
Abstract -- In this paper we present a new method for Boolean
matching of completely specified Boolean functions. The canoni-
cal Generalized Reed-Muller forms are used as a powerful analy-
sis tool. Input permutation, as well as input and output negation
for matching are handled simultaneously. To reduce the search
space for input correspondence, we have developed a method
that can detect symmetries of any number of inputs simulta-
neously. Experiments on MCNC benchmark circuits are very en-
couraging.

1. Introduction

One of the critical steps in technology mapping is to decide
whether or not a subnetwork can be implemented by any of
the library cells, perhaps with inverters on some of the input
or output lines. In logic verification, descriptions of the logic
from different stages of the design process are compared to
check if they represent the same function. A conclusive
answer to either problem requires extensive computation. This
is due to the fact that, in most cases, the input variable corre-
spondence is not known in advance. In recent years, Boolean
matching has been proposed, where networks are converted to
their Boolean function representations and matching is
decided by the equivalence check on the appropriate functions
[2], [3], [6], [7], [9], [10].

Three major equivalence classes have been discussed
before. Twon-input Boolean functions are equivalent if one
can be transformed into the other by one or more of the fol-
lowing transformations:

(P1) input permutations,
(P2) input negation, also known as phase assignment of

input variables, and
(P3) output negation or phase assignment of the output.
Functions arep-equivalent under P1 andnp-equivalent

under P1 and P2.npn-equivalent functions allow all three
transformations.

The problem addressed in this paper is stated as follows.
Given two completely specified Boolean functionsf and g,
which have the same number of inputs, we ask iff andg are
npn-equivalent; and, if they are, we wish to know the transfor-
mation. Note that, all of the previous work in Boolean match-
ing check for P1 and P2 transformations separately.

Several approaches have been used to expedite the decision
of equivalence. Signatures of the functions and of the individ-
ual variables are widely utilized for this purpose [3], [6], [7],
[10]. Symmetry property among variables is another impor-
tant characteristic [3], [6], [7], [8], [9], [10]. However, only
one type of symmetry is checked and the method of checking
is very inefficient.

In this paper, we propose a uniform and efficient method for
solving the Boolean matching problem. Our method is based
on the Generalized Reed-Muller (GRM) representations of
Boolean functions. The GRM form is also used to verify four
different types of symmetry [12].

For fixed polarities of all vaiables, GRM forms are canoni-
cal representations. Therefore, the number of cubes with dif-
ferent lengths for the function and for each variable can be
used as meaningful signatures. The signatures of variables are
used both for symmetry check and Boolean matching. A cer-
tain kind of reduced-ordered binary decision diagram
(ROBDD) [5], [11] to represent GRMs is used in our method.
With this data structure, all of our operations are efficiently
carried out in a ROBDD[1] package without any extra imple-
mentation.

In the remainder of this paper, we discuss only the single-
output functions. Multi-output functions are handled by treat-
ing each output function independently. For the purpose of
technology mapping, the majority of library cells are single-
output functions.

2. Definitions and Terminology

Let f(x1, x2, ..., xn) be a completely specified Boolean func-
tion. |f| denotes the number of the on-set minterms off. We
will use ti to represent the literal of variablexi, ti can be either
xi or xi. The length of a cubep, denoted|p|, is the number of
literals in the cube.S(p) denotes the set of variables in cube p.

A variable xi is balanced, if . Otherwise, xi is
unbalanced. A function f is neutral, if |f| = 2n-1. f is odd, if |f|
is an odd integer. Otherwise, it is even.

A Boolean difference of f with respect to a variablexi,

denoted , is defined as

. It can be computed

from the formula . The definition of Boolean dif-

ference with respect to an arbitrary cubep = ti tj...tk is recur-

sively defined as:

.

The following properties of the Boolean difference operator

follow directly from the definition (a) (b) .

These properties imply that, for two arbitrary cubesp1 andp2,

, if S(p1) = S(p2).

