
BDD Variable Ordering for Interacting Finite State Machines

Adnan Aziz Serdar Taşıran Robert K. Brayton�

Email: fadnan,serdar,braytong@cs.berkeley.edu
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720, USA

Abstract
We address the problem of obtaining good variable orderings for the
BDD representation of a system of interacting finite state machines
(FSMs). Orderings are derived from the communication structure of
the system. Communication complexity arguments are used to prove
upper bounds on the size of the BDD for the transition relation of the
product machine in terms of the communication graph, and optimal
orderings are exhibited for a variety of regular systems. Based on the
bounds we formulate algorithms for variable ordering. We perform
reached state analysis on a number of standard verification bench-
marks to test the effectiveness of our ordering strategy; experimental
results demonstrate the efficacy of our approach. The algorithms de-
scribed in this paper have been implemented in HSIS, a hierarchical
synthesis and verification tool currently under development at Berke-
ley.

1 Introduction
Verification of a design is typically done by modelling it as a finite
state machine. Properties to be verified can be specified in a tem-
poral logic[1], or by a task automaton[2]. Verification algorithms
proceed by performing some form of traversal of the state transition
graph[3]. Large designs arising in practice are invariably the product
of small interacting finite state machines. Industrial experience in-
dicates that the largest component machines rarely have more than a
hundred states[4]. However forming the product machine leads to the
state explosion problem[5, 6]; given n Finite State Machines (FSMs)
fM1;M2; : : : ;Mng, the number of states in the product machine is
the product of the number of states in each individual machine. As
a result algorithms that explicitly operate on the state space of the
product machine may have exponential time and space complexity.

A Binary Decision Diagram (BDD) [7] is a graph based data struc-
ture used for representing logic functions. It can be used to represent
the transition relation of a binary encoded sequential machine implic-
itly by forming the corresponding characteristic function [8, 9]. This
representation can capture the regularity in the transition structure of
the machine, and its canonicality makes it very useful in fixed point cal-
culations. BDDs are now routinely used in formal verification[10, 11].
The success of such algorithms depends critically on the size of the
resulting BDD’s which is very sensitive to the variable ordering cho-
sen. Given a logic function, the problem of finding the ordering which
leads to a minimum sized BDD for the function is co-NP complete.

In this paper we address the variable ordering problem for building
the transition relation of a set of interacting finite state machines. Us-
ing communication complexity[12], upper bounds on the size of the
BDD for a specified ordering are derived. Similar results have been
shown for combinational circuits in [13, 10] and our work was in-
spired by these. Indeed the transition relation for the product machine
can be viewed as a logic circuit which takes the conjunction of the

�This research was supported by SRC 93-DC-008

transition relations of the component machines, and the techniques of
[10] yield upper bounds on the BDD size. We derive a stronger bound
and our derivation differs significantly from that of [10]. We stress
that we obtain orderings that minimize the representation of the tran-
sition relation of the product machine, and as such may not be good
for representations of the reached state sets, or equivalent state sets.
Indeed there are examples of systems where orderings exist such that
the BDD for the transition relation is linear sized, whereas the BDD
for the reached state set is exponential sized under any ordering. How-
ever our experimental results indicate the orderings we obtain work
well in reached state computations. Furthermore, dynamic variable
reordering can be used if the BDDs for the reached state sets become
unwieldy.

Previous work in this area deals with ordering strategies for combi-
national [14] and sequential logic circuits [8, 15]. Touati [8] suggests
deriving an ordering on the next state variables first using a heuristic
based on minimizing the cumulative variable support of the latches.
The inputs and present state variables are interleaved with the next
state variables; their ordering is derived by standard DFS ordering
on the next state logic [14]. Jeong [15] gives efficient algorithms for
finding BDD orderings based on the algebraic structure of the circuit.
Another approach is based on dynamic ordering[16]. In this the BDD
package automatically invokes a reordering routine which seeks to
minimize the total number of BDD nodes by permuting small sets of
adjacent variables. All these approaches are largely heuristic and do
not yield a priori bounds.

