defect coverage [1, 2]. A test
set which exercises the functionality of the circuit under
test (CUT), or a mixed approach may provide a higher
defect coverage than a purely stuck-at fault oriented test
set [1]. This may be because functional test sequences
expose defects not modeled by conventional fault mod-
els [1]. Hence, functional TPG is of practical interest.
Functional TPG is based on a high level description of
the CUT [2]-[6]. With any test set, gate-level fault simu-
lation is still required to verify the coverage provided by,
and to reduce the size of, functional test sets. One tech-
nique to both guarantee a high stuck-at coverage and re-
tain the advantages of functional TPG, is test generation
based on fault translation [3, 4]. That is, gate level faults
are translated to functional faults and a functional TPG
algorithm used to generate test sets. We concentrate on
fault translation techniques for sequential circuits. How-
ever, the techniques developed may be extended to other
applications as well.

The main contribution of the paper is the development
of new e�cient techniques to translate stuck-at faults to
functional faults. We also discuss results in the area of
sequential circuit fault simulation.

II Fault translation

The functionality of a sequential circuit is represented
by a �nite state machine (FSM). FSMs are described us-
ing state transition tables (STTs). A transition T is a
4-tuple, < I; Ss; Sd; O >, where, I and O are the input
and output vectors, and Ss and Sd are the source and

�This research was supported in part by the University of Min-

nesota Graduate School
yNow with Tricord Systems Inc, Plymouth, MN

destination states. T is said to be incompletely speci-
�ed if not all the bits in I are speci�ed. T is said to be
partially speci�ed if not all the bits in O and/or Sd are
speci�ed. To translate a stuck-at fault to the functional
level, all the transitions in the STT corrupted by the fault
have to be identi�ed. A stuck-at k fault, k�f0; 1g, f in an
STT with incompletely speci�ed transitions, is translated
as follows [3, 4]. Each transition Ti is logic simulated in
two phases with the faulty circuit. First, the circuit is
simulated to the site of the fault. The logic value at the
site of f may be k, unknown, or k. The second phase
of the simulation is executed only in the third case. Af-
ter the second phase, if Ti is not corrupted by f and all
of output and next state values in the faulty circuit are
fully speci�ed, Ti can be discarded. If, due to the fault f ,
some of the outputs and/or next state values in the faulty
circuit are unknown, then an unspeci�ed input in Ti has
to be speci�ed to set those values. As each input can be
set in two ways, this results in two new transitions to be
simulated. We extend this method to partially speci�ed
transitions.

A Partially Speci�ed Transitions

Consider the two-phase simulation of a partially spec-
i�ed transition Tp with a stuck at k fault f , k�f0; 1g. As
before, after phase 1, f is inserted only if the logic value
at the site of the fault contradicts k. However, the re-
sults of the simulation are interpreted di�erently. After
the second phase, if the logic value at the site of f is: (1)

k, Tp can be discarded, (2) k and f corrupts Tp, then Tp

is marked, (3) k and some outputs of the faulty or fault-
free circuits are unknown or (4) x, and some outputs in
the good circuit are unspeci�ed, then an additional input
will have to be set and the two new transitions derived
from Tp simulated. Note that, often they will have to be
simulated on both the good and the faulty circuits.

The process of simulating all the transitions in the
STT will be referred to as a \pass." Two-phase trans-
lation contains redundant computation in each pass. If
the logic value at the site of the fault does not contradict
the stuck-at value, then all the simulation e�ort in phase
1 is redundant. In phase 2, signal values in the faulty
circuit may become identical to those in the fault-free
circuit only a few gate levels beyond the site of the fault.
All work beyond this point is redundant. To improve
e�ciency redundant computation will have to be elimi-
nated. Further, only two bits are required to adequately
represent the signal values on every line in three-valued
logic simulation. However, integer words are used in the
logic simulator to represent the signal values on every line.
Parallel pattern evaluation, using each bit position in the
data word to simulate a di�erent transition, can signi�-

cantly accelerate fault extraction. Up to W transitions
can be simulated simultaneously, where W is wordlength.
However, after simulation to examine the values on the
next state and output lines, they have to be unpacked.
In large circuits this can be very time consuming.

