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Abstract-In this paper, we consider the problem
of calculating the signal and transition probabil-
ities of the internal nodes of the combinational
logic part of a �nite state machine (FSM). Given
the state transition graph (STG) of the FSM, we
�rst calculate the state probabilities by iteratively
solving the Chapman-Kolmogorov equations. Us-
ing these probabilities, we then calculate the exact
signal and transition probabilities by an implicit
state enumeration procedure. For large sequen-
tial machines where the STG cannot be explicitly
built, we unroll the next state logic k times and
estimate the signal probability of the state bits
using an OBDD-based approach. The basic com-
putation step consists of solving a system of non-
linear equations. We then use these estimates to
approximately calculate signal and transition prob-
abilities of the internal nodes. Our experimental
results indicate that the average errors of transi-
tion probabilities and power estimation(compared
to the exact method) are only 5% and 0.6% respec-
tively when k = 3. This is an order of magnitude
improvement in computation accuracy compared
to the existing approaches.

1 introduction

One of the primary objectives in the design of portable sys-
tems - which are becoming widespread - is power reduction
needed to minimize the size and weight allocated to bat-
teries. Another driver of the progress in the area of low
power design is the increasing need to reduce active and/or
standby power consumption in all electronic systems. Es-
sential elements of a low power design environment include
means of analyzing the dissipation of a design and mecha-
nisms for minimizing the power consumption when needed.
This paper is concerned with the power estimation in �nite
state machines. Various approaches for power minimiza-
tion at the sequential logic synthesis level [9] [6] can bene�t
from the techniques presented here.
In CMOS circuits, power is consumed during charging

and discharging of the load capacitances. In order to es-
timate the power consumption, we have to calculate the
signal and transition probabilities of the internal nodes of
the circuit. These probabilities depend on the input pat-
terns, the delay model and the circuit structure.

�This research was supported in part by the NSF's Re-
search Initiation Award under contract No. MIP92/11668 and
by APRA under contract No. J-FBI-91-194.

Several signal and transition probabilities estimation al-
gorithms have been developed for combinational circuit.
Burch et al. [2] introduced the concept of a probability
waveform. Given such waveforms at the primary inputs
and with some convenient partitioning of the circuit, they
examined every sub-circuit and derive corresponding wave-
forms at the internal circuit nodes. Najm [7] described an
e�cient technique called probabilistic simulation to prop-
agate the transition densities at the circuit primary inputs
into the circuit to give transition densities at internal and
output nodes. Both methods assume inputs to sub-circuits
are independent and thus did not account for the reconver-
gent fanout and input correlations. Stamoulis et al. [10]
improved the probabilistic simulation approach by calcu-
lating the statistics of the waveforms and delays more ac-
curately and by considering signal correlation. Ghosh et
al. [4] proposed symbolic simulation in order to produce
a set of Boolean functions which represent conditions for
switching at each gate in the circuit. Tsui et al. [11] de-
scribed a tagged probabilistic simulation approach which
employs a real delay model to account for glitchings and
also handles reconvergent fanout. This approach requires
much less memory and runs much faster than symbolic
simulation, yet achieves a very high accuracy.
The above methods assume the primary inputs to the

circuit are both spatially and temporally independent, i.e.
the signal value xi of a primary input i is independent of
any other primary input, and xi at time instance t is inde-
pendent of xi at time instance t+1. While this assumption
holds for most combinational circuits, it does not hold for
�nite state machines where the present state bit inputs are
spatially correlated by the state encoding and temporally
correlated by the state transition behavior. Figure 1 shows
the STG and the gate implementation of a 4-state �nite
state machine. If the state bits are assumed spatially in-
dependent, the signal probability of n (P (n)) is equal to
0.5*0.5*0.5 = 0.125. However, n will evaluate to 1 only if
s1s2 = 10 and input i is 0, hence P (n) = state probability
of state-3 *0.5 = 0.0721. Furthermore, if the state input
bits are assumed temporally independent, the transition
probability of n (P1�>0(n)) is equal to 0.125*(1-0.125) =
0.1093. However, when the present state is state-3 and the
input is 0, the next state is state-4 which always forces
n to 0. Therefore, the actual transition probability of n
(P1�>0(n)) is equal to 0.0721.
Let ft(n) denotes the Boolean value of n at time t. The

output of n will switch exactly if

g(n) = f0(n)� ft(n) (1)
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X

j

PSj = 1

where M is the number of states.
The state probabilities can then be obtained by solving

the Chapman-Kolmogorov equations [8] as follows:

PSi =
P

j2IN STATE(i)
pjiPSj i = 1; 2; : : : ;M � 1

1 =
P

j
PSj (3)

where IN STATE(i) is the set of fanin states of i in the
STG.
Alternatively, we could solve for Si's as follows. Let

PSi(n) be the probability of Si after n cycles. For a
discrete-state discrete-transition Markov process, PSi(n)
and PSi(n + 1) are related by:

PSi(n + 1) =
X

j2IN STATE(i)

pjiPSj (n)

i = 1; 2; : : : ;M � 1

1 =
X

j

PSj (n+ 1): (4)

Given a set of initial condition PS1(0); PS2(0); : : : ; PSM (0),
these equations can be solved iteratively for n = 0; 1; 2; : : :
to determine the state probabilities as a function of n.
This process is continued until the state probabilities

converge, that is, the di�erence between PSi(n + 1) and
PSi(n) for all states is within a user de�ned tolerance value.