In section 2 the basic notions of product machines and process
communication graphs are defined. We prove upper bounds on the
BDD size in terms of communication graph parameters. We character-
ize a large variety of interconnect structures for which asymptotically
optimum orderings are derived. We also discuss interleaved order-
ings, and compare our approach with that of [8]. In section 3, we
propose various algorithms based on these bounds for the variable
ordering problem. In section 4 we present some results based on these
algorithms. We conclude by discussing various extensions.

2 Theory
2.1 Definitions
In this section we define finite state machines and the semantics of
their interaction. The definitions are motivated by the desire to model
hardware designs. At the early stages of VLSI design, components
may be incompletely specified, and the wires and states may not be
encoded. Our definition allows this flexibility. Non-determinism is
commonly used to abstract the environment or parts of the designs,
and is reflected in the use of transition relations rather than functions
to represent the state dynamics. Basically, we are dealing with non-
deterministic Moore machines with transition predicates on the edges.

Definition 1 A finite state machine with state space Q, inputs I ,
and output alphabetO is characterized by its transition relation T �



Q � I � Q and output relation Θ � Q�O

Systems are described as collections of hardware units, commu-
nicating through a set of wires, and driven in lockstep by a single
clock; this is the basis for the definition of product machine. Consider
a system of n interacting machines M1;M2: : : : ;Mn . We assume
there are no external inputs. Any external inputs Iext can be modeled
by adding a one state FSM such that this FSM non-deterministically
outputs any of the inputs from Iext. Each component machineMi has
present state xi, next state variable yi, and takes as input some subset
of outputs of the other machines.

Definition 2 Given n machines M1;M2; : : : ;Mn, Mi =

(Qi; Ti;Θi), the product machine M = M1 
 M2 
 : : : 
 Mn

is the machine on state space Q = Q1 �Q2 � : : :�Qn and output
spaceO = O1 � O2 � : : :�On, characterized by

� Output relation

Θ(x;o) =

nY

k=1

Θk(xk; ok)

� Transition relation

T (x; y) =

nY

k=1

[Tk(xk; i; yk) �Θk(xk; ok) ]

where the present state variable is x = [x1x2 : : : xn], the next
state variable is y = [y1y2 : : : yn], and the output variable o =

[o1o2 : : : on].. We assume the sets Oi;Oj are disjoint for all i; j.

Binary Decision Diagrams may be used to represent the character-
istic function of the transition relation, the output relation, and set of
states encountered in verification.

The problem now addressed is: Given machine M as previously
defined, find a good variable ordering for T , using only the commu-
nication structure, i.e. without making use of the internal details of
the component machines. We start by restricting attention to the class
of variable orderings where variables corresponding to different ma-
chines are not interleaved, i.e. only orderings which are permutations
of f< ~x1; ~y1 >; : : : ;< ~xn; ~yn >g, allowing arbitrary permutations
within the variables of a given machine. In section 2.3 we discuss the
motivation for restricting our attention to these orderings and examine
interleaved orderings.

As a first step towards solving this problem we use communication
complexity to prove upper bounds on the size of the BDD correspond-
ing to a permutation of the above form. The following definition is
used to make the notion of bit communication complexity precise.
To illustrate our approach we use a simplified notion of finite state
machine, where the machine output is simply the state. Our results
and algorithms are easily extended to machines with outputs that are
functions of the state.

Definition 3 Given machine M as above, a directed edge labeled
graph GM is defined as follows: There is a vertex vj for each com-
ponent machine Mj . If the transition relation for Mj depends on the
state of Mi, we add edge ei;j labelled with ~xi. We refer to this graph
as the process communication graph (PCG).

M2 M6 M3 M1 M5 M4

Figure 1: PCG for a system of interacting machines; edgesare labelled
with the present state of originating machine. The machines follow
the permutation � = (413652). We are considering k = 4. w�

f (4) =j
x1 j + j x3 j + j x2 j, w�

r (4) =j x5 j + j x4 j. j xi j is the bit width
of variable xi.

2.2 Upper Bounds
We first develop some intuition behind the bounds derived in this
section As an example let M;� be as given in figure 2. T (~x; ~y)

is the product
Q6

i=1 Ti . The number of BDD nodes at level 4 is
bounded as follows. Split T into the product of (T2T6T3T1) and
(T5T4). The number of cofactors of T with respect to the variables
in V = fx2; y2; x6; y6; x3; y3; x1; y1g is no more than the number
of cofactors of (T2T6T3T1) with respect to V times the number of
cofactors of (T5T4) with respect to V .

