
Clock Period Optimization During Resource Sharing and Assignment

Subhrajit Bhattacharya � Sujit Dey Franc Brglez y

Dept. of Computer Science C&C Research Labs CBL, Dept. of ECE
Duke University NEC USA North Carolina State Univ

Durham, NC 27706 Princeton, NJ 08540 Raleigh, NC 27695

Abstract - This paper analyzes the effect of resource sharing
and assignment on the clock period of the synthesized circuit.
We focus on behavioral specifications with mutually exclusive
paths, due to the presence of nested conditional branches and
loops. It is shown that even when the set of available resources is
fixed, different assignments may lead to circuits with significant
differences in clock period.

We provide a comprehensive analysis of how resource shar-
ing and assignment introduces long paths in the circuit. Based
on the analysis, we develop an assignment algorithm which uses
a high-level delay estimator to assign operations to a fixed set
of available resources so as to minimize the clock period of the
resultant circuit. Experimental results on several conditional-
intensive designs demonstrate the effectiveness of the assignment
algorithm.

I. INTRODUCTION

Resource sharing has been used effectively by several high level
synthesis approaches to reduce the area required to implement a de-
sign. Besides resources being shared amongst operations in different
states of a schedule, conditional statements in the behavioral descrip-
tion allows sharing of resources amongst mutually exclusive opera-
tions in the same state. Several resource sharing approaches have
been proposed which are applicable to conditional-intensive designs
[1, 2, 3, 4, 5].

It has been observed [3, 4, 6] that, as resource sharing is increased,
the area of the synthesized circuit decreases but the clock period
may increase. Various aspects of the resource sharing problem have
been addressed in [3, 4, 5, 6]. Area optimization under a fixed set
of resources has been addressed in [3]. The increase in delay due
to sharing is offset by using faster modules in [4]. However, faster
modules typically also require larger area. In [5], an area-delay cost
function has been used to synthesize circuits initially described at the
functional level to minimize hardware cost and delay.

We show that even when the set of resources to be shared is fixed,
the clock period of the circuit can vary significantly, depending upon
the assignment. In Section II, we discuss assignment of operations of
the Blackjack dealer process [7] to a fixed set of resources resulting in
circuits with clock period 87.14 ns and 43.74 ns for two different as-
signments, a difference of 50%. We give a comprehensive analysis of
the relationship between assignment and clock period in conditional-
intensive designs which allow sharing of not only arithmetic units but
also comparators. We present an assignment algorithm which min-

�S. Bhattacharya was supported by a grant from CCRL, NEC USA.
yF. Brglez was supported in part by a grant from SRC.

imizes the clock period, given a fixed allocation of resources and a
schedule.

Section III analyzes sources of long (critical) paths due to resource
sharing and assignment, suggesting assignment techniques to gener-
ate circuits whose critical paths have small delays. In Section IV,
we outline an assignment algorithm to perform resource sharing such
that the clock period of the synthesized circuit is minimized, while
satisfying the resource constraints. The algorithm is applied to sev-
eral VHDL descriptions which have numerous conditional branches
and loops. The experimental results in Section V demonstrate the
effectiveness of the algorithm in minimizing the clock period of the
synthesized circuits.

II. MOTIVATION

Sharing resources is a common technique used for minimizing the
area of a design. Before analyzing the effect of sharing resources
on the area and delay of the synthesized designs, it is instructive to
look at Table 1 which reports the area and delay of the 8-bit and 16-bit
implementations of several commonly used resources, using SIS tech-
nology mapper with fanout optimization [8], OASIS layout tools [9],
and the lib2.genlib standard cell SCMOS 2.0 library [10]. Assigning
multiple operations to the same resource (sharing the resource) may
require additional multiplexors to select the inputs of the operations
being shared. Hence, sharing a low-area unit like a (=)Comp unit,
with an area similar to a mux, does not result in area savings unless
the (=) operations to be shared have the same inputs. In contrast,
sharing a (<)Comp, a (<;=;>)Comp, an adder or an ALU, can result
in significant savings in area.

We next motivate the need for assignment techniques to minimize
the increase in delay resulting from sharing of resources. Consider
the VHDL code fragment shown in Figure 1. It has been taken
from a VHDL description of the dealer process, one of the processes
in the behavioral description of the Blackjack chip [7]. While the
complete schedule for the description of the dealer process is omitted
for lack of space, Figure 2(a) shows the operations of the dealer
process scheduled to be executed in one of the states.