Using the Shannon expansion, a function can be expressed

fxi
fxi

=

fxi

B

f x1 … xi … xn, , , ,() f x1 … xi … xn, , , ,()⊕
fxi

B fxi
fxi

⊕=

fp
B … fti

B()
tj

B
() …()

tk

B

=

fxi

B fxi

B= fxixj

B fxjxi

B=

fp1

B fp2

B=

Boolean Matching Using Generalized Reed-Muller Forms

Chien-Chung Tsai
Malgorzata Marek-Sadowska

Department of Electrical and Computer Engineering

University of California

Santa Barbara, CA 93106 USA

as , or equivalently as . By apply-

ing the identity , we can derive

(c) , or (d) .
Each equation has two terms: one contains the literalti and

the other does not. We will call thesepole-branch and dc-
branch, respectively. The process of XORing the two cofac-
tors is referred to as folding.

With eachn-input functionf we associate a binaryn-dimen-
sionalpolarity vector. An entry of the vector is 0(1) if the cor-
responding variable in GRM form is in the negative (positive)
polarity.

For each variablexi in f, themajor pole (M-pole) is one if

 and iszero if . Theminor pole (m-pole) is

the one corresponding to the smaller of the two. We will call

the polarity vectorM-pole (m-pole) with respect tof, denoteM

(m), when each variable is assigned theM-pole (m-pole). Note

that, for balanced variables, theM-pole/m-pole cannot be

decided. TheM-pole/m-pole always exists for odd functions,

since every variable is unbalanced.

3. Generalized Reed-Muller Forms

3.1 General properties
A GRM form of a Boolean function is the XOR sum of

cubes, in which every variable has either positive or negative,
but not both, polarity in all cubes.

Consider two functions of three variables:
, .

Their representations in GRM forms are
 and , where

U = (1 1 1) andV = (0 1 0).
These two functions arenp-equivalent by matching vari-

ables as {x1->y2, x2->y3, x3->y1} or { x1->y1, x2->y3, x3-
>y2}. Note that the GRM forms explicitly display the np-
equivalence of the two functions. The polarities of variables in
either function do not change the equivalence. We say that
matching conditionor equivalence of GRM forms is fulfilled,
if the variables (polarities ignored) in two GRMs can be
matched such that all the cubes match.

The key question in our method is how to select each vari-
able’s polarity before the two functions are matched. There
are2n possible combinations of polarities forn variables. Any
Boolean function can be represented in2n GRM forms. We
will use fV to represent the GRM form of a functionf under
the polarity vectorV. Note that the number of cubes for a func-
tion varies with different polarity vectors. The selection of
polarities will determine the GRM forms that will be used for
matching. The following theorems give conditions for Bool-
ean matching of functions for whichM-poles exist. The proofs
are omitted due to space limitations.

Theorem 1:Suppose that theM-pole (m-pole) exist for the
functionsf andg. Then f andg arenp-equivalent, if, and only
if, their GRM forms underM-pole (m-pole) are equivalent.

Theorem 2:Let f be a Boolean function andf be its comple-
ment. Then, for any polarity vectorV, we have .
Let M andm be theM-pole andm-pole off, respectively. Then
them-pole vector forf is M and theM-pole vector forf is m;

f xi fxi
xi fxi

+= f xi fxi
xi fxi

⊕=
xi xi 1⊕=

f xi fxi

B fxi
⊕= f xi fxi

B fxi
⊕=

fxi
fxi

> fxi
fxi

<

f x1 x2 x3, ,() Σ 2 3 5 6 7, , , ,()= g y1 y2 y3, ,() = Σ 0 2 3 4 6, , , ,()

fU x1x3 x2 x1x2x3⊕ ⊕= gV y1y2 y3 y1y2y3⊕ ⊕=

fV fV 1⊕=

i.e., the roles of the major pole and minor pole vectors are
reversed in the complement.

To generate compatible GRMs, we apply the following
rules to all functions: (1) for functions with|f| < 2n-1, we use
M-pole vector, (2) for functions with|f| > 2n-1, we first derive
f and useM-pole of f, (3) for neutral functions, we generate
bothM-pole andm-pole GRMs off.

To determine the equivalence of two functions, both func-
tions will be transformed to their canonical GRM forms. A set
of signatures, discussed later, will then be used to indicate any
discrepancies. Symmetry is also checked at this stage. If all
signatures match, then we can compare the actual functions in
the GRM forms. At this stage, the concern is on matching of
variables and cubes. After the functions are matched, the
phase assignment of input variables can be decided with the
comparison of polarities between the corresponding variables
of the two functions. Different polarity between the corre-
sponding variables means an inverter is needed to bring them
to a common phase.