(T5T4) has only a limited number of variables (w�
f (4),defined as

below) which are being cofactored in its support. There are at most
2w

�
f
(4) possible for cofactors of (T5T4).
(T2T6T3T1) has only a limited number of variables (w�

r (4), defined
as below) remaining after cofactoring. There are at most 22n functions

on n boolean variables, so there are at most 22w
�
r (4)

possible cofactors
of (T2T6T3T1).

Hence the BDD for T (~x; ~y) under the non-interleaved ordering

derived from � has no more than 2w
�
f
(4)

� 22w
�
r (4)

nodes at level 4.
This approach can be extended to derive bounds at each level of the
BDD and hence on the total size of the BDD.

Theorem 2.1 Let M be a system of n interacting machines
M1;M2; : : : ;Mn, and let � be a permutation on f1; 2; : : : ; ng. Then
the number of distinct cofactors of T (~x; ~y) with respect to the vari-
ables in f~x�(1); ~y�(1); ~x�(2); ~y�(2); : : : ; ~x�(k); ~y�(k)g is bounded by

2w
�
f
(k)

� 22w
�
r (k) , where

w
�
f (k) = number of distinct bits communicated from

fM�(1); : : : ;M�(k)g to fM�(k+1); : : : ;M�(n)g

w
�
r (k) = number of distinct bits communicated from

fM�(k+1); : : : ;M�(n)g to fM�(1); : : : ;M�(k)g

Proof: Refer to [17] for a detailed proof.
As a corollary to the above theorem we get an upper bound on the

number of nodes for the BDD for T (~x; ~y):

Corollary 2.1 The number of nodes in the BDD for T (~x; ~y) for the
ordering ~x�(1) � ~y�(1) � : : : � ~x�(n) � ~y�(n), is bounded above by
:

S
�
=

nX

i=1

(22(jx�(i) j) � 2w
�
f
(i+1)

� 22w
�
r (i+1)

) (1)



A looser bound is

M
�
= n � c � 2w

�
f � 22w

�
r

(2)

where

� w�
f is the maximum number of forward crossing bits across any

partition induced by �

� w�
r is the maximum number of reverse crossing bits across any

partition induced by �

� c depends only on the maximum number of state bits in some
machine

Proof:
From Theorem 2.1, it follows that the number of nodes in the

BDD for T (~x; ~y) at level k + 1, where the variables from the FSMs
M�(1); : : : ;M�(k) have been cofactored out, is bounded by 2w

�
f
(k)

�

22w
�
r (k) . The total number of nodes at all the levels between level k

and level k + 1 is no more than 22(jx�(i) j) times the number at level
k. Summation over k yields the result.
Remark: Given k, there are always choices of the individual machines
such that there are at least 2w

�
f
(k) distinct cofactors of T (~x; ~y) with

respect to f~x�(1); ~y�(1); ~x�(2); ~y�(2); : : : ; ~x�(k); ~y�(k)g, ie the bound
of Theorem 2.1 is tight in the first term. Details are available in [17].

2.3 Interleaved Orderings
Typically, communication within a machine is dense, ie each bit of the
next state depends on all the present state bits, since otherwise the ma-
chine would have a trivial factorization. Reasoning as in Corollary 2.1,
it would seem that interleaving the variables leads to increased commu-
nication complexity and higher bounds. This suggests that variables
corresponding to a single machine be ordered contiguously.

However, there are situations where interleaving state variables
from different machines may be superior to a non-interleaved order-
ing. This can happen when the given partitioning of the system into
interacting FSMs may not yield a sparse communication structure.
Consider a product machine in which a component machine has a
transition relation T = [y�̄(xA1 x

B
1 + xA2 x

B
2 + : : :+ xAnx

B
n )], where

xAi ; x
B
i are the present state bits from machine MA and MB . In this

case, a non-interleaved ordering will result in an exponential sized
BDD for T , where as the ordering < xA1 ; x

B
1 ; : : : ; x

A
nx

B
n >, is opti-

mum and yields a linear sized BDD for T .
Interleaved orderings are also superior in the context of equivalent

state computations. If states are equivalent only to themselves, the
equivalence predicate is equality. For the equality relation a noninter-
leaved ordering is exponential, and an interleaved ordering is linear.

