
Abstract - We propose a new algorithm for the performance-
driven interconnect design problem, based on alphabetic trees.
The interconnect topology is determined in a global manner
and does not greedily add edges as in conventional approaches.
The algorithm can handle cases where the sink capacitances are
different. Good results are obtained while running two to sixty
times faster than three existing algorithms on practical
instances.

I. Introduction *

Interconnect delay has become a significant fraction of
the clock cycle time in high-performance digital systems due
to the scaling down of feature sizes in integrated circuits and
increasing on-chip interconnect line lengths [1]. This has
made performance-driven layout an important issue in the
design of these systems. Motivated by this, timing-driven
placement algorithms have been proposed in [2] and [3].
These methods try to place cells on critical paths close to
each other. While timing-driven placement alleviates some
of the problems, it has to be complemented by good perfor-
mance-driven routing to achieve optimized layouts.

Early work on performance-driven routing abstracted
the problem into a purely geometric form. The interconnect
was treated as a lumped capacitance so that the objective
was to minimize the total wire length, i.e., the problem was
reduced to one of finding the minimum Steiner tree under
the Manhattan distance metric. Two assumptions were
implicit in this formulation - the interconnect line lengths
were much less than the wavelengths of the signals being
propagated so that inductance effects were absent and inter-
connect resistance was negligible in comparison with the
driver resistance, making a lumped capacitance model ade-
quate. The decreasing driver resistance to interconnect resis-
tance ratio as technology scales down has made this
formulation less appropriate. The larger frequencies at
which circuits work have also meant that transmission line
effects have to be taken into account for smaller interconnect
lengths. Besides, sink capacitances can vary considerably
due to transistor sizing optimizations. The topology that
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yields the smallest delays is affected by the load capaci-
tances, so that any geometric abstraction completely misses
this dimension of the problem.

Good models for interconnect delay calculation are nec-
essary if an interconnect design algorithm is to obtain satis-
factory results. The Elmore delay model [4] has come in
handy for this task. It has been shown to be a high-fidelity
estimator of the delay of routing trees [5],[6]. A careful eval-
uation of the Elmore delay expression led to the A-tree algo-
rithm in [7]. However, this algorithm was a geometric
abstraction. The algorithm that has reported the best results
so far is the Elmore routing tree algorithm [8]. This algo-
rithm constructs a routing tree, adding edges greedily. The
Steiner version (SERT) of this algorithm runs in O(n4) time
and the basic algorithm (ERT) runs in O(n3) time where n is
the number of sinks. The trees that the SERT algorithm
returns have been shown to be near-optimal in [5].

Our contribution arises from viewing the performance-
driven routing problem in the context of design flow and
optimizing the Elmore delay in a global fashion. Place and
route systems are notorious for large computation time con-
sumption. Many expensive layout-extract-simulate iterations
may be required to satisfy performance constraints. The
interconnect design algorithm should not take too much
time. On the other hand, it should give results that are close
to optimal. A greedy algorithm spends a large amount of
time exploring parts of the design space that could not possi-
bly be optimal. A global approach could maintain the quality
of the results and yet not consume too much time. Both the
generic routing algorithms proposed in [8] are greedy. While
the results they get are close to optimal, the computation
time grows very rapidly with the number of sinks. We note
that nets with a large number of pins are not uncommon. The
state bit outputs of a finite state machine, represented by a
strongly-connected state transition graph, fans out to a large
number of next state logic inputs. Multi-level logic synthesis
techniques increase logic sharing and can lead to large
fanouts. At the system level, all global control signals are
typically large nets with large fanouts. In this paper we pro-
pose an algorithm that solves the problem in a global man-
ner, giving results that are just as good as those produced by
the two greedy algorithms while running inO(n2) time.

The algorithm we propose handles variable sink capaci-
tances naturally. Transistors in present day integrated circuits
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are sized to optimize performance. The gate capacitances of
transistors can therefore vary over a wide range. Geometric
abstractions like [7] return the same tree regardless of sink
capacitances. Hence, the results may be far from optimal.

II. Problem Formulation

We wish to minimize the weighted sum of sink delays
given the source and sink positions. Ideally, the delay should
be computed using an extraction program followed by a sim-
ulation run, on SPICE for example. However, this would be
very expensive in terms of computation time. We therefore
seek tractable methods to estimate the delay. Numerical
methods, like Asymptotic Waveform Evaluation [9], can be
used to speed up the computation. This could then be used in
an optimization loop. Such a method would use up a large
amount of time exploring parts of the design space which
could not possibly be optimal. We therefore use an analytical
model for the interconnect delay which is not only fairly
accurate but also allows an intuitive understanding of the
problem. Besides, it allows the delays to all the nodes in a
routing tree to be calculated in linear time [10]. The Elmore
delay has been shown to be a high-fidelity estimator of inter-
connect delay [5],[6]. Thus we formulate the problem as fol-
lows.