2.2 Signal Probability Calculation

Let S = S1; S2; : : : ; SM be the set of states of the FSM,
s = s1; s2; : : : ; sN ( N � dlog2Me) be the set of state bits,
PI = i1; i2; : : : ; iK be the set of primary inputs and n be
an internal node in the combinational circuit of the FSM.
Suppose f is a disjoint cover of the function computed

by n, i.e.,

f =
X

m2Disjoint Cover(n)

Cm (5)

where Cm is a cube of the disjoint cover. Cm is a function
of s and PI. We partition the inputs to Cm into two
groups: the symbolic state support SSm which includes
all states Si that have set the appropriate state bits, and
the primary input support Im which includes the PI inputs
of Cm. Hence Cm = SSmIm.
Given a disjoint cover of node n, the signal probability

of n is given by:

P (n) =
X

m2Disjoint Cover(n)

P (Cm): (6)

Since the primary inputs are independent of the state that
the machine is currently in and states of the FSM are dis-
tinct, we can write

P (Cm) = P (Im)P (SSm)

= P (Im)
X

Si2SSm

PSi : (7)

From equations (6) and (7), we have:

P (n) =
X

m2Disjoint Cover(n)

P (Im)
X

Si2SSm

PSi : (8)

Let SS(n) denote the union of the symbolic state supports
of all the cubes in the disjoint cover of n, equation (8) can
be written as:

P (n) =
X

Si2SS(n)

P (Si)P (AUX I(njSi)) (9)

where AUX I(njSi) is a Boolean function (of the primary
inputs) which forces n to 1 given that the present state of
the machine is Si. Equation (9) requires explicit enumer-
ation of the states in SS(n) and is very costly. In [12], a
method which employs an implicit enumeration of states
using OBDDs is described.

2.3 Transition Probability Calculation

The transition probability calculation can be reduced to
a signal probability calculation based on equation (1) as
shown in Figure 2. g is a function of PI0,PIt and PS0. As
these input vectors are assumed to be uncorrelated, equa-
tion (8) can be used to obtain the exact signal probability
of g, thus, the exact transition probability of n.

3 the approximate method

As the number of states is exponential in the number of

ip 
ops, for sequential machines having large number of

ip 
ops, we cannot explicitly build the STG, and thus the
exact method cannot be applied. To calculate the signal
and transition probabilities of the internal nodes, we have
to use the signal and transition probabilities of the state
bits. The state bits are correlated and hence their signal
probabilities are not 0.5 (which is the probability of a ran-
dom input). In the following, we describe an approximate
method for calculating the signal and transition probabil-
ities using �nite network unrolling followed by iterative
solution of a system of non-linear equations.

3.1 Signal Probability Calculation

Given the state probabilities and the state encoding, the
signal probability of state bit si is given by:

P (si) =
X

Sm2S EN(i)

PSm (10)

where S EN(i) is the set of states whose encodings have
the ith bit equal to 1.
The state bit signal probabilities can also be derived

without explicitly calculating the state probabilities which
is very costly for sequential machines with a large number
of 
ip 
ops as described next.
The transition behavior of the STG is implicitly cap-

tured by the next state logic of the FSM. Assuming the
present state bits are uncorrelated and their signal proba-
bilities are given, the characteristics (i.e. signal probabili-
ties and correlations) of the next state bits can be obtained
from the Ordered Binary Decision Diagrams (obdds) [1]
representation for the next state logic. If we unroll and
cascade the next state logic k times to form a k-unrolled
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circuit Method k-unrolled with k-feedback
1u 0f k=1 k=2 k=3

bbsse 20.81 4.93 1.11 0.24
beecount 6.01 2.23 0.93 0.28
cse 3.03 0.84 0.20 0.04
dk14 2.19 0.22 0.16 0.03
dk15 3.97 2.38 0.15 0.02
dk16 4.20 2.07 0.80 0.73
dk17 5.31 3.00 0.25 0.26
don�le 10.28 8.44 2.83 1.42
ex2 6.92 3.58 2.80 1.00
ex5 8.81 1.31 0.55 0.27
ex6 12.12 8.55 1.60 0.56
keyb 12.89 1.46 0.36 0.05
opus 20.13 15.35 5.05 3.20
planet 17.35 14.80 18.13 14.89
s1488 10.54 8.15 2.69 1.01
s386 24.20 1.81 0.44 0.04
s510 11.37 6.87 5.32 4.81
s820 13.78 2.07 0.89 0.47
scf 19.00 13.70 3.12 1.99
styr 18.70 4.16 1.32 0.72
tbk 5.17 3.87 1.45 0.93
average
error (%) 11.28 5.23 2.39 1.57

