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Abstract -- In this paper we present a new method for Boolean  In this paper, we propose a uniform and efficient method for
matching of completely specified Boolean functions. The canoni- solving the Boolean matching problem. Our method is based
cal Generalized Reed-Muller forms are used as a powerful analy- on the Generalized Reed-Muller (GRM) representations of
sis tool. Input permutation, as well as input and output negation - gsgjean functions. The GRM form is also used to verify four
for matching are handled simultaneously. To reduce the search different types of symmetry [12]

space for input correspondence, we have developed a method . iy . .
tr?at can detFe)ct symmgtries of any number of ionl)JtS simulta- For fixed po"’_i”t'es of all vaiables, GRM forms are ca_nomT
neously. Experiments on MCNC benchmark circuits are very en- cal representations. Therefqre, the number of cqbes with dif-
couraging. ferent lengths for the function and for each variable can be
used as meaningful signatures. The signatures of variables are
used both for symmetry check and Boolean matching. A cer-
One of the critical steps in technology mapping is to decictain kind of reduced-ordered binary decision diagram
whether or not a subnetwork can be implemented by any (ROBDD) [5], [11] to represent GRMs is used in our method.
the library cells, perhaps with inverters on some of the inpWith this data structure, all of our operations are efficiently
or output lines. In logic verification, descriptions of the logicarried out in a ROBDD[1] package without any extra imple-
from different stages of the design process are comparedmentation.
check if they represent the same function. A conclusiv In the remainder of this paper, we discuss only the single-
answer to either problem requires extensive computation. Tloutput functions. Multi-output functions are handled by treat-
is due to the fact that, in most cases, the input variable coring each output function independently. For the purpose of
spondence is not known in advance. In recent years, Booletechnology mapping, the majority of library cells are single-
matching has been proposed, where networks are converteoutput functions.
their Boolean function representations and matching
decided by the equivalence check on the appropriate functic
121, [31, [6], [7], [9], [10]. ~ Let f(X1, %o, ..., %) be a completely specifieq Boolean func-
Three major equivalence classes have been discustion. |f| denotes the number of the on-set mintermé dfe
before. Twon-input Boolean functions are equivalent if onewill uset; to represent the literal of variabtgt; can be either
can be transformed into the other by one or more of the f Or X. The length of a cubg, denotedp], is the number of

1. Introduction

2. Definitions and Terminology

lowing transformations: literals in the cubeS(p)denotes the set of variables in cybe
(P1) input permutations, A variable x; is balanced if |fx_| = |f;|. Otherwise,x; is
(P2) input negation, also known as phase assignmentunbalancedA functionf is neutral if |f| = 2" fisodd if ||
input variables, and _ is an odd integer. Otherwise, itégen.
(P3) output negation or phase assignment of the output. o goolean differenceof f with respect to a variablg,
Functions arep-equivalentunder P1 andhp-equivalent B . .
under P1 and PZpn-equivalentfunctions allow all three denoted fx IS defined as
transformations. F(Xgy wer Xy o X)) O F(Xg, o X0 x ) - It can be computed

G_The t|ﬂ\)l\r/0blem a}d?rlessed I? tgisBpalper iSf statt_zd az follovirom the formulaf? = f, Of, . The definition of Boolean dif-

iven two completely specified Boolean functidnand g, - ' I P .

which have the same number of inputs, we aslaiidg are fgrence V\{Ith respect to an arbitrary cybe t...% is recur

nprrequivalent; and, if they are, we wish to know the transfoSively defined as:

mation. Note that, all of the previous work in Boolean matct B

ing check for P1 and P2 transformations separately. fE = (... ((ftB)t) o)
Several approaches have been used to expedite the deci L b

of equivalence. Signatures of the functions and of the indivi  The following properties of the Boolean difference operator

ual variables are widely utilized for this purpose [3], [6], [7]follow directly from the definition (a)g - f)E(% (bDEx - f)E(sX
These properties imply that, for two arbitrary cupiaandbz,

[10]. Symmetry property among variables is another impo,
tant characteristic [3], [6], [7], [8], [9], [10]. However, only B 8 .
one type of symmetry is checked and the method of checkifpl = fp2, if S(p) = S(p).