Table 1: Area/delay for library modules in SCMOS 2.0 technology.
8 bit 16 bit

Unit Area Delay Area Delay
[mm2] � 100 [ns] [mm2] � 100 [ns]

Comp(=) 8.5 5.54 17.5 6.71
Comp(<) 17.2 10.69 41.9 19.96

Comp(<;=; >) 19.5 12.65 45.2 21.75
adder 19.6 12.33 46.1 22.02

alu(+;�) 31.4 13.44 71.8 23.43
mux 7.5 4.19 17.4 4.85

entity DealerChip is
port (Ready: out Bit;

Deal: in Bit;
Dealt: out Bit;
CardValue: out Value;
CardSuit: out Suit);

end DealerChip;

architecture Behavior of DealerChip is

begin

Dealer: process

type DeckSuit is array (DeckIndex) of Suit;
type DeckValue is array (DeckIndex) of Value;

variable TheSuits: DeckSuit;
variable TheValues: DeckValue;
variable Seed: DeckIndex := 23;
variable Card: DeckIndex;
variable Limit: DeckIndex;

begin

: : :

6. Limit := DeckSize - Seed;
7. Asuit := NoSuit;

8. PresentSuit := TheSuits[Card];
9. While ASuit < Hearts loop
10. Asuit := Asuit + 1;
11. Avalue := Ace;
12. While AValue <= King loop
13. While PresentSuit = = NoSuit loop
14. if Card < DeckSize then
15. Card := Card + 1;

else
16. Card := 1;

end if;
17. PresentSuit := TheSuits[Card]

end loop;
18. TheSuits (Card) := ASuit;
19. TheValues(Card) := AValue;
20. if Card > Limit then
21. Card := Card � Limit;

else
22. Card := Card + Seed;

end if;
23. Avalue := Avalue + 1;
24. PresentSuit := TheSuits[Card];

end loop;
end loop;

: : :

end process;
end Behavior;

Figure 1: VHDL code for the Blackjack dealer process.

Let us assume that the allocated resources are three comparators
and two ALUs, and resource sharing is performed. Two possible
assignmentsof the operations of Figure 2(a) to the available resources,
and the resultant RT-level circuits are shown in Figures 2(b) and
2(c) respectively. The Finite State Machine (FSM) implementing the
schedule consists of the state Flip Flops (FFs) and the next state logic,
shown in Figure 2(b) and 2(c) as SFF and NS respectively.

In assignment 1, the comparison operation 12 (op12) is assigned to
a comparator unit, cmp1. Since op13 and op9 are mutually exclusive,
they can be shared and have been assigned to comparator cmp2.
Similarly, op14 and op20 have been assigned to cmp3, op21 and op22

to ALU1 and op15 and op10 to ALU2. Since op13 and op9 are on
mutually exclusive branches of op12, the output of cmp1 controls the
muxes at the inputs of cmp2. Consequently, there is a path from
cmp1 to cmp2 as shown in the circuit of Figure 2(b). We say that
two units X and Y are chained, if there exists a path from unit X to
unit Y, like cmp1 and cmp2 in the circuit of Figure 2(b). Similarly,
cmp2 is chained to cmp3 and cmp3 to ALU1. The longest path thus
consists of three comparators, one ALU and two muxes. Using the
delay values for 8 bit units given in Table 1, the delay of the longest
path in the circuit of Figure 2(b) is 63.96 ns. This path is critical in
determining the clock period. As shown in Table 2, the clock period
of the circuit implementing the complete dealer process of Figure 1
under assignment 1, is 87.14 ns.

In contrast, the longest path in the circuit corresponding to as-
signment 2 shown in Figure 2(c) has only two comparator units and
two muxes. The corresponding delay of the longest path is 34.47 ns.
The clock period of the complete implementation under assignment
2, as shown in Table 2, is 43.74 ns, a reduction of 50% ! This ex-
ample illustrates that, even when the number of resources is fixed,
different assignments can lead to circuits with significant difference
in clock period. Consequently, an effective assignment algorithm is
needed which, given a fixed set of resources, assigns the operations
to minimize the clock period of the final circuit.