2.3.1 Comparison with Touati’s heuristic

Touati et. al.[8] consider a BDD based approach to the problem of
the equivalence of sequential hardware consisting of latches and logic
gates. Their heuristic for variable ordering proceeds by first finding
a permutation �� on the latches which minimizes the support, i.e.
minimizes the following cost function:

cost(�) =
X

1�j�n

j
[

1�i�j

supp(f�j ) j

where j A j denotes the cardinality of A, and supp(fi) is the set of
variables in the support offi. Malik’s heuristic [14] is used to order the

M1

M2 M3

M2(n�1) M2(n�1)+1 M2n�1

Figure 2: An example on which Touati’s heuristic fails

supports of the fi; supp(fi) individually. Finally input and output vari-
ables are interleaved as follows: supp(f�(1)); y�(1); : : : ; supp(f�(n)�S

1�i�n�1 supp(f�(i))); y�(n).
Naturally, this ordering procedure can be used to derive orderings

for systems of interacting FSMs. The component machines correspond
to latches, and their fanins correspond to the support. cost(�) can be
calculated directly from the process communication graph. However
cost(�) is not directly correlated to the communication complexity of
�. Consider the system of FSMs interacting through a binary tree as
shown in Figure 2. The ordering<< M1;M2; : : : ;M2n�1 >> is op-
timum for cost(�) but has high communication complexity as is seen in
the partition U = f1; 2; : : : ; 2n�1 � 1g, V = f2n�1; : : : ; 2n � 1g,
for which wf = 2n�1. In fact, there exists an ordering with low
communication complexity, namely the ordering returned by lexico-
graphically first DFS, for which wf = 2. Our experimental results
on actual BDD size in section 4.2 demonstrate the failure of Touati’s
heuristic on systems with a tree-like PCG.

2.4 Optimum Orderings
We can use the bounds derived above to get optimum variable order-
ings for a variety of sparse interconnect structures. The following
lemma shows that for certain recursive structures whose communica-
tion complexity is independent of the number of nodes in the graph,
the transition relation for the product machines grows linearly in n.

Lemma 2.1 Let M(n) be the composition of n component machines
fM1; : : : ;Mng . Suppose there exist constants w�

f , w�
r , and b such

that for for all n,

1. there exists an ordering ��n of the vertices of the PCG such that
for each k

w
��
n

f (k) � w
�
f

w
��
n

r (k) � w
�
r

2. the state of each Mn
k can be encoded in not more than b bits

Then for all n there is exists a variable ordering such that the BDD
for T (n) = T1 � T2 : : : � Tn has at most c � n nodes, where c is
independent of n.

Proof: We use the bound of corollary 2.1, (equation 2)

M
�
= n � 22 maxi(jxi j �max

k
(2w

�
f
(k)

� 22w
�
r (k)

)

For each machineMn using an ordering defined by ��n leads to a BDD
for Tn such that

j Tn j � n � 22�maxkjxk j �max
k

(2w
��n(k)

f � 22w
��n
r (k)

)



Linear Array Binary TreeRing

Figure 3: A variety of sparse interconnect structures commonly en-
countered in verification

By the hypothesis of the lemma, maxk j xk j� b, maxk w
�
�

n

f
(k) �

w�
f , and maxk w

��n
r (k) � w�

r .
Therefore

j Tn j � n � 22�b
� 2w

�

f � 22w
�

r
� c � n

where c = 22�b � 2w
�

f � 22w
�

r

Armed with this lemma, we can find variable orderings for a variety
of interconnect structures (parametrized by n) that yield linear sized
BDDs, and so are optimum within constants. Figure 3 illustrates some
communication graphs which satisfy the hypothesis of the lemma.

3 Algorithms
The upperboundsS� andM� of section 2 can be used to obtain a good
variable ordering for the transition relation of a given product machine
M composed of fM1; : : :Mng. We first extract the process commu-
nication graph (PCG). The parameters in the bounds can be calculated
directly from the PCG. We then find a permutation �� on the vertices
of the graph that minimizes the bound. A non-interleaved variable
ordering corresponding to � is simply one in which all variables cor-
responding to the machine M��(1) appear first (in any internal order
amongst themselves), followed by all variables from M��(2), etc.

