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Abstract-In this paper, we consider the problem
of calculating the signal and transition probabil-
ities of the internal nodes of the combinational
logic part of a finite state machine (FSM). Given
the state transition graph (STG) of the FSM, we
first calculate the state probabilities by iteratively
solving the Chapman-Kolmogorov equations. Us-
ing these probabilities, we then calculate the exact
signal and transition probabilities by an implicit
state enumeration procedure. For large sequen-
tial machines where the STG cannot be explicitly
built, we unroll the next state logic k& times and
estimate the signal probability of the state bits
using an OBDD-based approach. The basic com-
putation step consists of solving a system of non-
linear equations. We then use these estimates to
approximately calculate signal and transition prob-
abilities of the internal nodes. Our experimental
results indicate that the average errors of transi-
tion probabilities and power estimation(compared
to the exact method) are only 5% and 0.6% respec-
tively when k = 3. This is an order of magnitude
improvement in computation accuracy compared
to the existing approaches.

1 INTRODUCTION

One of the primary objectives in the design of portable sys-
tems - which are becoming widespread - is power reduction
needed to minimize the size and weight allocated to bat-
teries. Another driver of the progress in the area of low
power design is the increasing need to reduce active and/or
standby power consumption in all electronic systems. Es-
sential elements of a low power design environment include
means of analyzing the dissipation of a design and mecha-
nisms for minimizing the power consumption when needed.
This paper is concerned with the power estimation in finite
state machines. Various approaches for power minimiza-
tion at the sequential logic synthesis level [9] [6] can benefit
from the techniques presented here.

In CMOS circuits, power is consumed during charging
and discharging of the load capacitances. In order to es-
timate the power consumption, we have to calculate the
signal and transition probabilities of the internal nodes of
the circuit. These probabilities depend on the input pat-
terns, the delay model and the circuit structure.
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Several signal and transition probabilities estimation al-
gorithms have been developed for combinational circuit.
Burch et al. [2] introduced the concept of a probability
waveform. Given such waveforms at the primary inputs
and with some convenient partitioning of the circuit, they
examined every sub-circuit and derive corresponding wave-
forms at the internal circuit nodes. Najm [7] described an
efficient technique called probabilistic simulation to prop-
agate the transition densities at the circuit primary inputs
into the circuit to give transition densities at internal and
output nodes. Both methods assume inputs to sub-circuits
are independent and thus did not account for the reconver-
gent fanout and input correlations. Stamoulis et al. [10]
improved the probabilistic simulation approach by calcu-
lating the statistics of the waveforms and delays more ac-
curately and by considering signal correlation. Ghosh et
al. [4] proposed symbolic simulation in order to produce
a set of Boolean functions which represent conditions for
switching at each gate in the circuit. Tsui et al. [11] de-
scribed a tagged probabilistic simulation approach which
employs a real delay model to account for glitchings and
also handles reconvergent fanout. This approach requires
much less memory and runs much faster than symbolic
simulation, yet achieves a very high accuracy.

The above methods assume the primary inputs to the
circuit are both spatially and temporally independent, i.e.
the signal value z; of a primary input ¢ is independent of
any other primary input, and z; at time instance ¢ is inde-
pendent of z; at time instance t+1. While this assumption
holds for most combinational circuits, it does not hold for
finite state machines where the present state bit inputs are
spatially correlated by the state encoding and temporally
correlated by the state transition behavior. Figure 1 shows
the STG and the gate implementation of a 4-state finite
state machine. If the state bits are assumed spatially in-
dependent, the signal probability of n (P(n)) is equal to
0.5*0.5*0.5 = 0.125. However, n will evaluate to 1 only if
s182 = 10 and input 1 is 0, hence P(n) = state probability
of state-3 *0.5 = 0.0721. Furthermore, if the state input
bits are assumed temporally independent, the transition
probability of n (Pi_so(n)) is equal to 0.125%(1-0.125) =
0.1093. However, when the present state is state-3 and the
input i1s 0, the next state is state-4 which always forces
n to 0. Therefore, the actual transition probability of n
(P1—>0(n)) is equal to 0.0721.

Let fi(n) denotes the Boolean value of n at time ¢. The
output of n will switch exactly if

9(n) = fo(n) @ fi(n) (1)



Figure 2: Capture temporal correlation of s
by next state logic.

bilities by simple substitution. This procedure i
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The rest of this paper is organized as follows. |
2 we describe an iterative procedure for calcul:
exact state probabilities. Exact and approximate
for calculating the signal and transition probab
internal nodes of the combinational parts of the |
described in Sections 3 and 4, respectively. Exp
results and conclusions are presented in Sections

2 THE EXACT METHOD

In this section, we show how to calculate the sta
bilities given the STG and then present an exac
for calculating the signal and transition probabili
ternal nodes of a FSM given its logic implementat
the state probabilities.