Note that, in our method, we do not have to consider the
input negation as a separate task and perform additional com-
putations. The input negation (similar to the output negation)
is determined as a side effect of the matching condition.

3.2 Functional decision diagram
The data structure for GRM forms is calledFunctional

Decision Diagram(FDD)[5]. It can be derived efficiently [5],
[11] and the size is, in general, smaller than that of the con-
ventional ROBDD. It is a binary acyclic graph in which nodes
are labeled0 or 1 and each nonterminal node is labeled with a
variable. The two edges for each nonterminal node have the
attribute0 or 1. The order in which the variables appear along
each path is fixed and the graph has no isomorphic subgraphs.
The root of the graph represents the function. A polarity vec-
tor is maintained with the FDD. For each nonterminal node
labeledxi, the edge corresponding to the polarity ofxi is the
pole-branch and indicates that the corresponding literal
appears in the cube. The edge with an attribute opposite to the
polarity ofxi is thedc-branch and indicates thatxi is not in the
cube. Each path which starts from the root and terminates at
the terminalone node represents a set of cubes in the GRM
form of f. Any missing node, corresponding to the variablexj,
in the path represents two cubes in the GRM. One cube con-
tainsxj with the appropriate polarity and the other cube does
not havexj. Therefore, a path withk nonterminal nodes stands
for a set of2n-k cubes in the GRM [11].

An important operation in our Boolean matching method is
the equivalence checking of two GRM forms. It’s execution
on FDD is similar to the equivalence checking of two func-
tions in ROBDD forms. Assume the variable orderings are
matched in the two FDDs. Starting from the root, the equiva-
lence check is recursively called at each branch of a node and
terminates at the leaf nodes of the two FDDs. At each node,
we check first to be certain that the variables corresponding to
the nodes in the two FDDs are the same. Then the polarity of
the presently processed variable xi is retrieved from the polar-
ity vectors for each FDD and the dc and pole branches are
identified. Then we check the equivalence of the correspond-
ing dc and pole branches with recursive calls. All operations

and FDD representations can reside in an ROBDD package.

3.3 Prime cubes in the GRM forms
A cubep is prime[4] in f if . We observe that every

variable in a prime cube can assume either polarity without
violating the definition of prime cubes. In [4], Csankyet al
have proved that all the prime cubes occur in every GRM
form of f. Polarities of the variables in prime cubes follow that
of the polarity vector of the residing GRM form. The fact that
all prime cubes are essential makes the set of prime cubes
very unique in identifying a function.

The detection of the prime cubes is very straightforward.
Csankyet al [4] proved thatp is a prime, if, and only if,p is
the only cube that contains all ofS(p). In other words, all the
cubes in any GRM form with maximum cardinality are
primes. These might not be all the primes. In the function

, x2x3 and x3x4 are both primes;x1 is
also a prime but not one of the largest cardinality. Assume that
p is a prime cube, then any cubep´ that satisfies
is not a prime. Ignore all the longest primes and all the cubes
that are composed of subsets of their literals. If there is any
cube left, again, we will look for the longest cubes. This pro-
cess will continue until all the cubes are accounted for.

4. Signatures for Boolean Matching and Symmetry Detection

Signatures are values that characterize the function or the
variables in a function.

4.1 Signatures from on-set weight
The on-set weight of the function can easily be computed

by traversing the ROBDD. For each variablexi, the two

weights and are caledpositive cofactor weight (pcw)

and negative cofactor weight (ncw), respectively. To ensure

consistancy with the matching of GRM, all functions with|f|

> 2n-1 will have weights computed onf.

On the functional level, two types of signatures derive from
this source. The first, functional weight (fw), is the value|f|.
The second,weight distribution vector (wd), is the set of val-
ues indicating how many differentpcw andncw pairs there are
in the function.

On the variable level, the(ncw, pcw) pair is the signature
for each variable.

Theorem 3:Let f andg benp-equivalent and assume thatxi
andyj are the matching variables fromf andg, respectively.
Thenf andg have the same pairs of numbers forpcw andncw.

4.2 Signatures from GRM form
We propose three sets of signatures that are obtained from

GRM form. All the signatures described below requireO(kn)
time complexity, wherek is the number of nodes in the FDD
andn is the number of variables.