Finding an optimum permutation on the vertices of the commu-
nication graph is a hard problem, akin to the Travelling Salesman
Problem. We conjecture that it is NP-complete. Exhaustive search
has factorial complexity, and dynamic programming yields an algo-
rithm with complexityO(n32n). We now discuss an exact branch and
bound procedure and some heuristics for finding good permutations.

3.1 Branch and Bound
Consider the problem of obtaining a permutation �� which minimizes
S� =

Pn

i=1 gi(�). This problem lends itself to a branch and bound
algorithm solution. This can be better understood by a closer look at
the sum for S� . We have to minimize S� over all permutations. Let
S�̂ be the smallest sum obtained from the permutations considered
so far. For the next permutation �0 being examined, if for some kPk

i=1 gi(�
0) � S�̂ , then the summation can be terminated. Moreover,

any permutation that has < �0(1) : : : �0(k) > as a prefix can be
eliminated. This provides a way to prune the search tree. In fact
any permutation that has the FSMs above in that order can be pruned.
But it is expensive to store and check for this information. The same
formulation yields a branch and bound algorithm to find a permutation
minimizing M� .

To increase the probability of pruning, we first calculate a good
initial guess. This is explained in more detail in the next subsection.
Then, we go over all permutations lexicographically, pruning wherever
possible. The exhaustive search tree is never constructed, since this
would require excessive memory and time. Instead, when a “bad” (in
the sense describedabove) prefix is discovered, the algorithm branches
to the next permutation in lexicographic order which does not have
the bad prefix.

The input to the branch and bound algorithm is a process com-
munication graph. Observe that all parameters in the bound can be
calculated directly from the PCG. For each permutation examined, for
each k, the number of bits crossing the cut in the forward and reverse
directions are counted separately. Then the cost for the cuts so far for
that permutation is calculated. Either pruning takes place before all
cuts are examined, or the permutation considered is the best seen so
far. The algorithm proceeds in this manner until all permutations are
exhausted.

The memory used by this algorithm is linear in the size of the
process communication graph. The algorithm can take factorial time
in the worst case. It was necessary to experiment with the algorithm
to see how effective the pruning is at reducing the search.

3.2 Heuristics
Several schemes, with varying degrees of sophistication, exist for
picking the initial guess for the optimum permutation. The simplest
is to choose vertices one at a time in the greedy sense, ie, choose
the next vertex to minimize the partial cost. This greedy approach
can be extended to an algorithm that has bounded look-ahead k. The
algorithm proceeds recursively by computing all possible choices for
the first k vertices in the permutation. It chooses the best among these
and recursively completes the ordering. While improving the quality
of the initial guess, look-aheads of k increase the time complexity of
the algorithm by adding a factor of nk . This is acceptable compared
with the complexity of the branch and bound algorithm, since a good
starting point can prune the search space drastically. When n is large,
the initial guesses themselves can be used as approximate solutions.
We implemented a simple greedy algorithm to minimize S� , and
algorithms with look-aheads of 2 to minimize S� and M� .

4 Results
4.1 Computing an Optimum Permutation
The branch and bound algorithms that find permutations that minimize
S� andM� were implemented using a greedily generated initial guess.
Still for more than 10 to 15 vertices in the communication graph, the
exact branch and bound algorithm was too slow. Our experiments
show that a permutation which minimizes S� generated using a look-
ahead of 2 yields a solution that is sufficiently close to being optimum
and has negligible running time. When the communication graph has
a regular structure (e.g. a mesh, tree, ring, etc), this permutation is
often optimum. Thus, this is the method of choice.

4.2 Correlation between bound and actual size of
BDD for Transition Relation

For assessing the usefulness of our bound as a measure of the actual
BDD size, and checking the validity of assumptions, we needed a
set of representative examples to test our algorithms. We artificially
constructed several product machines according to various intercon-
nection schemes. In each case the component machines had a small
state space and a randomly chosen (possible nondeterministic) transi-
tion relation.