2.1 State Probability Calculation

A state transition graph is denoted by G(V, E) w
tex S; € V represents a state of the FSM and
ei,; € L represents a transition from S; to 5.
denote the state probability, that is, the probabil
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where M is the number of states.
The state probabilities can then be obtained by solving
the Chapman-Kolmogorov equations [8] as follows:

Ps, = Z]GIN-STATE(@') piiPs; 1=1,2,..., M =1
1= Z] Ps, (3)

where IN_STATE(i) is the set of fanin states of 7 in the
STG.

Alternatively, we could solve for S;’s as follows. Let
Ps,(n) be the probability of S; after n cycles. For a
discrete-state discrete-transition Markov process, Pg,(n)
and Ps,;(n + 1) are related by:

Ps,(n+1) = >

JEIN_STATE(:)
1=1,2,..., M -1

> Ps(n+1). (4)

psiPs;(n)

_.
I

Given a set of initial condition Pg, (0), Ps,(0), ..., Ps,,(0),
these equations can be solved iteratively for n = 0,1,2,...
to determine the state probabilities as a function of n.
This process i1s continued until the state probabilities
converge, that is, the difference between Pg,(n + 1) and
Ps, (n) for all states is within a user defined tolerance value.

2.2 Signal Probability Calculation

Let S = S1,52,...,5u be the set of states of the FSM,
$=351,82,...,85 ( N > [log2M1]) be the set of state bits,
PI = 11,12,...,tx be the set of primary inputs and n be
an internal node in the combinational circuit of the FSM.

Suppose f 1s a disjoint cover of the function computed

by n, i.e.,
f= > Com (5)

meEDisjoint_Cover(n)

where Cy, is a cube of the disjoint cover. C, is a function
of s and PI. We partition the inputs to C), into two
groups: the symbolic state support 5SS, which includes
all states .S; that have set the appropriate state bits, and
the primary input support [, which includes the P inputs
of C,,. Hence C,,, = SSilm.

Given a disjoint cover of node n, the signal probability
of n is given by:

Py = )]
meEDisjoint_Cover(n)

Since the primary inputs are independent of the state that
the machine is currently in and states of the FSM are dis-
tinct, we can write

P(Cr)

P(1,,)P(SSm)
= P(ln) Y Ps,. (7)

5,€55m,

From equations (6) and (7), we have:

P(n) = > P(Inm) Y Ps. (3

meEDisjoint_Cover(n) S;€SSm

Let SS(n) denote the union of the symbolic state supports

of all the cubes in the disjoint cover of n, equation (8) can

be written as:
P(n)= 3 P(S)P(AUX I(n|Si) (9)

S;€SS(n)

where AU X _I(n|S;) is a Boolean function (of the primary
inputs) which forces n to 1 given that the present state of
the machine is S;. Equation (9) requires explicit enumer-
ation of the states in SS(n) and is very costly. In [12], a
method which employs an implicit enumeration of states

using OBDDs is described.
2.3 Transition Probability Calculation

The transition probability calculation can be reduced to
a signal probability calculation based on equation (1) as
shown in Figure 2. gis a function of Ply,PI; and PSy. As
these input vectors are assumed to be uncorrelated, equa-
tion (8) can be used to obtain the exact signal probability
of g, thus, the exact transition probability of n.

3 THE APPROXIMATE METHOD

As the number of states is exponential in the number of
flip flops, for sequential machines having large number of
flip flops, we cannot explicitly build the STG, and thus the
exact method cannot be applied. To calculate the signal
and transition probabilities of the internal nodes, we have
to use the signal and transition probabilities of the state
bits. The state bits are correlated and hence their signal
probabilities are not 0.5 (which is the probability of a ran-
dom input). In the following, we describe an approximate
method for calculating the signal and transition probabil-
ities using finite network unrolling followed by iterative
solution of a system of non-linear equations.

3.1  Signal Probability Calculation

Given the state probabilities and the state encoding, the
signal probability of state bit s; is given by:

P(s)= > Ps, (10)

Sm€ES_EN(3)

where S_EN (i) is the set of states whose encodings have
the 1t" bit equal to 1.

The state bit signal probabilities can also be derived
without explicitly calculating the state probabilities which
is very costly for sequential machines with a large number
of flip flops as described next.

The transition behavior of the STG is implicitly cap-
tured by the next state logic of the FSM. Assuming the
present state bits are uncorrelated and their signal proba-
bilities are given, the characteristics (i.e. signal probabili-
ties and correlations) of the next state bits can be obtained
from the Ordered Binary Decision Diagrams (0BDDs) [1]
representation for the next state logic. If we unroll and
cascade the next state logic & times to form a k-unrolled
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in Figure 3, we can then calculate the
s of the state bits at the k" cycle given
abilities at the 0" cycle.