AValue <= King

PresentSuit != NoSuit Asuit < Hearts

Asuit = Asuit + 1

Card > Limit

Card = Card - Limit Card = Card + Seed

(a)

12

913

Card < DeskSize

Card = Card + 1 Card = 1

14

15 16

10

20

21 22

S
F
F

NS •
Si

••

from PIs / cmp. outputs

ALU2
(+, --)

0 1 0 1
Si

AsuitCard Seed "1"

0 1

0 1

0 1

Cmp1
(<, =, >)

Cmp2
(<, =, >)

Cmp3
(<, =, >)

Hearts

DeckSize

ASuitCard

Si

Si

Avalue King PresentSuit NoSuit

(c)

Limit

ALU1
(+, --)

0 1

Card "1"

Si

Limit

Assignment #2
(12) --> cmp1
(13) --> cmp2
(14,20,9) --> cmp3
(15,21) --> alu1
(22,10) --> alu2

0 1

Cmp2
(<, =, >)

Cmp3
(<, =, >)

DeckSize Limit
Card

Si

PresentSuit

NoSuit

Si

ALU2
(+, --)

0 1

Asuit Card "1"

0 10 1

ASuit Hearts

S
F
F

NS •
Si

••

from PIs / cmp. outputs

Si

Cmp1
(<, =, >)

Avalue King

(b)

Card

Si

Seed Limit

Assignment #1
(12) --> cmp1
(13,9) --> cmp2
(14,20) --> cmp3
(21,22) --> alu1
(15,10) --> alu2

0 1

ALU1
(+, --)

Figure 2: (a) Operations in a state of a schedule of the dealer process.
(b) Circuit corresponding to assignment 1. (c) Circuit corresponding
to assignment 2.

III. ANALYSIS AND MINIMIZATION OF THE EFFECT OF
RESOURCE SHARING ON CLOCK PERIOD

We analyze the effect of different types of resource sharing on the
clock period of the synthesizedcircuit. We show that in spite of having
a fixed numberof resources to share, assignmentplays a critical role in
determining the clock period of the final circuit. Three fundamental
ways of sharing and their role in chaining resource units to create
long paths are detailed. The transitivity of chaining is illustrated.
Assignment techniques to derive circuits with short critical paths are
suggested. We begin the section with a few definitions with respect
to an acyclic, directed and rooted graph.

The Common Ancestor (CA) of a pair of nodes vi and vj is a

comparison node vk , such that there are disjoint paths from vk to vi
and vj . The common ancestor of a set of nodes S, is the set CA of
all comparison nodes vk, such that there exists disjoint paths from vk
to at least any two nodes in S. In Figure 2(a), CA(f16; 22g) = f13g,
while CA(f16; 22;9g) = f13; 12g.

The Level Number (level) of a node vi in the graph is defined as:
level(vi) = 1, vi does not have a successor.
level(vi) = MAXflevel(vj) + 1 j vj is a successor of vig
level(S) = MAXflevel(vi) j vi 2 Sg, where S is a set of nodes.

In the graph of Figure 6(a), the level numbers are shown in paren-
theses at the left of the vertices, while the operation numbers are
shown on the right. For example, the level number of operation 15 is
1, and the level number of operation 14 is 2.

A pair of operations can share the same resource, that is, they are
compatible, if (a) they are never executed in the same clock cycle
and, (b) it is possible to assign them to the same resource. Two
operations are never executed in the same clock cycle if (a) they are
scheduled in separate states, or (b) they are in the same state but
on mutually exclusive paths. Compatible operations can be shared
in three fundamental ways: across mutually exclusive paths, across
states and shared implicitly.

A. Sharing Mutually Exclusive Operations

Let two operations on mutually exclusive paths be assigned to the
same unit u2, and their common ancestor (CA) to unit u1. There is
a combinational path from unit u1 to unit u2 (chaining from u1 to
u2) if and only if, the two operations being shared have at least one
operand different. The chaining arises because the output of u1 has
to decide which of the different operands should be an input to u2. In
Figure 2(b), considering assignment 1, op13 and op9 are assigned to
cmp2 and their CA, op12 to cmp1. Since op13 and op9 have different
inputs, circuit 1 (Figure 2(b)) has a combinational path from cmp1 to
cmp2. Similarly, assignment 1 creates a path from cmp2 to cmp3 and
yet another from cmp3 to ALU1. By transitivity of combinational
paths, we get a long combinational path (cmp1 ! mux! cmp2 !

mux! cmp3 ! mux! ALU1)

We propose the assignment rules R1 to R4, to perform resource
sharing while avoiding the formation of the resource chains that create
long paths in the resultant circuit.
(R1) Share operations with all inputs common. Since input selection
is not necessary, there will be no chaining with the ancestor’s output.
(R2) Share those operations such that the sum of the delay of the
resource unit on which the operations can be implemented and the
delay of the unit on which their CA is implemented is minimum. Figure
3 shows the CFG of the operations scheduled in one of the states of
a schedule for the benchmark Fancy [11] and the available resources.
Note that all the add operations, op2, op4 and op5, can be shared.