We extracted the process communication graphs, and found vari-
able orderings as follows:

ran vars All variables are ordered randomly

ran comps Non-interleaved ordering where component machines are
ordered randomly

touati heur Interleaved ordering as described in section 2.3.1

min comm Non-interleaved order where components are ordered to
minimize communication complexity as described in section 2.1



EXAMPLE ran comps touati heur min comm
Acyclic > 106 5,336 1,188
Cyclic > 106 21,174 3,185
Few Ran C > 106 35,444 1,085
RT > 106 2,455 421
Mesh20 > 106 21,573 9,203
Tree31 > 106 75,034 1,134
Ran Mesh 43,727 17,435 6,511
AcyclicII > 106 112,379 10,756
CyclicII > 106 583,603 79,199
ran vars: In all cases> 106 BDD nodes

Table 1: Number of BDD nodes for the TR of the product machine;
in all cases time to find the ordering was negligible

0

3

6

9

12

15

18

21

24

27

20 40 60 80

10

20

30

40

50

60

70

80

90

0

0 5 10 15 20

BDD Size

0

BDD Size

1000 nodes 1000 nodes

log(BOUND) log(BOUND)

Acyclic.sr Tree.sr

Figure 4: Correlation between bound S� and actual BDD size for
several permutations �.

As seen in Table 1, in all cases, our approach significantly reduces
the BDD size as compared with random orderings. All algorithms
took only a few seconds to compute the ordering. The running time
was negligible when compared to the time taken to read in the example
and build the BDD. Note that Mesh20, which has high communica-
tion complexity (as shown in [17]) had a large BDD compared to
Tree31 which has low communication complexity (as discussed in
section 2.4). Also observe that Touati’s heuristic does particularly
badly on Tree31 and RT, corroborating the discussion of section 2.3.1.
We also experimented with some interleaving, similar to that given
by Touati’s heuristic. In many cases this allowed further reduction
in BDD size. We concluded that ordering based on minimizing the
communication complexity,while allowing some heuristic interleaving
works best in practice.

The bound S� derived in Corollary 2.1 is an upper bound. To
examine the relationship S� between the actual number of nodes in
the BDD for the transition relation under the non-interleaved ordering
derived from �, we took several different permutations of the compo-
nents and computed the bound. We then built the BDD and plotted
the actual BDD size against the bound. The plots are seen in figure 4;
they demonstrate a strong correlation between the bound and the actual
BDD size.

4.3 Performance on Reachability Analysis
As mentioned in the introduction, an ordering which minimizes the
size of the BDD representing the transition relation does not nec-
essarily lead to an ordering which is good for general verification
calculations. Reached state computation is a core routine in verifi-

EXAMPLE min comm
TR size Max-reached Time-reached (sec)

Dynachek3 332 37 2.0
DME16 4,982 45 1.2
DinPhil32 4,863 304 26.0
MilSched16 5,003 938 33.6
Fis5 22,227 27,901 1145.4
2MDLC 24,487 1,335 635

Table 2: Results on reached state analysis – Number of BDD nodes
for TR, largest reached state set, and time to perform reached state
analysis

cation. A truer measure of the effectiveness of our ordering is given
by our performance on reached state analysis for realistic verification
benchmarks.

In Table 2 we describe results for reached state analysis using
ordering derived from min comm on common verification examples.
We computed the reached state set in the most direct fashion,namely by
directly computing the image of the reached state set under the global
transition relation. There are more sophisticated ways of computing
the image that involve using don’t cares to minimize the BDDs, and
partitioned transition relations to avoid building the full transition
relation. However this simple experiment is enough to give us a good
idea of the performance of our ordering.

Specifically we report the following three statistics—

TR size : Number of nodes in BDD for transition relation

Max-Reached : Number of nodes in largest BDD representing a set
of states encountered during reached state computation

Time-Reached : Time taken to perform reached state computation

The ordering given by touati heur was identical to that given by
min comm on all examples except for DME15 where it was orders
of magnitude worse. This is explained by the fact that DinPhil32,
MilSched16, Fis4 have ring like structure, and touati heur will find
the asymptotically best ordering for rings. However, as pointed out in
section 2.3.1, touati heur is especially bad for trees, and this is brought
across in DME15. Also, the best ordering that could be obtained by
hand for Fis4 was much worse than that generated by min comm.