is very inefficient. Using the Shannon expansion, a function can be expressed

B



asf = xf, +xf; , orequivalently as= xf, 0 xf; . Byapply-i.e., the roles of the major pole and minor pole vectors are

ing the identityx, = x, 01 , we can derive reversed in the complement. .
B d)f = B To generate compatible GRMs, we apply the following
(©) f = xfy Of;, or (d)f = xf, O, . rules to all functions: (1) for functions witf) < 2", we use

Each equation has two terms: one contains the liteaald  \-pole vector, (2) for functions with] > 271, we first derive
the other does not. We will call thepele-branchanddc-  § and usevi-pole off, (3) for neutral functions, we generate
branch respectively. The process of XORing the two cofacygin M-pole andm-pole GRMs of.
tors is referred to as folding. _ _ _ To determine the equivalence of two functions, both func-

. With eachn-input functionf we associate a binanydimen-  tions will be transformed to their canonical GRM forms. A set
sionalpolarity vector An entry of the vector is 0(1) if the cor- of signatures, discussed later, will then be used to indicate any
responding variable in GRM form is in the negative (positivegiscrepancies. Symmetry is also checked at this stage. If all
polarity. ) . . ! . signatures match, then we can compare the actual functions in

For each variable; in f, themajor pole (M-pole)s oneif  he GRM forms. At this stage, the concern is on matching of
|fxi| >|f>'<.| and iszeroif |fxi| <|f>2,|- Theminor pole (m-pole)s variables and cubes. After the functions are matched, the

the one corresponding to the smaller of the two. We will cephase assignment of input variables can be decided with the

. . comparison of polarities between the corresponding variables
the polarity vectoM-pole (m-polewith respect t6, denoteM of the two functions. Different polarity between the corre-

(m), when each variable is assignedMh@ole (n-pole). Note  sponding variables means an inverter is needed to bring them
that, for balanced variables, thid-poleim-pole cannot be toacommon phase. .
decided. Thevl-polefm-pole always exists for odd functions, NOte that, in our method, we do not have to consider the

. . . input negation as a separate task and perform additional com-
since every variable is unbalanced. putations. The input negation (similar to the output negation)
3. Generalized Reed-Muller Forms is determined as a side effect of the matching condition.

3.2 Functional decision diagram

The data structure for GRM forms is call&dinctional
cubes, in which every variable has either positive or negati\D€¢ision Diagram(FDD]5]. It can be derived efficiently [5],
[11] and the size is, in general, smaller than that of the con-

but not both, polarity in all cubes. \ X . . . ;
Consider P two y functions of three variablesVentional ROBDD. Itis a binary acyclic graph in which nodes
F(X X %) = 5(2356 D, 9(VYsy)=2(0,2346. are labeled or 1 and each nonterminal node is labeled with a
Their - 3represe’nt’ations " in "GRM  forms  arevariable. The two edges for each nonterminal node have the
fo= 0 x. [ and g = vy, 0. 0V.y.y,, where attribute0orl. The order in which the variables appear along
U= (;1)1(31) ;ﬁd\/xl:x%g?’l 0) Ov = Y1¥2 E Y3 = V1YoV each path is fixed and the graph has no isomorphic subgraphs.
These two functions amp-equivalent by matching vari- | N€ root of the graph represents the function. A polarity vec-
ables as ¥;->Y, X->Ya, Xg>yi} OF {X;->Y1, Xo->Ya, Xo- tor is maintained with the FDD. For each nonterminal node
>y,}. Note that the GRM forms explicitly display the np-labeledx;, the edge corresponding to the polarityxois the
equivalence of the two functions. The polarities of variables POle-branch and indicates that the corresponding literal
either function do not change the equivalence. We say tfaPPears in the cube. The edge with an attribute opposite to the
matching conditioror equivalenceof GRM forms is fulfilled, Polarity ofx; is thedc-branchand indicates tha is not in the
if the variables (polarities ignored) in two GRMs can pcube. Each path which starts from the root and terminates at
the terminalone node represents a set of cubes in the GRM

matched such that all the cubes match. ¢ £ o : h im0
The key question in our method is how to select each vafor™M Of f. Any missing node, corresponding to the variagle

able’s poarity before the two functions are matched. Theln the path represents two cubes in the GRM. One cube con-
are2" possible combinations of polarities fovariables. Any t&insx; with the appropriate polarity and the other cube does
Boolean function can be representedhGRM forms. We not havex;. Trc(erefore, a path witknonterminal nodes stands