Table 1: State bit signal probabilities.

circuit Exact Method k-unrolled with k-feedback
trans. 1u 0f k=1 k=2 k=3
prob.

bbsse 20.67 71.23 15.18 5.27 1.13
beecount 12.04 29.25 7.39 2.42 0.64
cse 16.09 98.55 8.10 2.31 0.53
dk14 23.20 19.88 2.88 0.30 0.05
dk15 19.61 11.47 5.99 1.04 0.04
dk16 38.43 23.18 9.52 3.79 1.45
dk17 16.42 19.66 8.28 2.24 1.16
don�le 23.56 18.63 8.83 5.10 2.90
ex2 29.65 41.74 34.88 11.43 4.96
ex5 13.61 51.20 9.17 3.97 1.25
ex6 21.66 25.64 11.33 2.99 1.59
keyb 26.53 50.56 6.11 1.55 0.43
opus 16.59 42.79 40.23 24.11 5.11
planet 69.98 42.93 40.76 28.10 26.80
s1488 69.58 241.14 119.05 34.79 14.60
s386 25.57 377.13 12.20 5.80 1.33
s510 42.82 39.31 14.56 1.48 9.04
s820 43.55 201.45 14.22 7.80 3.88
scf 59.22 102.57 79.31 38.51 18.64
styr 35.47 166.25 43.16 14.83 7.62
tbk 79.46 39.86 17.98 3.74 2.58
average
error (%) 81.64 24.24 9.60 5.03

Table 2: Transition probabilities.

circuit CPU time in seconds
Exact Method k-unrolled with k-feedback

Method 1u 0f k=1 k=2 k=3
bbsse 7.39 3.76 3.28 5.16 8.86
beecount 2.40 1.43 1.05 1.45 2.08
cse 11.86 6.29 5.31 10.71 19.80
dk14 6.30 3.62 2.71 4.98 8.13
dk15 3.86 2.31 1.63 2.36 3.20
dk16 18.20 9.73 8.43 17.68 30.65
dk17 3.60 2.00 1.55 2.24 3.28
don�le 26.30 6.83 5.40 11.20 21.13
ex2 12.41 4.75 4.22 8.00 15.40
ex5 3.28 1.82 1.45 2.11 3.18
ex6 5.46 3.12 2.51 4.30 6.82
keyb 34.48 11.34 8.98 20.24 36.04
opus 6.48 2.48 2.26 3.90 5.96
planet 144.54 18.00 15.51 22.68 31.80
s1488 89.89 32.54 35.23 66.44 109.48
s386 26.30 5.80 5.16 10.00 16.23
s510 127.94 9.08 7.95 12.55 18.33
s820 33.51 22.15 16.06 42.50 84.62
scf 294.50 31.30 26.48 40.09 56.40
styr 38.78 23.03 19.19 43.23 84.60
tbk 127.14 74.56 60.34 209.60 905.00

Table 3: CPU times for transition probability calcu-
lation.

circuit Power consumption
Exact Method k-unrolled with k-feedback

Method 1u 0f k=1 k=2 k=3
bbsse 5072 6326 5035 5037 5061
beecount 2204 2422 2179 2172 2197
cse 4144 5842 4141 4144 4147
dk14 4913 5186 4939 4916 4913
dk15 3755 3793 3751 3748 3755
dk16 11947 12487 11928 11962 11972
dk17 3934 4151 4008 3945 3936
don�le 7787 7872 7773 7806 7812
ex2 8695 7963 7816 8377 8539
ex5 3051 3500 3037 3012 3001
ex6 4518 4866 4655 4567 4529
keyb 7712 9176 7638 7704 7728
opus 4080 4277 4238 4049 4095
planet 19497 19905 19778 19483 19489
s1488 22250 52481 31707 26735 23679
s386 7058 14749 6763 7037 7076
s510 8709 10816 9261) 8785 8745
s820 18078 31557 18001 17878 18116
scf 14309 18323 15434 14351 14342
styr 13020 16106 13367 12953 13045
tbk 74528 87964 73328 73337 74505
average
error (%) 26.83 4.30 1.51 0.63

Table 4: Power estimates.

circuit Power consumption
No. of Method k-unrolled network method
latches 1u 0f k=1 k=2 k=3

s344 15 7256 5791 5750 5707
s382 21 10099 3980 3992 3976
s400 21 10640 4063 4075 4060
s444 21 10174 3890 3897 3881
s526 21 14202 5778 5798 5762
s641 19 9500 8149 8111 8098
s713 19 9848 8566 8539 8522
s838 32 5934 5934 5934 5934
s953 29 16440 12381 11856 12367
s1196 18 28935 27889 27890 27890
s1238 18 31946 30911 30912 30912

Table 5: Power estimates for machines with large num-
ber of 
ip 
ops (the estimation accuracy increases as
k increases).
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