4.2.1 Distributions of cubes with different lengths
For each GRM, we first compute an n-by-n matrix of vari-

able inclusion count, VIC = (aij), whereaij is the number of
cubes of lengthi that contain variablexj. At the same time, we
compute incrementally the number of cubes of each length for
the entire function. At the functional level, this becomes ann
element vectorFC, where each entryi contains the number of

fp
B 1=

f x1 x2x3 x2 x3x4⊕ ⊕⊕=

S p′() S p()⊂

fxi
fxi

cubes in the GRM of lengthi. Note that if the cube1 is in the
GRM form, we need to store the information in a separate
location.

The second array on the functional level is FVC computed
from theVIC by summing entries of each column, so that each
entry ofFVC is the number of cubes containing variablexi.

4.2.2 Distributions of cubes with related variables
During the same traversal of FDD as in the above subsec-

tion, we also compute ann-by-n symmetric matrix, the inci-
dence matrix, INC = (aij), whereaij is the number of cubes
containing both variables xi andxj. The diagonal entryaii is 0
if single literal cubexi is not present; else it is1. This is a sig-
nature set at the variable level.

A functional level signatureFINC is also generated from
INC. We compute ann element array by summing up each
row (or column), except the diagonal entry. Each entry in
FINC represents the total frequency of occurrences of each
variable.

4.2.3 Prime cubes
In VIC, each columnj represents the cubes of various

lengths that containxj, for each variablexj. The number of
prime cubes, that containxi, is the last nonzero number in the
column. This value is saved separately as an arrayPCV of all
variables. On the functional level,PC is the total number of
prime cubes. This is easily derivable fromPCV.

There are two more matrices on the variable level: they are
the versions ofVIC andINC calculated only on prime cubes.
They are (1)ann-by-n matrix, PCvic = (aij), whereaij is the
number of prime cubes of lengthi that containxj, and (2) ann-
by-n matrix PCinc = (aij), whereaij is the number of prime
cubes that contains both variables xi andxj.

5. Symmetries and Linear Variables

For any pair of variablesxi andxj, there are four cofactors,

namely, . Equivalence between any two of

the four cofactors, with the choice of negating one of them,

form 12 different symmetry relations (6 from both positive, 6

from negating one of the two). Theoretically, any one or more

of the 12 cases can indicate certain relationships between the

two variables. We can use some of them to partition the input

variable set into different equivalence classes. Checking all

the symmetries can be time consuming. We have discovered

that four among them are very closely related and can be veri-

fied simultaneously in the GRM forms [12]. These four types

of symmetries form transitive relations and are very useful for

the purpose of matching.

5.1 Positive symmetry

5.1.1 The nonequivalence symmetry
A function f exhibits a nonequivalence symmetry (NE sym-

metry) in variablesxi andxj, denoted asxi NE xj or {xi, xj}, if f

remains invariant when the two variables are interchanged, or

equivalently, if . Note that{xi, xj} is the same as{xi,

fxixj
fxixj

fxixj
fxixj

, , ,

fxixj
fxixj

=

xj} in terms of the definition. To detect theNEsymmetry in the

GRM form, note that , if, and only if,

. When the polarities ofxi andxj are the

same,xi NE xj can be detected in the GRM.

5.1.2 The equivalent symmetry
When , the function is said to exhibit equivalence

symmetry (E Symmetry) with respect toxi andxj. It is denoted

xi E xj, or {xi, xj}({xi, xj}). To detectE symmetry in the GRM

form, note that , if, and only if,

. When the polarities ofxi and xj are

different,xi E xj can be detected in the GRM.

Theorem 4:If xi E xj andxj E xk, thenxi NE xk [8].

5.1.3 Mixed symmetries
The transitive condition ofE symmetry tells us thatNE and

E symmetries are related. Using GRM forms, we can detect
both types of symmetry by applying the same procedure. The
only difference is in the polarity combinations of the two vari-
ables. Therefore, we can group variables with the two types of
symmetries together; i.e., if{xi, xj} and {xj, xk}, then{xi, xj,
xk}({xi, xj, xk}) is a positive symmetric set of three variables.

Theorem 5:If xi NE xj andxi E xj, thenxi andxj are both
balanced variables.

This theorem sets up a necessary condition for two vari-
ables to be bothE andNE symmetric.