5 Conclusion
We addressed the problem of deriving good variable orderings for the
BDD representation of a system of interacting finite state machines
for formal verification applications. Towards this end we introduced
the notion of the process communication graph and proved results
connecting BDD size to the communication graph. We justified the
decision to derive orderings based only on knowledgeof the communi-
cation graph. We use the bounds to formulate fast heuristic algorithms
for variable ordering. The experimental results show good correlation
between the BDD size predicted by the bound and the actual BDD
size, and comparing our results on the transition relation size with
orderings derived from Touati’s heuristic validates our decision to use
orderings which minimize the communication complexity through the
communication graph. Our performance on reached state analysis for
verification benchmarks further demonstrates the effectiveness of our
approach.



6 Future Work
The BDD variable ordering problem for combinational logic circuits
still bears scope for further research: consider the recent results of [16,
18]. As shown in the original inspiration for our work [13, 10],
circuit structure can be used to bound the size of the BDDs for the
outputs. As in the case of interacting FSMs, communication between
gates can be analyzed to derive variable orderings that minimize the
bound. We are investigating the correlation between the bound, and
actual BDD size. Since the number of gates is large, even greedy
algorithms such as those described in section 3 take prohibitively
long; we plan to experiment with graph partitioning and hierarchical
clustering procedures to derive orderings on the gates that minimize
communication.

The quantification ordering problem arises in various contexts,
including performing reached state analysis [3, 8] and composition
of combinational relations [19], and is defined as follows: Given
BDDs for a set of terms T1; T2; : : : ; Tn and variables x1; x2; : : : ; xk ,
efficiently compute the following expression:

T = 9x1; x2; : : : ; xk [

nY

i=1

Ti ]

Computing T by first forming [
Qn

i=1
Ti ] is frequently infeasible, as

the BDDs for intermediate stages of the product can be very large. As
a result, research has focussed on building T incrementally by forming
products of subsets of the Ti’s and smoothing out variables that do not
appear in terms outside the subset.

Let � be a permutation on the variables x1; x2; : : : ; xk . � leads to
a natural schedule for forming T – take all terms depending on x�1 ,
conjunct them and quantify out x�1 , and recursively continue this
procedure with the conjunctant and the remaining terms and variables.
Given a variable ordering � and a set of BDDs T1; T2; : : : ; Tn , the
techniques given in this paper can be used to derive an upper bound
on the size of the BDD for [

Qn

i=1 Ti ] under the variable ordering �.
Thus given any schedule we can a priori obtain a bound on the size of
the largest BDD encountered in forming T according to this schedule.
In the spirit of this paper, we can obtain a schedule that minimizes
the bound. We plan to implement and experiment with schedules that
minimize the bound.

References
[1] Z. MANNA AND A. PNEULI, “VERIFICATION OF CONCURRENT

PROGRAMS: THE TEMPORAL FRAMEWORK,” IN The Correctness
Problem in Computer Science (R. S. BOYER AND J. S. MOORE,
EDS.), INT. LECTURE SERIES IN COMPUTER SCIENCE, PP. 215–
273, LONDON: ACADEMIC PRESS, 1981.

[2] Z. HAR’EL AND R. P. KURSHAN, “SOFTWARE FOR ANALYTICAL

DEVELOPMENT OF COMMUNICATION PROTOCOLS,” AT&T Tech-
nical Journal, PP. 45–59, JAN. 1990.

[3] J. R. BURCH, E. M. CLARKE, K. L. MCMILLAN, AND D. L. DILL,
“SYMBOLIC MODEL CHECKING: 1020 STATES AND BEYOND,”
Information and Computation, VOL. 98, NO. 2, PP. 142–170,
1992.

[4] G. YORK. PERSONAL COMMUNICATION, FEB. 1993.

[5] O. GRÜMBERG AND D. E. LONG, “MODEL CHECKING AND MOD-
ULAR VERIFICATION,” IN Proc. of CONCUR ’91: 2nd Inter.
Conf. on Concurrency Theory (J. C. M. BAETEN AND J. F.
GROOTE, EDS.), VOL. 527 OF Lecture Notes in Computer Sci-
ence, SPRINGER-VERLAG, AUG. 1991.

[6] A. AZIZ AND R. K. BRAYTON, “VERIFYING INTERACTING FI-
NITE STATE MACHINES,” TECH. REP. UCB/ERL M93/52, ELEC-
TRONICS RESEARCH LAB, UNIV. OF CALIFORNIA, BERKELEY, CA
94720, JULY 1993.