: o .
will use f, to represent the GRM form of a functibmunder Of @ Set 027" cubes in the GRM [11].

the polarity vectol. Note that the number of cubes for a func_ AN important operation in our Boolean matching method is
tion varies with different polarity vectors. The selection ot€ €quivalence checking of two GRM forms. It's execution

polarities will determine the GRM forms that will be used fo®" FDD is similar to the equivalence checking of two func-

matching. The following theorems give conditions for BooliONS in ROBDD forms. Assume the variable orderings are

ean matching of functions for whidi-poles exist. The proofs Matched in the two FDDs. Starting from the root, the equiva-
are omitted due to space limitations. lence check is recursively called at each branch of a node and

Theorem 1Suppose that thil-pole (m-pole) exist for the terminates'at the leaf no_des of the two FDDs. At each node,
functionsf andg. Thenf andg arenp-equivalent, if, and only & check f!rst to be certain that the variables correspondlng to
if, their GRM forms undeM-pole (m-pole) are equivalent. 1€ nodes in the two FDDs are the same. Then the polarity of

Theorem 2Let f be a Boolean function afide its comple- _the presently processed variaklés retrieved from the polar-
ment. Then, for any polarity vects, we havef, = f,01 . ity vectors for each FDD and the_ dc and pole branches are
LetM andm be theM-pole andm-pole off, respectively. Then !dentlfled. Then we check th_e equwalgnce of the corresppnd—
the m-pole vector foff is M and theM-pole vector fof ism; "9 dc and pole branches with recursive calls. All operations

3.1 General properties
A GRM form of a Boolean function is the XOR sum of



and FDD representations can reside in an ROBDD packagecubes in the GRM of lengih Note that if the cubg is in the
3.3 Prime cubes in the GRM forms GRM form, we need to store the information in a separate

location.
A cubep is primé4] in fif f; = 1. We observe that every  the second array on the functional leveFiC computed
variable in a prime cube can assume either polarity withog,

e L X om theVIC by summing entries of each column, so that each
violating the definition of prime cubes. In [4], Csariyal gniry ofFVC s the number of cubes containing variatle
have proved that all the prime cubes occur in every GR

form off. Polarities of the variables in prime cubes follow tha#.2.2 Distributions of cubes with related variables

of the polarity vector of the residing GRM form. The fact the During the same traversal of FDD as in the above subsec-

all prime cubes are essential makes the set of prime cultion, we also compute amby-n symmetric matrix, thénci-

very unique in identifying a function. dence matrix, ING (g;), whereg;; is the number of cubes
The detection of the prime cubes is very straightforwarcontaining both variabfe:q andx;. The diagonal entrg; is 0

Csankyet al[4] proved thap is a prime, if, and only ifpis  if single literal cubeg is not present; else it is This is a sig-

the only cube that contains all 8{p) In other words, all the nature set at the variable level.

cubes in any GRM form with maximum cardinality are A functional level signatur&INC is also generated from

primes. These might not be all the primes. In the functicNC. We compute am element array by summing up each

f = x; O X% 0 X, O XgX,, XpX3 andxgx, are both primesy; is  row (or column), except the diagonal entry. Each entry in

also a prime but not one of the largest cardinality. Assume ttlFINC represents the total frequency of occurrences of each

p is a prime cube, then any cyethat satisfieS(p) O0S(p  variable.

is not a prime. Ignore all the longest primes and all the cub

that are composed of subsets of their literals. If there is a

cube left, again, we will look for the longest cubes. This pre

cess will continue until all the cubes are accounted for.

4.2.3 Prime cubes

In VIC, each column represents the cubes of various
lengths that contaim;, for each variables. The number of
prime cubes, that contai, is the last nonzero number in the
4. Sgnatures for Boolean Matching and Symmetry Detection column. This value is saved separately as an &&yof all

Signaturesare values that characterize the function or thvariables. On the functional levé?C is the total number of
variables in a function. prime cubes. This is easily derivable fr&®f@\V,

. . There are two more matrices on the variable level: they are
4.1 Signatures from on-set weight _ the versions o¥IC andINC calculated only on prime cubes.
The on-set weight of the function can easily be computeThey are (1)am-by-n matrix, PCvic = (a;), wherea; is the
by traversing the ROBDD. For each variable the two Eumber of prime cub(es)of |ingtthat Corr:tain(j,at?d (Zf) am-
; i i y-n matrix PCinc = (g;), wherea; is the number of prime
welghts|fxi| andf,| are galqlb5|t|ve cofac.tor weight (pew) Y s b%Jth variabizua oy
and negative cofactor weight (ncyespectively. To ensure !