B Multiple-Valued Logic Simulation

Multiple-valued logic simulation can reduce unpacking
costs. In �ve-valued simulation, the possible logic values
on a wire are f0; 1; D;D;Xg. Readers are referred to [7]
for more details on �ve-valued logic. For each signal line
j, three data words Dj, Uj , and Sj are used to store the
signal values. When using parallel pattern evaluation,
Sj(i) represents the signal value on line j for transition
T (i). Dj(i) = 1 if the signal values in the fault-free and
faulty circuits di�er. That is, if the signal value is D
or D. With parallel pattern evaluation, the word Dj on
line j is non-zero only if the faulty circuit has signal val-
ues di�erent from those in the good circuit for at least
one of the transitions. The value in the faulty circuit is
Dj(i) � Sj(i). Uj(i) = 1 if the value of line j in either
the fault-free or faulty circuit is x. Thus, for a given
transition both the good and faulty circuits can be si-
multaneously simulated. This is bene�cial when the STT
contains partially speci�ed transitions.

If a fault f corrupts a transition T then: (1) A D or

a D is introduced at the site of the fault and (2) The

D or D is propagated to the outputs of the circuit. In
a sequential circuit, the outputs consist of both the pri-
mary outputs of the CUT as well as the next state lines.
To minimize the extra computation associated with us-
ing three data words for each signal value, two separate
gate evaluation routines are used. When none of the in-
puts to a gate have a D or a D, the simpler evaluation
technique corresponding to three-valued logic is used. Ex-
tra computation due to �ve-valued logic is minimized by
limiting the use of the complex evaluation routine to the
signal path from the fault site to the outputs. To exam-
ine if one of the transitions simulated is corrupted, the D
words for all the output and next state lines are ORed
(a bit-parallel operation). The resulting word need be
unpacked to identify the corrupted transitions only if it
is a non-zero integer. Since only a few transitions are
corrupted by a particular fault, this reduces the need to
unpack data words signi�cantly. A similar technique can
be used to examine U data words.

C Early Abort Translation

In the second phase of the simulation process, gates
continue to be evaluated though all activity in the good
and faulty circuits is identical. With �ve-valued simu-
lation, such redundant computation can be eliminated.
Consider the circuit in Figure 1. Let lines d and e
be present state lines. Let the simulated transition be
T =< abc; de >=< 101; 10 > and the target fault be
f = b sa1. Clearly, f is excited by T . The D introduced
is also propagated across gate G1 by the value on line a.
However, the D does not propagate beyond the second
level of gates. Any further gate evaluations are redun-
dant as the transition is guaranteed to be uncorrupted.

In general, this redundant computation can be avoided
by identifying a circuit levelDMAX beyond whichD's and
D's disappear. Given a gate G, let LF (G) be maximum

z

a

b

c

d

e

G1

G2

G3

G4
G5

Figure 1: Monitoring DMAX

value from among the levels of gates on the fanout of
G. For example, the value of LF (G1) in Figure 1 is 2.
Let the gate associated with the fault be Gf . Initially,
at least phase 1 has to be executed. Thus, at the start
of simulation DMAX is set to the level of gate Gf . At
gate Gf , if the fault is not excited, the simulation can be

stopped. Else, its e�ects(D's or D's) will propagate to
all the gates on the fanout of Gf . DMAX is now set to
LF (Gf). In general, if a gate G produces either a D or

a D on its output, and LF (G) is higher than the current
value of DMAX , then DMAX is reset to LF (G). During
simulation, gates are visited in ascending order of their
levels. Once the evaluation proceeds beyond levelDMAX ,
the simulation can be halted as all di�erences between the
faulty and fault-free circuits have disappeared. For the
example circuit, the initial value of DMAX is 1. Once
the faulty gate is evaluated DMAX is set to 2. Since
the fault is not propagated, Since DMAX remains at 2
even after all level 2 gates are evaluated, the level 3 gate
need not be evaluated. Thus, simulation can be halted
almost as soon as di�erences disappear. With parallel
pattern evaluation, the simulation aborts only when the
activities for all transitions become identical to that in
the good circuit.