[7] R. BRYANT, “GRAPH-BASED ALGORITHMS FOR BOOLEAN FUNC-
TION MANIPULATION,” IEEE Trans. Computers, VOL. C-35,
PP. 677–691, AUG. 1986.

[8] H. TOUATI, H. SAVOJ, B. LIN, R. K. BRAYTON, AND A. L.
SANGIOVANNI-VINCENTELLI, “IMPLICIT STATE ENUMERATION

OF FINITE STATE MACHINES USING BDD’S,” IN Proc. Intl. Conf.
on Computer-Aided Design, PP. 130–133, NOV. 1990.

[9] O. COUDERT AND J. C. MADRE, “A UNIFIED FRAMEWORK FOR
THE FORMAL VERIFICATION OF SEQUENTIAL CIRCUITS,” IN Proc.
Intl. Conf. on Computer-Aided Design, PP. 126–129, NOV. 1990.

[10] K. L. MCMILLAN, Symbolic Model Checking. KLUWER ACA-
DEMIC PUBLISHERS, 1993.

[11] A. AZIZ, F. BALARIN, R. K. BRAYTON, S.-T. CHENG, R. HOJATI,
T. KAM, S. C. KRISHNAN, R. K. RANJAN, A. L. SANGIOVANNI-
VINCENTELLI, T. R. SHIPLE, V. SINGHAL, S. TASIRAN, AND H.-
Y. WANG, “HSIS: A BDD-BASED ENVIRONMENT FOR FORMAL

VERIFICATION,” IN Proc. of the Design Automation Conf., JUNE
1994.

[12] J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata
Theory, Languages and Computation. ADDISON-WESLEY, 1979.

[13] C. BERMAN, “ORDERED BINARY DECISION DIAGRAMS AND CIR-
CUIT STRUCTURE,” IN Proc. Intl. Conf. on Computer Design,
OCT. 1989.

[14] S. MALIK, A. R. WANG, R. K. BRAYTON, AND A. SANGIOVANNI-
VINCENTELLI, “LOGIC VERIFICATION USING BINARY DECISION

DIAGRAMS IN A LOGIC SYNTHESIS ENVIRONMENT,” IN Proc. Intl.
Conf. on Computer-Aided Design, PP. 6–9, NOV. 1988.

[15] S.-W. JEONG, B. PLESSIER, G. D. HACHTEL, AND F. SOMENZI,
“VARIABLE ORDERING FOR FSM TRAVERSAL,” IN Proc. Intl.
Conf. on Computer-Aided Design, 1991.

[16] R. RUDELL, “DYNAMIC VARIABLE ORDERING FOR BINARY DE-
CISION DIAGRAMS,” IN Proc. Intl. Conf. on Computer-Aided De-
sign, PP. 42–47, NOV. 1993.

[17] A. AZIZ, S. TASIRAN, AND R. K. BRAYTON, “BDD VARIABLE
ORDERING FOR INTERACTING FINITE STATE MACHINES,” TECH.
REP. UCB/ERL M93/71, ELECTRONICS RESEARCH LAB, UNIV.
OF CALIFORNIA, BERKELEY, CA 94720, SEPT. 1993.

[18] H. FUJII, G. OOTOMO, AND C. HORI, “INTERLEAVING VARI-
ABLE ORDERING METHODS FOR ORDERED BINARY DECISION

DIAGRAMS,” IN Proc. Intl. Conf. on Computer-Aided Design,
PP. 38–41, NOV. 1993.

[19] R. K. BRAYTON, M. CHIODO, R. HOJATI, T. KAM, K. KO-
DANDAPANI, R. P. KURSHAN, S. MALIK, A. L. SANGIOVANNI-
VINCENTELLI, E. M. SENTOVICH, T. SHIPLE, K. J. SINGH, AND

H.-Y. WANG, “BLIF-MV: AN INTERCHANGE FORMAT FOR DE-
SIGN VERIFICATION AND SYNTHESIS,” TECH. REP. UCB/ERL
M91/97, ELECTRONICS RESEARCH LAB, UNIV. OF CALIFORNIA,
BERKELEY, CA 94720, NOV. 1991.


	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index