consistancy with the matching of GRM, all functions wfth
> 2™ 1 will have weights computed dn :

On the functional level, two types of signatures derive frol2mely; f)’(,)'(l'fi‘xﬁfxi)'(]'f%‘xj - Equwa_lence betWt_aen any two of
this source. The firsfunctional weight (fw)is the valudf|. the four cofactors, with the choice of negating one of them,
The secondweight distribution vector (wd)s the set of val- form 12 different symmetry relations (6 from both positive, 6
ﬁ]etshg]?lﬁ?:ttlig% how many differeptwandncwpairs there are from negating one of the two). Theoretically, any one or more
for each variable. two variables. We can use some of them to partition the input

Theorem 31 et f andg benp-equivalent and assume that yariable set into different equivalence classes. Checking all
andy; are the matching variables framandg, respectively. . . . .

the symmetries can be time consuming. We have discovered

Thenf andg have the same pairs of numbersgowandncw. i
. that four among them are very closely related and can be veri-
4.2 Signatures from GRM form fied simultaneously in the GRM forms [12]. These four types
We propose three sets of signatures that are obtained fr ! imu usly't ' urtyp

GRM form. All the signatures described below req@n) ©Of symmetries form transitive relations and are very useful for
time complexity, wheré is the number of nodes in the FDDthe purpose of matching.
andn is the number of variables.

5. S/mmetries and Linear Variables

For any pair of variableg andx;, there are four cofactors,

o - 5.1 Positive symmetry
4.2.1 Distributions of cubes with different lengths

For each GRM, we first compute atby-n matrix of vari- 511 Th? nonqulyalence symmetry
cubes of lengththat contain variablg. At the same time, we metry) in variables; andx;, denoted ag NE x or {x;, x}, if f

compute incrementally the number of cubes of each length remains invariant when the two variables are interchanged, or
the entire function. At the functional level, this becomesan . . . —
equivalently, iff, = f, ; . Note thafx;, X} is the same &,
i i

element vectoFC, where each entiycontains the number of



>_<J-} in terms of the definition. To detect tN& symmetry in the  x;. It is denotedy % INE %. To detect skevNE symmetry in

GRM form, note thatf, =f . , if, and only if, the GRM form, note thatf, =f . , if, and only if,
i i 1 17

f>'<i>'<; 0 fi‘xj = f>'<i>'<; 0 fxli»' When the polarities o andx; are the f>'<i>'<; 0 fi‘xj = f;(i;(‘ 0 fx‘i» 0 1. When the polarities ok andX;

samex; NE 3 can be detected in the GRM. are the sameq!'NE X can be detected in the GRM [12].

; The only difference in the GRM form betwel& symme-
5.1.2 The e(iuwalent symmetry_ . L _ try and skewNE symmetry is the extra terhin the above

Whenfy ;. = f,, , the fur.lct|on is said to eXh'b'F equivalencyjiseyssion. This tern is a single literal cubg or x in the
symmetryéSymmetry) with respect tg andy;. It is denoted function. The detection can be done similarly toNfiesym-

% E %, or {x;, x}({, %}). To detecE symmetry in the GRM Mmetry. -
form note that f.. =f if and  onl if Theorem 9:Any two of the conditions;!NE X, xj!NE Xer
’ %% = Txx oo Mo Y andx NE » implies the third.
fez Ofzx = fux Oz, - When the polarities of; andx are
U] i 1] i
diﬁerentixi E X can be detected in the GRM.
Theorem 41f x; E % andx; E %, thenx; NE 3 [8].

5.2.2 The skew-equivalence symmetry
When f . =1, the function is said to exhibit skew-
i%

X% !

equivalence symmetry (skelvsymmetry) with respect tg

» - andxj. It is denotedy %!E X. To detect skevie symmetry in
The transitive condition dE symmetry tells us thadE and

E symmetries are related. Using GRM forms, we can detethe GRM form, note thatfiiij - inXJ ' 'f and only if,
both types of symmetry by applying the same procedure. Tf;; U fz = fi Dfy, U 1. When the polarities ok and;
only difference is in the polarity combinations of the two variare differentx!E X can be detected in the GRM.
ables. Therefore, we can group variables with the two types  ha only difference in the GRM form betweEsymmetry
symmetries together; i.e., {k;, X} and{x;, x4, then{x;, XJ'I’ and skewk symmetry is the extra terfn This termlis a sin-
X¢({Xi, X, %,}) is a positive symmetric set of three variables. gle literal cubex; or x; in the function.