Given a set P = {p1,p2,...,pn} of sinks on the Manhattan
plane with each sink having an associated position Zi, capac-
itance Ci & weight Wi, a source with a position Z0 & driver
resistance Rd, and unit grid resistance Ro & capacitance Co,
construct a tree which minimizes

where Ti is the Elmore delay to the ith sink and is given by

where Rki is the resistance of the path that is common to the
path from the root to the node i and the path from the root to
the node k of the lumped equivalent RC model, Ck is the
total capacitance at a node k in the tree and S is the set of
internal nodes of the tree.

The above formulation has implicitly replaced each seg-
ment of interconnect by a lumped pi-equivalent RC section.
We note that the above definition of delay is not affected by
the granularity of the model, that is, the Elmore delay
remains the same even if an interconnect segment is repre-
sented by a cascade of many RC sections. This inherent
robustness further justifies the use of the Elmore delay as an
estimator.

WiTi
i 1=

n

∑

Ti RkiCk
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III. Alphabetic Tree-Based Algorithm

The Elmore delay to sink pi can be written(as in [7]) as

where Lt denotes the total wire length of the tree, Lk is the
length of the path to node k from the root and Lki is the
length that is common to the paths to the nodes k and i from
the root. As before, S is the set of internal nodes of the tree, P
is the set of sink nodes. Rd is the driver resistance, Ck is the
node capacitance at node k and Co & Ro are the capacitance
& resistance per unit grid.

Of the 4 terms in this expression, the second is a con-
stant and is topology-independent. From the third and fourth
terms, we see that the length term Lki has to be minimized
when the capacitance term that multiplies it is large. The
topology of a tree should be selected such that nodes with
large sub-tree capacitance are topologically closer to the
root. However, the total wire length term should also be kept
small so that the first term does not become too large. These
observations are the basis of our algorithm. We now look at
the alphabetic tree problem and motivate its use in solving
the interconnect design problem.

The alphabetic tree problem is stated as:
Given an ordered set of weights {wi} find a binary tree such
that the weighted sum of path lengths to the leaves is mini-
mum among all such trees and the left to right order of the
leaves of the tree is maintained. A binary tree is defined as a
tree where each node has either 2 children or no children
(note that nodes with one child are not allowed). The path
length of a leaf is defined as the number of edges on the path
from the root to that leaf.

We note the strong correspondence between the perfor-
mance-driven routing problem and the alphabetic tree prob-
lem. In particular, we note that the placement imposes a
geometric order on the sinks. By keeping the tree alphabetic
we bound the total wire length of the tree and thus the first
term of the Elmore delay expression. By using appropriate
weights we keep the last two terms of the Elmore delay
expression small. In the alphabetic tree problem large weight
nodes are close to the root in the solution. Similarly, for
small delays, large capacitance nodes must be topologically
close to the root.

Consider the example shown in Figure 1. The left to
right ordering and the weights of nodes have been specified
in the input. The optimum tree has a weighted path of length
53 and is shown on the right. The node with the largest
weight is closer to the root, as expected.

 The number of alphabetic trees grows exponentially
with n and makes exhaustive enumeration impractical. The
problem is similar to that of constructing optimal prefix
codes [11], with the additional constraint of the left-to-right
ordering. While the optimal prefix code construction prob-
lem can be solved by a greedy algorithm (the Huffman cod-
ing algorithm[12]) which constructs a tree representing the
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code in a bottom-up manner, this approach does not work for
the alphabetic tree problem. The example in Figure 1 also
illustrates why a one-pass bottom-up merging of nodes as in
the Huffman coding algorithm is not sufficient to solve the
problem optimally. Such an algorithm would merge nodes of
weight 2 and 3 in the first step. The tree generated would not
be optimal whatever the other two merges may be.

This problem can be solved in O(n log n) time using the
Hu-Tucker algorithm [13], [14]. The alphabetic tree algo-
rithm finds applications in routability-driven fanout optimi-
zation [15] and binary encoding problems [14]. The Hu-
Tucker algorithm, which we use, has 3 stages - combination,
level assignment and recombination as in [14]. The algo-
rithm is outlined below.