Theorem 6:Suppose bothxi andxj are unbalanced and both
variables haveM-pole (m-pole) in the polarity vectorV. Then
fV will show the symmetry, if, and only if,xi NE xj or xi E xj.

This theorem makes the detection of positive symmetries
span uniformly across unbalanced variables. The existance of
M-pole GRM is enough to conclude any positive symmetry
among multiple variables. We do not have to check theNE
symmetry andE symmetry separately for each pair of vari-
ables, as the conventional method requires.

Theorem 7:Any positive symmetry occurs betweenxi and
xj in f, if, and only if, they are symmetric in the complementf.

5.1.4 Total symmetry
A function istotally symmetric if every pair of variables in

the function is positive symmetric. This implies that every
pair of variables will be symmetric in a GRM form. For func-
tions withM-pole vector, the following theorem makes check-
ing for total symmetry very simple.

Theorem 8:A functionf is totally symmetric, if, and only if,
there exists a polarity vectorV such that for eachk, ,
fV either contains no cube of lengthk or it contains all cubes of
lengthk.

To check for total symmetry, we only need to verify, for
eachk from 1 to n, whether fM contains0 or cubes of
lengthk, where is the combination ofn choose k.

5.2 Negative symmetry

5.2.1 The skew-nonequivalence symmetry
When , the function is said to be skew-nonequiv-

alence symmetric(skew-NE symmetric) with respect toxi and

fxixj
fxixj

=
fxixj

fxixj
⊕ fxixj

fxixj
⊕=

fxixj
fxixj

=

fxixj
fxixj

=
fxixj

fxixj
⊕ fxixj

fxixj
⊕=

1 k n≤ ≤

Ck
n

Ck
n

fxixj
fxixj

=

xj. It is denotedby xi !NE xj. To detect skew-NE symmetry in

the GRM form, note that , if, and only if,

. When the polarities ofxi and xj

are the same,xi!NE xj can be detected in the GRM [12].

The only difference in the GRM form betweenNE symme-
try and skew-NE symmetry is the extra term 1 in the above
discussion. This term 1 is a single literal cubexi or xj in the
function. The detection can be done similarly to theNE-sym-
metry.

Theorem 9:Any two of the conditionsxi!NE xj, xj!NE xk,
andxi NE xk implies the third.

5.2.2 The skew-equivalence symmetry
When , the function is said to exhibit skew-

equivalence symmetry (skew-E symmetry) with respect toxi

andxj. It is denotedby xi!E xj. To detect skew-E symmetry in

the GRM form, note that , if, and only if,

. When the polarities ofxi and xj

are different,xi!E xj can be detected in the GRM.

The only difference in the GRM form betweenE symmetry
and skew-E symmetry is the extra term 1. This term 1 is a sin-
gle literal cubexi or xj in the function.

Theorem 10:Any two of the conditionsxi !E xj, xj !E xk,
andxi NE xk implies the third.

5.2.3 Mixed symmetries
Theorem 11:If xi !NE xj andxi !E xj both hold, thenf is a

neutral function.
This theorem sets up a necessary condition for two vari-

ables to hold both!E and!NE symmetries. Only the variables
in aneutral function need to be checked for both symmetries.

Theorem 12:Any two of the conditionsxi !E xj, xj !NE xk,
andxi E xk implies the third.

The following theorem is needed for matching in the appli-
cation of technology mapping where negation of the output is
allowed and has to be managed.

Theorem 13:Any negative symmetry occurs betweenxi and
xj in f, if, and only if, it occurs in the complementf.

5.3 Checking all symmetry types among variable pairs
We can verify the positive symmetry on an FDD by check-

ing whether certain two branches are the same; i.e., point to

the same sub-FDD. One branch is the one withxi and without

xj; i.e., , similar to taking cofactor on the ROBDD, where

ti stands for thepole-branch ofxi anddc stands for thedc-

branch ofxj. The other is , where dc stands for thedc-

branch ofxi and tj stands for thepole-branch ofxj. Negative

symmetry is checked after we add (XOR) a1 to any one of the

two branches discussed above.

To check for symmetries in the GRM form, we first parti-
tion the variables by their signatures and then check symme-
tries only on certain candidate groups of variables.