Theorem 51f % NE x andx; E ¥, thenx; andx; are both ™ thegrem 10Any two of the conditions; 'E X, % 1E X,

balanced variables. g andx; NE x implies the third.
This theorem sets up a necessary condition for two va

ables to be botE andNE symmetric. 5.2.3 Mixed symmetries
Theorem 6Suppose botk; andx; are unbalanced and both  Theorem 11if X INE X andx; |E ¥ both hold, therf is a
variables havél-pole (mpole) in the polarity vectov. Then neutralfunction.
fy will show the symmetry, if, and only i NE % OrX E x. This theorem sets up a necessary condition for two vari-
This theorem makes the detection of positive symmetriables to hold bothE and!NE symmetries. Only the variables
span uniformly across unbalanced variables. The existancein aneutralfunction need to be checked for both symmetries.
M-pole GRM is enough to conclude any positive symmett Theorem 12Any two of the conditions; !E x;, X INE X,
among multiple variables. We do not have to checkNEe andx; E % implies the third.
symmetry ance symmetry separately for each pair of vari- The following theorem is needed for matching in the appli-
ables, as the conventional method requires. cation of technology mapping where negation of the output is
Theorem 7:Any positive symmetry occurs betwegnand allowed and has to be managed.
X inf, if, and only if, they are symmetric in the complenfent  Theorem 13Any negative symmetry occurs betwegand
x inf, if, and only if, it occurs in the complement

5.1.3 Mixed symmetries

5.1.4 Total symmetry
A function istotally symmetrigf every pair of variables in 5.3 Checking all symmetry types among variable pairs

the function is positive symmetric. This implies that ever We can verify the positive symmetry on an FDD by check-

pair of variables will be symmetric in a GRM form. For funcing whether certain two branches are the same; i.e., point to

tions withM-pole vector, the following theorem makes check . . .
ing for total symmetry very simple. the same sub-FDD. One branch is the one wigmd without

Theorem 8A functionf is totally symmetric, if, and only if, % i-€.f 4., Similar to taking cofactor on the ROBDD, where
there exists a polarity vectdtsuch that for eack, 1<k<n, t; stands for thgole-branch ofx; anddc stands for thelc-
fy either contains no cube of lenggthr it contains all cubes of .-\ ofx;. The other iSqug . wherdc stands for thelc-

lengthk. .
To check for total symmetry, we only need to verify, fopPranch ofx andt; stands for thgole-branch ofx. Negative

eachk from 1 to n, whetherfy, containsO or C; cubes of symmetry is checked after we add (XOR)ta any one of the
lengthk, whereC,, is the combination ofchoose k. two branches discussed above.

5.2 Negative symmetry To check for symmetries in the GRM form, we first parti-
5.2.1 The skew-nonequivalence symmetry tion the variables _by thelr signatures and th_en check symme-
o — o . . tries only on certain candidate groups of variables.

Whenfg, = fyg » the function is said to be skew-nonequiv - The number of GRMs needed for symmetry detection
alence symmetric(skeNE symmetric) with respect tg and  depends on the polarity vectors we choose. For che®kihg



and skewNE symmetries, the polarities of the two variabletion is now an XOR sum of cubes of mixed polarities. Count-
need to be the same in the GRM; i.e., bbthr bothO. For ing the occurrences of andx; in all cubes can still show the
checkingE and skewke symmetries, the polarities of the twoweight unbalance or balance of the remaining variables. Note
variables need to be different in the GRM; ilegnd0, or 0 that the polarity vector obtained with this process is still con-
and 1. There are four possible combinations of polaritiesistent, as long as the rule is applied to every variable. The
between any two variablesamely,00, 01, 10, 11We need function can be folded with respect to the variables whose
one combination fron®0 and 11 and a second combination polarities were decided to obtain a unigue GRM. This process
from 01 and10. It can be shown that amyvectors, where the is repeated if a function still has balanced variables. Now,
ith and(i+1)th vectors differ only in théth entry, are suffi- either (1) polarities of all the variables have been decided or
cient. These polarity vectors contain, between any two vari(2) a set of variables, with nondecreasing size, remain bal-