In our heuristic the order is obtained by sorting the
nodes with angle subtended by the ray connecting the point
and the source with the X-axis as the key, i.e., we use a circu-
lar ordering of the sinks. The circular ordering ensures that
the output tree is planar. The weights are just the sink capac-
itances. The combination of node weights includes the
capacitance of the wiring. Thus when two sub-trees are com-
bined, the weight of the new sub-tree is the sum of the two
sub-tree capacitances and the wiring capacitance. The wiring

Fig. 1. An alphabetic tree problem instance and its solution

14 4 3 2 4 14 4 3 2 4

Optimum path length = 14+3(4+3+2+4) = 53

Input: Totally ordered set Q={q1,q2,...,qi,...qn}
Output: Minimum alphabetic tree T

Repeat n-1 times {

the smallest weight when combined and are either
adjacent or have only internal nodes in between them

Combine nodes i and j which yield

}

Level assignment: Assign levels to leaves using the

Combination :

topology returned by the combination phase. The
level is just the distance from the root.

Recombination: Discard the initial tree and use the
leaf level assignment to form the tree again. The
highest level nodes are combined in a bottom-up
manner to get the optimal alphabetic tree T.

Alphabetic tree algorithm

capacitance is that of the shortest segment that connects the
roots of the two sub-trees. It is important to keep the path
from the source to any sink as small as possible because this
affects the system time constant. Our heuristic always
returns a tree in which the path to any sink from the source is
a shortest path. In other words, the path from the source to
any sink is a monotonic path. This is done by assigning the
position of the root of the new sub-tree when combining two
sub-trees as shown in Figure 2 below.

The binary tree restriction of alphabetic trees is not too
severe. When subtrees are combined, the position of internal
nodes is fixed as in Figure 2. Some internal nodes may there-
fore degenerate to higher degrees.

 Having obtained a good topology, we check if further
improvement is possible using local descent optimization,
i.e., we post process the binary alphabetic tree so that inter-
nal nodes can migrate towards the root. This is done by
checking, going bottom up, if moving an internal node to the
position of its parent will improve average delay and make
the change if this is the case.

The time complexity of generating the alphabetic tree is
O(n logn). The optimization, however takes O(n2) time as n-
1 internal nodes can move up and each decision involves
computing the Elmore delay, which can be done in linear
time[10]. The algorithm, therefore, has time complexity of
O(n2).

We note another property of the trees generated by
ALPHA which trees generated by SERT and ERT may not
have.

source

subtree S1

subtree S2

S1

S2

Fig. 2. Merging subtrees S1 and S2 : The root of the new subtree
has the smallest X- and Y- coordinates of any of its leaves. This
makes the path from any sink to the source a shortest path.

, capacitance C1

capacitance C2

C1 + C2 + Cwire

Algorithm ALPHA

Generate alphabetic tree T, using circular ordering

For each internal node X, in bottom up order

Move X to the position of its parent if this move
improves average delay.

Input:
Output: Minimal delay topology

Technology, source & sink positions



Property 1

The sink capacitance contribution to the system time
constant Tp of the tree generated by ALPHA is the minimum
possible for routing trees in the Manhattan plane and is
given by

where Xk and Yk are the X and Y coordinates of sink k.
This is true because of the way in which sub-trees are

combined. As the path to each sink is monotonic, Rkk (the
resistance of the path from the source to the sink) is the resis-
tance per unit length multiplied by the distance of the sink
from the root.

 This property of minimum system time constant is use-
ful since voltage bounds as a function of time [10] at any
sink have this as the time constant. With all else being equal,
a difference in Tp could lead to a large difference in the
actual delay obtained.

IV. Results and Conclusions

We have implemented our algorithm in C on a DEC
3100 workstation and compared our results with that of the
SERT[8], ERT[8] and 1-Steiner algorithms[16], when run
using the same compiler and operating system. The SERT
and ERT algorithms have been reported to perform better
than the A-tree[7], the bounded-radius bounded-cost[17] and
the AHHK[18] algorithms. The 1-Steiner algorithm gives us
an estimate of the minimum wirelength required. We com-
pared the average delays and the average wire lengths of the
trees generated by these algorithms for sets of 1000 ran-
domly generated nets for two different IC technologies (IC1
and IC2). The resistance and capacitance per unit length of
IC1 were extracted using the OptEMVLSI electromagnetic
interconnect analysis package[19] for MOSIS2NC technol-
ogy with 2 micron metal1 lines. IC2 parameters are for a
technology with smaller line-widths so that the resistance per
unit length is larger. The capacitance per unit length has not
changed because of fringing fields[1].