The number of GRMs needed for symmetry detection
depends on the polarity vectors we choose. For checkingNE

fxixj
fxixj

=
fxixj

fxixj
⊕ fxixj

fxixj
1⊕ ⊕=

fxixj
fxixj

=

fxixj
fxixj

=
fxixj

fxixj
⊕ fxixj

fxixj
1⊕ ⊕=

fti dc,

fdc tj,

and skew-NE symmetries, the polarities of the two variables
need to be the same in the GRM; i.e., both1 or both0. For
checkingE and skew-E symmetries, the polarities of the two
variables need to be different in the GRM; i.e.,1 and0, or 0
and 1. There are four possible combinations of polarities
between any two variables, namely,00, 01, 10, 11.We need
one combination from00 and11 and a second combination
from 01 and10. It can be shown that anyn vectors, where the
ith and(i+1) th vectors differ only in theith entry, are suffi-
cient. Thesen polarity vectors contain, between any two vari-
ables, three out of four of the desired combinations.

5.4 Linear variables and linear functions
When a variablexi satisfies , we will obtain

and the function can be expressed as or ,

where the function g is independent ofxi. Variables that sat-

isfy this condition are calledlinear in f. In , x2 is

a linear variable.

Linear variables are very easy to detect in any GRM form,
since the variable can have only one cube of length one in any
GRM form. They also have strong properties. First of all, the
function that contains linear variable(s) must beneutral. Sec-
ond, linear variables are allNEsymmetric andE symmetric to
each other in the function. Hence, once the set of linear vari-
ables is detected, it does not have to be checked for any type
of symmetry. The third property of the linear variables is that
they are prime cubes by definition.

A linear function is of the form ,
where c0 = 0 or 1. A linear function is alwaysneutraland all
dependent variables in a linear function arebalanced. These
two properties make linear functions excellent choices for
breaking the balanced variables while we searching for unique
GRM forms.

6. Boolean Matching Procedure

This section describes the procedure of how thenpn-equiv-
alent classes of functions are identified with GRM forms. For
Boolean matching, our goal is to (1) differentiate every vari-
able in a function in a unique way, and (2) apply (1) to deter-
mine whether two Boolean functions arenpn-equivalent. If a
unique GRM can be derived, then the signatures obtained
from the GRM can be used for (1). Variables with identical
signatures will be further checked for any symmetry. If all
pairs of variables with identical signatures are symmetric in
any one of the four symmetry types, no further identification
on the variables is needed. Then (2) can be accomplished on
the GRMs of the two functions with the variables ordered in
the same way.

6.1 Deciding polarities for all variables
As descrobed in section 3.1, we do the following to assure

the consistency of polarity selections of variables in the two
functions. For functions with|f| > 2n-1, we first derivef, and
for neutral functions, we need bothf andf. TheM-pole is the
choice for each unbalanced variable. If all variables haveM-
poles, then the function can be folded and a unique GRM is
obtained. If balanced variables and unbalanced variables exist,
then the unbalanced variables will be folded first. The func-

fxi
fxi

= fxi

B 1=
f xi g⊕= f xi g⊕=

f x2 x1x3⊕=

f c0 x1 … xn⊕ ⊕ ⊕=

tion is now an XOR sum of cubes of mixed polarities. Count-
ing the occurrences ofxi andxi in all cubes can still show the
weight unbalance or balance of the remaining variables. Note
that the polarity vector obtained with this process is still con-
sistent, as long as the rule is applied to every variable. The
function can be folded with respect to the variables whose
polarities were decided to obtain a unique GRM. This process
is repeated if a function still has balanced variables. Now,
either (1) polarities of all the variables have been decided or
(2) a set of variables, with nondecreasing size, remain bal-
anced throughout this process.

6.2 Adding linear function
There are cases where all variables are balanced in the

function or some variables are balanced as described above.
To break the balanced variables, a linear function that contains
all and only the balanced variables is added to the function.
The new function is used to determine the polarities of the
balanced variables.

6.3 Additional GRMs
There are three cases where additional GRMs are needed.
The first case is for the output negation ofneutral functions.

If a unique GRM has been obtained, then a new GRM will be
determined with the polarity of every variable reversed. This
is based on Theorem 2. The signatures should be generated
from both GRMs and they are compared during the Boolean
matching process to decide which output phase should be
used. Note that all the symmetry conditions remains the same,
because of Theorem 7 and Theorem 13.