ables, three out of four of the desired combinations. anced throughout this process.
5.4 Linear variables and linear functions 6.2 Adding linear function
When a variable; satisfiesf, = f, , we will obtaiff = 1 There are cases where all variables are balanced in the

and the function can be expressed asx. g f orx, 0 g function or some variable_s are balz;nced as Qescribed abqve.
where the function g is independentafVariables that sat- To break the balanced vanablgs, a Imear function that contains

all and only the balanced variables is added to the function.
isfy this condition are callethear inf. In f = x, 0 x)X3,X IS The new function is used to determine the polarities of the
a linear variable. balanced variables.

Linear variables are very easy to detect in any GRM forrg.3 Additional GRMs

since the variable can have only one cube of length one in ¢  There are three cases where additional GRMs are needed.
GRM form. They also have strong properties. First of all, t  Tne first case is for the output negatiometitralfunctions.
function that contains linear variable(s) musteetral Sec- |t 3 unique GRM has been obtained, then a new GRM will be
ond, linear variables are dlE symmetric andE symmetric to  getermined with the polarity of every variable reversed. This
each other in the function. Hence, once the set of linear véjs pased on Theorem 2. The signatures should be generated
ables is detected, it _does not have to b.e checkgd for any tfrom both GRMs and they are compared during the Boolean
of symmetry. The third property of the linear variables is th‘matching process to decide which output phase should be

they are prime cubes by definition. used. Note that all the symmetry conditions remains the same,
A linear functionis of the formf =c,0x,0..0%, , because of Theorem 7 and Theorem 13.
where g =0 or 1. A linear function is alwayseutraland all  The second case that requires additional GRMs is for more

dependent variables in a linear function batanced These symmetry checking. This is when there are variables that can

two properties make linear functions excellent choices fi ot pe differentiated or when we need to determine all four

breaking the balanced variables while we searching for UniQSymmetry types for all pairs of variables. The maximum num-

GRM forms. ber of GRMs is1. Note that each new GRM can be incremen-
6. Boolean Matching Procedure tally computed from the original GRM.

The last case is when a unique GRM cannot be obtained.
The problem is with the balanced variables. If none of the
aforementioned methods can break the balance and the
remaining balanced variables are not in any symmetric set,
then some exhaustive search is needed. Instead of exhaustive
permutation among the remaining subsets of variables, we can
derive a minimum set of GRMs that can still manage the
matching ofmpnrequivalent functions. A set of GRMs can be
derived as follows: after the process of findvigpole, a new

This section describes the procedure of hownfireequiv-
alent classes of functions are identified with GRM forms. F«
Boolean matching, our goal is to (1) differentiate every var
able in a function in a unique way, and (2) apply (1) to dete
mine whether two Boolean functions amenequivalent. If a
unigue GRM can be derived, then the signatures obtain
from the GRM can be used for (1). Variables with identice
signatures will be further checked for any symmetry. If a
pairs of variables with identical signatures are _Sym”_‘?t”‘? functiong; is created for each difficult variabkeby adding a
on the varables 5 needd. Theh, 2} can be accomplisnecgnde ieralcube to the funclidnAfter obtaning the GRM
; ; i ; i i i :
mg SC;aFrznhgchg‘ythe two functions with the variables ordered lbe done for both polarities af. In technology mapping, for

' hard-to-match functions, the set of GRMs and their signatures
6.1 Deciding polarities for all variables are computed beforehand. A function can match the library

As descrobed in section 3.1, we do the following to assucell if it can match any one of the GRMs.
the consistency of polarity selections of variables in the tw In the worst case, all variables are balanced throughout the
functions. For functions withf] > 2"%, we first derivdf, and process without any symmetry and we will néadGRMs.2n
for neutral functions, we need bofrandf. TheM-pole is the is the upper bound in the number of GRMs needed for Bool-
choice for each unbalanced variable. If all variables have €an matching ofipn-equivalent functions. However, this is a
poles, then the function can be folded and a unique GRMPessimistic upper bound since balanced variables are likely to
obtained. If balanced variables and unbalanced variables exform some type of symmetries among themselves.
then the unbalanced variables will be folded first. The fun
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