D Gate-based Translation

Usually, on each pass only one fault is targeted for
translation. If the logic value at the site of the fault does
not contradict the stuck-at value the the �rst phase is
wasted. The property of fault exclusion can be used to
minimize this waste. Consider a three-input AND gate.
Let the inputs be a, b and c and the output be z. The
distinct non-equivalent faults associated with the gate are
a sa1, b sa1, c sa1, z sa0 and z sa1. Consider the faults
a sa1 and b sa1. They can never both corrupt the same
transition. They are exclusive faults. For any completely
speci�ed transition Tc, only one out of the set of faults Se
= fa sa1, b sa1, c sa1, z sa0g can potentially corrupt Tc.
If no fault in Se is excited by Tc, only the fault z sa1 will
corrupt Tc. If the transition is incompletely or partially
speci�ed, the output of the gate may not be speci�ed
and no fault will corrupt it. Sets of exclusive faults for
common gate types are shown in Table I.

This feature can be used as follows. Instead of a single
fault, on each pass all the (remaining undetected) faults

Table I: Exclusive fault sets for logic gates
Type Exclusive fault set
AND All input single s-a-1, Output s-a-0
NAND All input single s-a-1, Output s-a-1
OR All input single s-a-0, Output s-a-1
NOR All input single s-a-0, Output s-a-0

Table II: Inserting exclusive faults
Line T(1) T(2) T(3) T(4)
Ua 1 0 0 0
Sa 0 1 0 0
Ub 0 0 0 0
Sb 1 0 1 1
Uc 0 0 0 0
Sc 1 1 1 0
Dz 0 1 1 0
Uz 1 0 0 0
Sz 0 0 0 0

associated with a single gate Gt are targeted for transla-
tion. For each transition, the values on the inputs to gate
Gt are examined and the appropriate fault from the set Se
of exclusive faults is inserted. If no fault from Se can be
inserted and the gate output is speci�ed, an output fault
of appropriate polarity is inserted. Gate-at-a-pass trans-
lation can also be combined with parallel pattern evalu-
ation. As shown below, faults can be inserted without
unpacking the data words at the fault site. The combina-
tion of parallel-pattern evaluation and gate-based fault
translation leads to a unique feature. Now, the transi-
tions in the set of W patterns may actually be translating
di�erent faults.

E Fault Translation Example

For a word size of 4, let the values on the lines a, b,
c and z, of the AND gate be as shown in Table II. Let
the remaining undetected faults be a sa1, b sa1 and z
sa0. The gate-input vectors which will detect them are
abc = 011, 101 and 111 respectively. The following se-
quence of logical operations identi�es all those transitions
for which the gate-input vector is abc = 011 and also in-
serts the appropriate fault, line a sa1. (Let S be the com-
plement of S. \+" (\.") denotes a logical OR (AND).)

Set Sa=Sa+((Sa).(Sb).(Sc).(Ua + Ub + Uc)). Hence, Sa
= 0100+(1011.1011.1110). (1000 + 0000+ 0000) = 0110.
T (3) is the only transition for which a sa1 should be in-
serted. Correspondingly, only that bit position in Sa has
been
ipped to indicate the insertion. Thus, the data
words at the input to the target gate need not be un-
packed for fault insertion. Using a similar technique, the
fault b sa1 can be inserted for T(2). No fault is inserted
for T(1) since the gate output is unspeci�ed. No fault is
inserted for T(4) since z sa1 has already been detected.
Though only two faults have been inserted for two vec-
tors, all the undetected faults have been simulated explic-
itly or implicitly with transitions T(1) through T(4).

This implies that on each pass of the STT, a gate
rather than a single fault should be targeted for trans-
lation. Gate based translation would work as follows.
The �rst time a gate G in the circuit is targeted for fault
translation, the simulation of transitions starts at the �rst

transition in the STT. Faults are inserted at the faulty
gate using a bit-parallel comparison process. Suppose
that a fault f on gate G corrupts an transition T 0 and
that a test sequence to detect f is successfully generated.
Then, when the translation process resumes, and if there
are still undetected faults on gate G, the simulation can
begin at the successor to T 0. All the transitions up to T 0

have already been simulated, implicitly if not explicitly,
with the remaining undetected faults on G. Hence, un-
like the translation process in [3, 4] a signi�cant amount
of redundant computation is avoided.