Resources available
 1 (=) unit
 1 (<) unit
 2 (+) units

1=

2+

4
+

5

+

3< Assignment #1:
(1) -> cmpeq, (3) -> cmplt
(2) -> add1, (4, 5) -> add2

Assignment #2:
(1) -> cmpeq, (3) -> cmplt
(2, 4) -> add1, (5) -> add2

Figure 3: The Fancy example: Illustrating sharing of operations
whose CA has smaller delay.

Sharing op4 and op5 chains a (<) unit with an adder through a mux
(delay 46.83 ns, from 16 bit column of Table 1). However, sharing
op2 and op4 creates a chain from the (=) unit to an adder through a
mux with delay 33.58 ns. This example illustrates the advantage of
sharing operations whose CA has the least delay. The next two rules
effectively break up long chains of resource units.
(R3) Share operations whose common ancestor (CA) has the highest
level number. Referring to the datapath corresponding to assignment
1 in Figure 2(b), there is a long chain (cmp1 ! cmp2 ! cmp3 !

ALU1). If, instead of sharing op21 and op22 (CA(21,22) has level
number 2) as in assignment 1, op15 was shared with op21 (CA(15,21)
has level number 3) as in assignment 2, cmp2 would be directly
chained with ALU1, thus bypassing the intermediate cmp3. This
illustrates that, sharing operations whose CA is closer to the root of
the CFG creates smaller chains.
(R4) Share operations which have smaller level numbers. Consider
sharing operations (20,9,14) where all three have level number 2, and
assign op13 which has level number 3 to a separate comparator as
done in assignment 2 (Figure 2(c)), as opposed to sharing operations
(9,13) and (14,20) as in assignment 1. Since op13 assigned to cmp2 is
not shared at all, the output of cmp1 is no longer chained with cmp2.
This further breaks up the chain (cmp1 ! cmp2 ! cmp3) of the
circuit produced by assignment 1 (Figure 2(b)), to generate the circuit
shown in Figure 2(c) where the longest chain is (cmp1 ! ALU1).

B. Implicit Sharing Inside a State

We define implicit sharing inside a state with respect to the CFG
of operations scheduled in that state. A functional unit F is said
to be implicitly shared inside a state if and only if, there exists two
or more mutually exclusive paths in the CFG of the state from a
conditional operation Oi, to an operation Ok that is assigned to F,
and the inputs to Ok differ depending upon the path executed. Let the
conditional operationOi deciding which path to execute be assigned
to a comparator unit C. Implicit sharing creates a combinational path
from the comparator unit C to the implicitly shared unit F.

An example CFG is shown in Figure 4(a). The CFG contains the

Count := MaxPkt

(b)

Count := t1

t2 := ByteCount + MaxPkt

t1 > MaxPkt

t2 := ByteCount + t1

1

4.2

4.1

32

(a)

t2 := ByteCount + Count 4

Count := MaxPkt Count := t1

t1 > MaxPkt 1

2 3 0 1

Add 1
(+)

Cmp
(>)

t2 count

t1 MaxPkt Bytecount

Cmp
(>)

Add 1
(+)

Add 2
(+)

count

0 1

t2

BytecountMaxPktt1

0 1

Figure 4: (a) Flowgraph to illustrate implicit sharing inside a state.
(b) Duplicating operations to avoid implicit sharing.

operations to be executed in one of the states of a schedule of the send
process of a network protocol X.25 [12]. If the comparison operation
op1 is assigned to a comparator, and op4 is assigned to an adder, from
the above definition we have implicit sharing of the adder and there
will be a path from the comparator to the adder, as is shown in the
datapath of Figure 4(a). However, consider Figure 4(b), where op4

has been split into two operations, one for each mutually exclusive
path to op4. If each copy of op4, op4:1 and op4:2 were to be assigned
to a separate adder, there would be no implicit sharing. Also, there
would be no chaining from the output of the comparator to which op1

has been assigned to any of the two adders, as is shown in the datapath
of Figure 4(b). Splitting implicitly shared operations converts a CFG
into a tree and is hence referred to as a control flow tree (CFT). Given
a CFT, the assignment algorithm makes the choice whether the split
operations should be assigned to the same unit or not, depending upon
the availability of resource units.