The second case that requires additional GRMs is for more
symmetry checking. This is when there are variables that can
not be differentiated or when we need to determine all four
symmetry types for all pairs of variables. The maximum num-
ber of GRMs isn. Note that each new GRM can be incremen-
tally computed from the original GRM.

The last case is when a unique GRM cannot be obtained.
The problem is with the balanced variables. If none of the
aforementioned methods can break the balance and the
remaining balanced variables are not in any symmetric set,
then some exhaustive search is needed. Instead of exhaustive
permutation among the remaining subsets of variables, we can
derive a minimum set of GRMs that can still manage the
matching ofnpn-equivalent functions. A set of GRMs can be
derived as follows: after the process of findingM-pole, a new
functiongi is created for each difficult variablexi by adding a
single literal cube to the functionf. After obtaining the GRM
for gi, addingxi back togi will derive the GRM forf. This will
be done for both polarities ofxi. In technology mapping, for
hard-to-match functions, the set of GRMs and their signatures
are computed beforehand. A function can match the library
cell if it can match any one of the GRMs.

In the worst case, all variables are balanced throughout the
process without any symmetry and we will need2n GRMs.2n
is the upper bound in the number of GRMs needed for Bool-
ean matching ofnpn-equivalent functions. However, this is a
pessimistic upper bound since balanced variables are likely to
form some type of symmetries among themselves.

7. Experimental Results

To verify the efficiency of our approach, we have tested it
on a set of MCNC benchmark cases. The test was run on a
DEC5000. Each MCNC benchmark was treated as a set of
single output functions and tested separately. Our intention
was to differentiate all variables in the functions. For logic
verification, this is certainly not necessary, as long as every
variable can be differentiated in one of the output functions, it
would have sufficient information to order the variables for
the entire circuit and the rest can be done on the reordered
ROBDDs of the source and target circuits. In the cases we
tested, most of the variables are differentiated in few of the
output functions. As stated earlier, we do compute functional
level signatures for output matching.

The program terminates when all variables are differenti-
ated in the cofactor weight or in a unique GRM with the
detection of symmetries. Additional GRMs are generated for
symmetry check if some variables are not yet differentiated.

Table 1 lists the MCNC benchmark cases. Column#I and
#O stand for the number of primary input and primary output,
respectively.#h is the number of output functions that contain
nondifferentiable variables. The columntime is the average
time per output function for each benchmark. Note that the
vast majority of the output functions have a unique GRM. The
rest of the functions with all variables differentiated have up
to four GRMs.

For the benchmarks with hard output functions, we have
also investigated all variables for the purpose of logic verifica-
tion. Table 2, column#hi, shows the sizes of each subset of
variables that are not differentiated in any output function.
Multiple subsets of the same size are shown with the number
of sets outside the parentheses.

8. Conclusion

In this paper, we proposed a new method for Boolean
matching. The GRM forms of Boolean functions are used as
tools for matching under input permutation, input negation
and output negation. We also incorporate signatures and sym-
metries for Boolean matching. The signatures obtained from
the GRM forms are also used in the symmetry detection. We
have shown that all four types between every pair of variables
can be found by checking at mostn GRMs. The total symme-
try of functions can be checked with simple arithmetic com-
putation.

With our method, most of thenpn-equivalent classes only
need one GRMs for the purpose of Boolean matching.

Acknowledgement:This work was supported in part by the National
Science Foundation under Grant MIP 9117328 and in part by AT&T Bell
Laboratories and Digital Equipment Corporation through the California
MICRO program.

REFERENCES

[1] R.E. Bryant, “Graph-based Algorithms for Boolean Functions Manipu-
lation”, IEEE Trans. Computers, vol. C-35, pp. 677-691, Aug. 1986.

[2] J.B. Burch and D.E. Long, “Efficient Boolean Function Matching”,
Proc. Intl. Conference. on Computer Aided Design ‘92, pp. 408-411, Nov.
1992.

[3] D. I. Cheng and M. Marek-Sadowska, “Verifying Equivalence of Func-
tions with Unknown Input Correspondence”,Proc. European Design Auto-
mation Conference ‘93, pp. 81-85, Feb. 1993.

[4] L. Csanky, M. Perkowski and I. Schaefer, “Canonical Restricted

Mixed-Polarity Exclusive Sums of Products”,Proc. IEEE International Sym-
posium on Circuits and Systems ‘92, pp. 17-20, May 1992.