III Implementation

The techniques in Section II have been implemented
in multi-level TPG system. The system works as fol-
lows. Given a target gate, a stuck-at fault on the gate
is translated to a transition fault. A functional TPG al-
gorithm, which exercises only the speci�ed functionality
of the CUT is then used. A gate-level fault simulator is
used to verify if other faults are detected by the same
sequence. As do other TPG algorithms [8], we assume a
reset state exists. Since STT descriptions were not avail-
able for benchmar circuits, they were extracted. In many
circuits it was only feasible to partially enumerate tran-
sitions in the STT. A PODEM-based procedure [9] was
used to extract the STT.
A Functional Test Generation

Given a stuck-at fault f , our technique is to identify
a single component of the single or multiple transition
fault created by f . The component fault is targeted for
TPG using the algorithm, based on the faullt-free STT,
in [2]. We have found that this strategy almost always
succeeds. Given a stuck-at fault f , let the transition
< IT ; AT ; DT ; OT > be one corrupted by f . The �rst
step is to transfer the CUT from the reset state to the
source state of the erroneous transition AT . In a prepro-
cessing phase the distances, from the reset state, of all
the (reachable) states in the FSM are computed. The
justi�cation sequence is generated in reverse from state
AT to the reset state. Once the CUT is in state AT , the
test transition is exercised by applying the vector IT . If
the fault corrupts the output produced on the transition,
TPG is complete. If, however, the fault only causes an er-
roneous next state, this error has to be propagated to the
outputs of the circuit. Let the erroneous next state in the
presence of the fault be FT . A state pair di�erentiation
sequence [2] for states DT and FT will propagate the er-
rors in the internal state. As in [2], We use a breadth-�rst
search algorithm to generate such a sequence.

The functional description of the CUT may only enu-
merate transitions for those states reachable from the
reset state. The state FT may not be one such state.
Hence, it is possible that the transitions from the erro-
neous next state FT may not be enumerated in the STT.
Transitions from state FT are enumerated using logic sim-
ulation. This approach minimizes computation (and the
memory used) in two ways: 1) Transitions from states not
reachable from the reset state are enumerated only as re-
quired, 2) The input vectors used for FT are only those
used in transitions de�ned for DT . Parallel pattern eval-
uation was also used to enumerate the transitions from
FT . Note that as in [2], in all cases the fault-free CUT
is used for error propagation. Ideally, one must use the
faulty CUT [3, 4]. Hence, fault simulation is required to

verify if the target fault is detected by the sequence gen-
erated. In our experience we have found, as have others,
this to be nearly always true.

B Fault Simulation

Sequential circuit fault simulation has received signi�-
cant attention. Recent results include the development of
the PROOFS fault simulator [10]. Parallel pattern sin-
gle fault propagation (PPSFP) is a technique used, in
general, to simulate combinational logic circuits [7]. The
fault propagation techniques in PPSFP can also be used
with parallel fault simulation. Consider the simulation of
a vector V and W (single or multiple) faults. The vector
V is logic simulated and the good circuit values are stored
at every wire in the circuit. Let the set of faulty gates be
Nf . Ideally, only those gates whose outputs could poten-
tially be di�erent in the good and one or more of the W
faulty circuits should be evaluated. At each stage of the
simulation, let Gev be the set of gates remaining to be
evaluated in the fault simulation. Initially, Gev consists
of the set Nf of faulty gates. Now, when a gate g�Gev is
scheduled for evaluation, if the output of gate g in any
one of W circuits is di�erent from that in the fault-free
circuit, the gates on the fanout of g are added to the Gev.
Once a gate in Gev is evaluated, it is removed from Gev.
Simulation stops when Gev is empty or when all faults
have been detected. Gev is empty only when the activ-
ity in all faulty circuits becomes identical to that of the
good circuit. A simple event driven logic simulator can be
used to implement propagation-based parallel fault sim-
ulation. In a logic simulator an event is de�ned to be
a logic transition on a wire. In the context of enhanced
parallel fault simulation, an event is said to occur when
the signal values in the good and a faulty circuit di�er.