We ran experiments to see how the average Elmore
delay to the sinks and the average wirelengths used varied
with the number of pins in the net and the physical size of the

TABLE 1. Technology parameters

Technology
Ro(ohms/
micron)

Co
(pF/cm)

Cl
(fF)

Rd
(ohms)

IC1 0.35 0.53 5.0 150

IC2 0.70 0.53 5.0 150

Tp RkkCk
k P∈( )∀
∑=

Ro Ck Xk Yk+( )
k P∈( )∀
∑=

net, for both technologies. The run time (user time) required
by the four algorithms were also compared. The grid size
and net size are typical for critical nets in an IC. The results
obtained are shown in the tables. All the results are normal-
ized with ALPHA=1. The 95% confidence intervals for all
the delay and cost ratios are less than 0.002.

ALPHA consistently returns small delay topologies
over the entire range of technologies, grid size and net size
under consideration. We also see that as the minimum
Steiner tree approximation becomes invalid, ALPHA begins
to return trees whose delay and wirelength are competitive
with that of the SERT and ERT algorithms. This is achieved
while running 2 to 60 times faster than the other algorithms.
Besides, the wirelength gets better as technology scales
down (IC2 has smaller feature size).

We now look at some typical examples. The first exam-
ple shown in Figure 3 illustrates how a greedy algorithm
might be led to a local optimum. The second example shown
in Figure 4 illustrates the fact that non-monotone paths to

TABLE 2. Average delay comparison (ALPHA=1) - Variation with
grid size (5-pin nets)

grid
size

(mm)
SERT
IC1

SERT
IC2

ERT
IC1

ERT
IC2

1-ST
IC1

1-ST
IC2

0.5 1.45 1.46 1.51 1.49 0.96 1.00

2.0 1.07 1.07 1.09 1.07 1.09 1.21

5.0 1.00 1.00 1.00 0.99 1.23 1.35

TABLE 3. Average delay comparison (ALPHA=1) - Variation with
the number of sinks (2mm grid size)

N
SERT
IC1

SERT
IC2

ERT
IC1

ERT
IC2

1-ST
IC1

1-ST
IC2

4 1.07 1.07 1.09 1.07 1.09 1.21

6 1.04 1.03 1.08 1.04 1.11 1.26

8 1.01 1.00 1.06 1.02 1.11 1.28

TABLE 4. Average wirelength comparison (ALPHA=1) for 5-pin
nets

grid
size

(mm)
SERT
 IC1

SERT
 IC2

ERT
IC1

ERT
IC2

1-ST
IC1

1-ST
IC2

0.5 0.68 0.78 0.80 0.87 0.65 0.66

2.0 0.81 0.95 0.91 1.00 0.68 0.71

5.0 0.95 1.04 1.01 1.07 0.73 0.75

TABLE 5. Run time comparison (ALPHA=1)

N SERT ERT 1-Steiner

4 2.4 1.7 12

6 4.4 2.9 29

8 7.9 4.6 60



sinks may result in large delays.

In the example shown in Figure 3, SERT adds an edge to
A as this is the closest sink to the source. An edge is then
added from B to the existing edge. This is followed by the
addition of an edge from C to the existing edge to A - a
wrong decision. The best SERT can do now is to have a

direct connection from D to the source. Note that if in the
third step an edge was added to the source instead of adding
it to the existing edge (which a greedy algorithm fails to do),
the resulting tree would be much better. The fundamental
problem with the greedy approach is that it makes ill-
informed decisions which may turn out to be bad later. The
ERT algorithm constructs a spanning tree greedily and is
also far from optimal. The average Elmore delay for Alpha is
20% better than SERT and 24% better than ERT for this
instance.

For the input instance shown in Figure 4, SERT and
ERT generate trees that have a non-monotonic path to sink
A. This results in large average delays. For this example
SERT was 40% worse than ALPHA and ERT was 45%
worse.

When ALPHA returned large Elmore delays, we found
that this could be remedied by changing the alphabetic order.
However, the increase in run time may not be worth the
incremental improvement in performance.

We conclude that the algorithm we propose can avoid
some of the pathological cases for SERT and ERT, the two
algorithms that have reported the best results in the litera-
ture. Our algorithm runs much faster and can be used in a
layout system for performance-driven interconnect design.
Our algorithm scales well with net sizes, both with respect to

SERT ERT ALPHA

Fig. 3. Pathological case: ERT & SERT: 24,20% worse
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CD

A
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Fig. 4. Non-monotonic paths generated by ERT & SERT

run time and quality of results obtained. The global manner
in which the interconnect design is done helps our algorithm
to avoid local optima.

The alphabetic tree framework is quite general and
could be used to solve other VLSI routing problems, such as
power supply net routing. A global router which takes
advantage of the hierarchical nature of our heuristic could
also be developed.
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