C. Implicit Sharing across States

Existing resource sharing techniques consider sharing operations
across states. However, sharing across states can also lead to implicit
sharing. In a behavioral description with mutually exclusive paths,
it is possible for an operation to be scheduled in more than one
state. When the occurrences of this operation in two or more states
is assigned to the same unit, implicit sharing across states take place.
Implicit sharing across states can create resource chaining resulting
in long combinational paths.

In Figure 5(a), we show a fragment of a CFG extracted from the
control software code for the AutoPilot of an Unmanned Aerial Vehi-
cle (UAV), written for the Motorola MC68HC11 microcontroller [13].
The available resources are two comparators, and two (+=�)ALUs.
Note from Figure 5(b), op6 could not be scheduled in state s0 along
path 1,3,5,6, since it would violate the resource constraint of 2 ALUs.
We show that for the given schedule, implicit sharing across states
creates a long path. An alternative assignment is given which creates
shorter paths by avoiding implicit sharing across states.

In Figure 5(b), operation 6 is scheduled in two states, s0 and s2.
Two possible assignments and the resultant datapaths are given in
Figures 5(c) and (d). Let sji be an instance of operation i scheduled
in state sj . Since assignment 1 in Figure 5(c) assigns s6

0 and s6
2 to

ALU2, by definition we have implicit sharing across states, and the
path cmp1 ! ALU1 ! ALU2 ! cmp2 is created. However,
if s6

2 is assigned to ALU1, two smaller chains cmp1 ! ALU1 !

ALU2, and cmp1! ALU1 ! cmp2 are created as shown in Figure
5(d). Instead of assuming that the occurrences of the same operation
in different states will be assigned to the same unit, we treat each
occurrence as a separate operation. The assignment algorithm chooses
the best assignment to minimize the clock period.

IV. AN ASSIGNMENT ALGORITHM FOR MINIMIZING THE
CLOCK PERIOD

We present an assignment algorithm which,given a scheduled CFG
and a set of allocated resources, synthesizes a circuit with minimum
clock period. The assignment algorithm uses an assignment graph
(AG) which has the following components.
(1) For each state of the scheduled CFG there is a corresponding CFT
in the AG. All assignment nodes of the form x y are removed from
the CFT’s. Each node in a CFT is assigned a level number.
(2) There exists a compatibility edge between each pair of compatible
operations, with an associated edge weight. The operations can be

(a) EndVal >= BegVal 1

t1 = EndVal - BegVal 2

PulseWidth < OneMsec 7

RTInterrupt = False 8

t2 = 0 4

t1 = MaxVal + EndVal 3

t2 = BegVal + Offset 5

PulseWidth = t1 - t2 6

S0

3+

>= 1

2

5+= 4

6

S2

6

< 7

= 8

S1

< 7

= 8

(b)

OneMsec

State S0
 op1 --> cmp1
 op2 --> alu1
 op3 --> alu1
 op5 --> alu2
 op6 --> alu2

State S1
 op7 --> cmp2

State S2
 op6 --> alu2
 op7 --> cmp2

MaxVal

AAPulseWidth AAt2 t1

alu1
(+ / --)

0 1

t1
t2

"0"BegVal

a lu2
(+ / --)

EndVal

0 10 1

0 10 1

PulseWidth

OneMsec

Cmp2
(<)

S1
0 1

Offset

S0 S0

Cmp1
(>)

(c)

Same as the
assignment #1,
except for

State S2
 op6 --> alu1

Cmp1
(<)

MaxVal

A
A
A
A

PulseWidth

A
A
A
A

t2 t1

alu1
(+ / --)

0 1

t1 t2

"0"

BegVal

a lu2
(+ / --)

EndVal

0 10 1

0 1
Offset

S0 S0
0 1

PulseWidth

Cmp2
(<)

S1
0 1

(d)

 Assignment #1 Circuit #1

Assignment #2 Circuit #2

Figure 5: UAV AutoPilot: Illustrating implicit sharing across states.

on the same CFT (mutually exclusive) or on different CFT’s (across
states). The weight is an estimate of the delay penalty of sharing the
two operations connected by the compatibility edge [14].