This technique can be extended to sequential cir-
cuits. Let the sequence of vectors to be simulated be
fV0,V1,: : :,Vkg. Denote the set of gates remaining to be
evaluated at each stage in the simulation of vector Vi by
Gi
ev. First, all the vectors in the sequence are logic sim-

ulated on the good circuit. The node values in the good
circuit for each vector in the sequence are stored. The
storage requirements are minimized by storing the data
in a bit-packed format. Recall that the states of the vari-
ous faulty circuits have also to be tracked. If a reset signal
exists, the initial states of the good and all faulty circuits
are set to the reset state. For V0, the present states in
the good and all faulty circuits are identical. Hence, V0
can be simulated as described above

However, for V1, the values on the present state lines
in a faulty circuit may di�er from those in the fault-free
circuit. Without the loss of any generality, assume that
for one of the W faults, fault f on gate Gf , the signal
value on some present state line ps di�ers from that in the
good circuit. Then, for vector V1, the fault f is actually
treated as the multifault f [ps. In addition to gate Gf ,
all the gates on the fanout of ps will also have to be
placed in G1

ev prior to the start of the simulation. In fact,
G1

ev initially consists of the set of gates Nf [GN , where
GN is the set of the gates on the fanout of all present
state lines which have a di�erent value from that of the
good circuit in any one of the W faulty circuits being
simulated. The simulation for a vector Vi ends when Gi

ev
becomes a null set or all the W faults have been detected.
To further reduce the number of gate evaluations, once a

Table III: Test generation times
circ STT
t func
t total
name Ext tran tpg sim time
s27 0.1 0.05 0.05 0.3 0.5
s298 0.3 4.28 7.44 0.28 12.3
s386 0.06 .65 0.07 0.56 1.38
s510 0.11 0.36 0.15 1.27 1.94
s820 0.17 7.39 0.19 3.59 11.4
s832 0.17 8.47 0.22 3.87 12.8
s1488 0.21 7.63 0.2 10.8 19
s1494 0.21 8.57 0.17 11 20.1

s344 0.4 7.51 0.25 0.19 8.4
s349 0.4 8.08 0.27 0.21 9
s382 58 172 5,230 8.22 5,470
s444 13.8 179 261 3.02 458
s526 17.2 651 2,060 17.4 2,750
s526n 17 637 2,030 16.8 2,700
s953 479 879 2,740 3.08 4,100
s1196 32.4 453 28,400 15.3 28,900
s1238 32.5 460 28,200 119 28,800

fault being simulated is detected, the logic values in the
faulty circuit are forced to be identical to those in the
good circuit. Thus, no gate associated exclusively with a
detected fault can again be added to the set of gates to
be simulated. The simulation for the sequence ends when
all the k vectors have been simulated or when all faults
have been detected.

C Results

The performance of the TPG system was evaluated on
the ISCAS [11] set of benchmarks. Readers are referred
to [11] for benchmark circuit statistics. The results, gen-
erated on a Pentium-based computer, are shown in Ta-
bles III and IV. Statistics have also been gathered for
partially enumerated state transition tables with partially
speci�ed transitions. In such tables, a transition fault is
not guaranteed to be found for every target stuck-at fault.
The translation time includes successful as well as unsuc-
cessful fault translation e�orts. In all cases, time limits
have been set on each phase of the TPG process. Ta-
ble V compares our multi-level TPG technique with the
method in [5] (the symbol \-" indicates the unavailabil-
ity of data). E�ective fault coverages are used when the
complete state table is available. Unlike the techniques
used in [5] fault extraction has the added advantage of
redundancy identi�cation when the complete state table
is available. Experimental results presented in [3, 4, 6]
are limited to the MCNC benchmark set [12]. While a
direct comparison is not possible, it is worth noting that
the circuits in that set are smaller than those listed in
Table III

The substantial bene�ts o�ered by using propagation
techniques in parallel fault simulation are shown in Ta-
ble VI. The percentage decrease in the number of evalua-
tions is higher for larger circuits. The percentage decrease
in the number of evaluations is signi�cantly higher than
the percentage decrease in the simulation time. In our
implementation, the fault simulator visits every gate in
the circuit to check if it is to be evaluated. The number
of gate visits is shown in column 2. When the number
of actual gate evaluations is very low, the cost of visiting

Table IV: Test generation performance
circ num num num
t e� num
name
ts det red cov cov vec
s27 32 32 0 100 100 20
s298 326 284 38 87.12 98.77 238
s386 401 330 71 82.29 100 287
s510 570 570 0 100 100 835
s820 839 746 78 88.92 98.21 788
s832 851 741 93 87.07 98.00 812
s1488 1561 1488 72 95.32 99.94 1497
s1494 1567 1485 81 94.77 99.94 1459

s344 367 338 - 92.1 - 127
s349 373 340 - 91.15 - 127
s382 428 388 - 90.65 - 900
s444 506 506 - 100.00 - 1202
s526 567 455 - 80.25 - 2066
s526n 567 457 - 80.60 - 2066
s953 1079 982 - 91.01 - 449
s1196 1341 721 - 53.77 - 147
s1238 1391 701 - 50.40 - 267