[5] U. Kebschull and W. Rosenstiel, “Efficient Graph-Based Computation
and Manipulation of Functional Decision Diagrams”,Proc. European Design
Automation Conf. ‘93, pp. 278-282, Feb. 1993.

[6] Y.-T. Lai, S. Sastry and M. Pedram, “Boolean Matching using Binary
Decision Diagrams with Applications to Logic Synthesis and Verification”,
Proc. Intl. Conf. on Computer Design ‘92, pp. 452-458, Oct. 1992.

[7] J. Mohnke and S. Malik, “Permutation and Phase Independent Boolean
Comparison”,Proc. European Design Automation Conf. ‘93, pp. 86-92, Feb.
1993.

[8] A. Mukhopadhyay, “Detection of Total or Partial Symmetry of a
Switching Function with the Use of Decomposition Charts”,IEEE Trans.
Elec. Computers, vol. EC-16, pp. 553-557, Oct. 1963.

[9] H. Savoj, M. J. Silva, R. K. Brayton and A. Sangiovanni-Vincentelli,
“Boolean Matching in Logic Synthesis”,Proc. European Design Automation
Conf. ‘92, pp. 168-174, Feb. 1992.

[10] U. Schlichtmann and F. Brglez, “Efficient Boolean Matching in Tech-
nology Mapping with Very Large Cell Library”,Proc. Custom Integrated Cir-
cuits Conf. ‘93, pp. 3.6.1-3.6.6, May. 1993.

[11] C. Tsai and M. Marek-Sadowska, “Efficient minimization algorithms
for fixed polarity AND/XOR canonical networks”,Proc. 3rd Great Lake
Symp. VLSI 1993, pp. 76-79.

[12] C. Tsai and M. Marek-Sadowska, “Detecting Symmetric Variables in
Boolean Functions using Generalized Reed-Muller Forms”,accepted to
IEEE International Symposium on Circuits and Systems, ‘94.

TABLE 1 Results of MCNC benchmark test cases

test case #I #O #h time test case #I #O #h time
5xp1 7 10 0 0.065 f51m 8 8 0 0.081
9sym 9 1 0 0.650 frg1 28 3 0 2.444
C17 5 2 0 0.025 frg2 143 139 36 2.387
alu2 10 6 0 0.325 i1 25 16 0 0.021
alu4 14 8 0 0.498 i6 138 67 0 0.046

apex6 135 99 17 0.193 i8 133 81 0 0.726
apex7 49 37 14 2.136 lal 26 19 0 0.086

b1 3 4 0 0.013 ldd 9 19 0 0.034
b9_n2 41 21 0 0.102 misex2 25 18 1 0.041

bw 5 28 0 0.038 misex3c 14 14 0 0.377
c8 28 18 8 0.091 parity 16 1 0 0.200
cc 21 20 0 0.020 pcle 19 9 0 0.048
cht 47 36 28 0.038 pm1 16 13 0 0.027

cm138a 6 8 0 0.008 rd84 8 4 0 0.471
cm150a 21 1 1 2.200 sao2 10 4 2 0.313
cm151a 12 2 2 0.400 sct 19 15 0 0.076
cm162a 14 5 0 0.083 t481 16 1 0 20.78
cm163a 16 5 0 0.057 tcon 17 16 0 0.011
cmb_n 16 4 0 0.029 term1 34 10 1 2.505
con1 7 2 0 0.034 ttt2 24 21 0 0.140

cordic 23 2 0 36.92 vda 17 39 0 0.318
count 35 16 0 0.159 vg2 25 8 4 100.8

cu 14 11 1 0.055 x1 51 35 0 1.110
des 256 245 84 1.302 x2 10 7 0 0.043

duke2 22 29 4 0.304 x3 135 99 17 0.209
example2 85 66 11 0.088 x4 94 71 0 0.118

f2 4 4 0 0.029 z4ml 7 4 0 0.083

TABLE 2 Sizes of non-differentiable sets of variables

test case #hi test case #hi test case #hi test case #hi
apex6 (2) cm150a (4, 16) duke2 0 sao2 0
apex7 (6) cm151a (3, 8) example2 (2)x8 term1 (2)

c8 0 cu (2, 4) frg2 0 vg2 0
cht (2)x5 des 0 misex2 0 x3 (2)

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