ven that the state bits (s;) at time in-
related and have signal probability of 0.5,
[ probabilities obtained from the OBDD
etwork, are identical to those calculated
0) where the state probabilities are ob-
equation (4) k times, with initial con-

a specific state encoding, a set of state
to a unique set of state bit signal prob-
lations. Since the initial conditions for
equivalent (uncorrelated state bits with
s equal to 0.5 imply that each state has
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OBDDs of the k-unrolled network maps
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methods are the same. =
bit signal probabilities can be obtained
xt state logic oo times (Figure 3a). This
tical. W e thus approximate the signal
rolling the next state logic k times where
parameter. We then feed back the sig-
ues of the state bits at the output to the
put of the network and iterate until the
s converge (Figure 3b). We denote this
nal probability feedback method. Indeed,
next state logic as many times as nec-
onvergence, but after every k stages we
the signal probability values and disre-
ns of the state bits.

at1onie kno wn as the Picard-Peano 1t-

NEF = F.(PLPY,PY,.

where A and ﬁw denote the '™ next

output and the 7' present state bit at t!
unrolled network, respectively and F;’s ¢
functions. Alternatively,

ko .0 0
ns; — .\.HﬁﬁfﬁmfﬁMMa..;

k _ . 0 0
ns, — .\.S.AﬁfﬁmfﬁMMa.

where ns® and ﬁmw denote the state bit p:

it? next state bit at the output and the
bit at the input of the k-unrolled netw
and fi’s are nonlinear algebraic function
to find the steady state bit probabilities,

ps1 = .\.HﬁﬁﬁﬁmfﬁMMa..;
psn = fu(pi,ps1,psa,.
which is a system of non-linear equation:

Theorem 3.3 f; is contractive on the a

Proof As fi =ps; P(Fi(P; =1))+(1

0), we can write

af;
Ox;

If N; # P, for every i, then this part
strictly less than one. »

From theorems 3.2 and 3.3, we can see
signal probability calculation for the k-ur
guaranteed to converge.

Note that the signal probabilities at t
lines of the next state logic in Figure 2
result of signal probability calculation for
work without any signal probability feedb
to this method as 1-unrolled, 0-feedback
Figure 4a shows the method used to calcu
bility of the internal nodes of the FSM usi
network with signal probability feedback

3.2 Transition Probability C

We enhance the transition probability c
dure of Figure 2 by using the concept o
state logic network. Instead of connectir



Figure 4: Calculation of signal and transition proba-
bilities using k-unrolled network.

are then exclusive-ored together (Figure 4b) '. By doing
80, accurate state bit signal probabilities are used and the
spatialand temporal correlations bet ween PSp; and P.S:
are captured.

4 EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the signal and transi-
tion probability calculation procedures, we carried out sev-
eral experiments using subsets of the MCNC-91 and 1SCAS-
89 sequential benchmark sets. The circuits were gener-
ated using the sis mapper and an industrial gate library.
A zero delay model was assumed. All experiments were
carriedout on a Sparc 2 w orkstation with 64MB mem-
ory. Power consumption measurement was based on the
following model:

2
<& d

\Uze =0.5 % QNOQ& X
¥ Mjnw&m

x E(transitions). (14)

Table 1 shows the accuracy of state bit signal probability
calculationb y unrolling the next state logic. Results are
comparedto the exact signal probabilit y generated from
equation (10) where the state probabilities were obtained
by solving the Chapman-Kolmogorov equations. The val-
ues generated from the 7-unrolled network without signal
probability feedback (i.e. 1u_0f) are also presented. For
each FSM, the error is calculated by summing the abso-
ute value of % error on all state bit signal probabilities
dividedb y the number of state bits. Note that the %
error values are obtained by comparing the larger of the
estimated zero and one signal probabilities with the exact
probability. As expected, error decreases when k increases

3 3 .7 » 17 - N

ure 2 are also presented. The error is calculated by sum
ming the absolute value of % error in transition probability
for each node divided by the total number of nodes in the
network. It is seen that if inaccurate state bit signal prob-
abilities are used and the present state bit correlations are
not taken into account, the transition probability calcula-
tion can be very inaccurate. The network unrolling method
produces more accurate results as k increases. From the
experimental results, when k is equal to 3 the average er-
ror is only 5 % which confirms that a small value of k is
sufficient to produce accurate results.

Table 3 contains run times for various approaches re-
ported in Table 2. As expected, the computation time
increases with k. To obtain the effect of transition proba-
bilities on the power estimation, we also compare the power
consumption values estimated by different methods. Ta-
ble 4 summarizes these results. The % deviation from the
exact power consumption falls to 0.6% for k = 3.

Finally, we applied our method to larger sequential ma-
chines from the 1scAs benchmark set. Power consumption
estimates for these circuits using different estimation meth-
ods are summarized in Table 5.

5 CONCLUDING REMARKS

We have presented exact algorithms for estimating the sig-
nal and transition probabilities for FSM based on state
probabilities. We introduced the notion of k-unrolled net-
work to correctly estimate the signal probabilities of the
state bits of a FSM given its logic implementation. An
approximate algorithm for obtaining the transition proba-
bilities based on the notion of k-unrolled network was also
presented for large sequential machines of which STG can-
not be explicitly built.

The signal and transition probabilities of a FSM de-
pends on the state probabilities and the state encoding. It
is still an open problem to find a state encoding such that
the total transition probabilities of the network is mini-
mized. Further research needs to be done to address this
issue.
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