Table V: Fault coverage MLTPG vs. GDSEQ
Circuit MLTPG GDSEQ
s298 98.77 86.0
s386 100 81.7
s510 100 100
s820 98.81 94.0
s832 98.00 92.10
s1488 99.94 94.2
s1494 99.94 94.5

s344 92.1 90.6
s349 91.15 91.7
s382 90.65 87.2
s444 100 75.5
s526 80.25 67.6
s526n 80.60 65.6
s953 91.01 -
s1196 53.77 -
s1238 50.40 -

Table VI: Performance of enhanced parallel simulation
Gate Par. Enh. % Reduction

Circuit Visits Eval Eval Eval Time

s298 8.3e4 6.2e4 2.0e4 67 47
s386 2.1e5 1.5e5 3.8e4 75 48
s820 1.8e6 1.5e6 2.0e5 87 62
s832 2.0e6 1.7e6 2.2e5 87 64
s1488 8.2e6 6.3e6 7.7e5 88 68
s1494 8.3e7 6.4e6 7.8e5 88 69
s344 6.1e4 4.1e4 1.7e3 58 38
s349 6.6e4 4.5e4 1.8e3 60 39

every gate in the circuit on every vector dominates fault
simulation time. Using a levelized linked list to hold the
gates in Gev can address this problem.

IV Conclusion

We have presented new techniques for the fast transla-
tion of gate level faults to functional faults. These meth-
ods use parallel pattern evaluation, multiple valued logic
simulation, early abort detection and novel gate-based
fault translation techniques. These techniques were in-
corporated into a multi-level TPG system for sequential
circuits. A very signi�cant decrease in the time needed to
translate faults was obtained. The fast translation tech-
niques enabled the system to generate functional test sets
for circuits much larger than those addressed by previous
functional algorithms. We also presented new fault sim-
ulation techniques for sequential circuits.

References

[1] P.C. Maxwell and R.C. Aitken, \All fault coverages are
not created equal," IEEE Design and Test of Computers,
pp. 42-51, March 1993.

[2] K-T. Cheng and J.Y. Jou, \A Functional fault model for
sequential machines," IEEE T-CAD, pp. 1065-1073, Sep.
1992.

[3] I. Pomeranz and S.M. Reddy, \On achieving complete
fault coverage for sequential machines using the transi-
tion fault model," in Proc. DAC, June 1991, pp. 341-346.

[4] I. Pomeranz and S.M. Reddy, \Test generation for syn-
chronous sequential circuits based on fault extraction,"
in Proc. ICCAD, pp. 450-453, 1991.

[5] M.K. Srinivas, J. Jacob, and V.D. Agrawal, \Finite
state machine testing based on growth and disappear-
ance faults," in Proc. FTCS, 1992, pp. 238-245.

[6] G. Buonanno, F. Fummi, and D. Sciuto, \Functional
fault models and gate level coverage for sequential ar-
chitectures," in Proc. ICCD., pp. 572-575, Oct. 1993.

[7] M. Abromovici, M.A. Breuer, and A.D. Friedman, Digi-
tal Systems Testing and Testable Design, Rockville, MD,
Computer Science Press, 1990.

[8] H-K.T. Ma, S. Devadas, A.R. Newton and A.S. Vincen-
telli, \Test generation for sequential circuits," IEEE T-

CAD, pp. 1081-1093, Oct. 1988.

[9] P. Goel, \An implicit enumeration algorithm to gener-
ate tests for combinational logic circuits," IEEE Trans.

Comput., pp. 215-222, Mar. 1981.

[10] T.M. Nierman, W.T. Cheng and J.H. Patel, \PROOFS:
A fast memory e�cient sequential circuit fault simula-
tor," IEEE T-CAD, pp. 198-207, Feb. 1992.

[11] F. Brglez, D. Bryan, and K. Kozminski, \Combinational
pro�les of sequential benchmark circuits," in Proc. IS-

CAS., May 1989.

[12] R. Lisanke, \Finite-state machine benchmark set," Pre-
liminary benchmark collection, Sept. 1987.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