Figure 6(a) shows the assignment graph corresponding to the CFG
in Figure 2(a). The level numbers are shown on the left of each node
inside parentheses in Figure 6(a), the node numbers are shown on
the right. The dashed edges are the compatibility edges. Since op15

and op21 are on mutually exclusive branches of op13, and they can
be assigned to the same adder, there is a compatibility edge between
them. The weight on the compatibility edge, also called the delay
penalty, is the delay of the longest combinational path that results
from sharing the two operations connected by the compatibility edge.
The delay penalty of sharing op15 and op21 includes the delay of the
adder, a mux at the input of the adder, and another comparator unit
to which op13 is assigned to control the mux and is 30.28ns (using
the delay values in the 8 bit column of Table 1). Details of the delay

AValue <= King

PresentSuit != NoSuit Asuit < Hearts

Card < DeskSize

Asuit = Asuit + 1

Card = Card + 1 Card > Limit

Card = Card - Limit Card = Card + Seed

(a)

AAA
AAA
AAA

AA
AAAAA
AAAAA
AAAAA
AAAAA

AAAAA
AAAAA

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

AAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAA

AAAAAAA
AAAAAAA

AA
AA
AA
AA

AAAA
AAAA

AA
AA
AA
AA
AAAA
AA

30.28

30.28

30.28

30.28

30.28

29.49

2
9
.
4929.4

9
29.49

3
0
.
2
8

(4)

(3)

(2)

(1)

(1)

(2)

(2)

(1)

(1)

12

13 9

10

20

2221

15

14 AAA
AAA
AAA

AAA
AAA
AAA

AAAAAAAA

AValue <= King

PresentSuit != NoSuit Asuit < Hearts

Card < DeskSize

Card = Card + 1 Card > Limit

(b)

32.10

12

13
9

14

(22,10)

15 20

Asuit = Asuit + 1
Card = Card + SeedCard = Card - Limit

21

30.28

32.10

Figure 6: (a) Assignment graph for the CFG of Figure 2. (b) Assign-
ment graph after assigning op21 and op22 to an alu unit (only relevant
portions shown).

estimation algorithm is given in [14].

A. The Assignment Algorithm

We present an algorithm ClkMin which, given an assignmentgraph
(AG) and a set of allocated resources, assigns the operations in the
graph to the resources, so as to minimize the clock period of the
resultant circuit. The assignment graph consists of the CFT of each
state of a given schedule. Initially, each node in the AG contains one
operation. Procedure ClkMin iteratively merges compatible nodes in
AG such that in the final AG, each node (containing one or more
operations) can be assigned to a separate available resource unit. The
procedure Select Nodes To Share uses assignment rules (R2) through
(R4) (Section III) to select a pair of nodes to be shared such that the
clock period of the final implementation is minimized. Since sharing
can introduce false combinational loops [15] it is ensured that sharing
the selected pair does not create any false loop in the circuit. Whenever
a pair of AG nodes are chosen to be shared, the nodes are merged and
the AG is updated (routine Update). If possible, a subset of the nodes
of the updated AG are assigned to available resource units. The above
process of selecting, updating and partial assignment is repeated until
all AG nodes are assigned.

Select Nodes To Share. This function which forms the core of
our assignmentalgorithm chooses a compatible pair to be shared such
that the final clock period is minimized. While rule (R1) of Section
III is implemented by line 1 in ClkMin, rules (R2), (R3) and (R4) are
implemented by lines 4 to 6 of Select Nodes To Share. Line 4 of the
code implements rule (R4) since the average of the level numbers of
nodes with smaller level numbers will be smaller than the average of
nodes with higher level numbers. Referring to Figure 6, applying line
4 results in operations (14, 20, 9) sharing the same resource (as in
assignment 2), as opposed to operations (9, 13) and (14, 20) sharing
resources (as in assignment 1). Line 5 directly implements (R3). Line
6 implements rule (R2). Since the compatibility edge weight is an

estimate of the cost of sharing the two (sets of) operations, it includes
the delay of the CA of the two operations and the cost of the unit
on which the operations to be shared can be assigned as well as the
cost of the mux which will have to be used to switch inputs into the
resource unit. Hence, by picking the pair whose compatibility edge
has minimum weight, it implements rule (R2).

Update. After a pair of nodes vi, vj have been selected to be
shared, the assignment graph is updated as follows:
� The nodes are merged into a new node v = (vi; vj), such that v
contains all the operations previously contained in vi and vj .
� A compatibility edge is introduced between the new node v and
node vk, if and only if, there were compatibility edges between vk
and vi and also between vk and vj before merging. Consider the
Assignment Graph shown in Figure 6(a). After merging nodes 14 and
9, an edge is introduced between the new node (14,9) and 20, but not
between (14,9) and 13.
� The compatibility edge weights need to be updated. In the AG
shown in Figure 6(a) assume node 10 and node 22 have been merged.
This implies they will be assigned to the same unit (as in ALU2 of
assignment 2 shown in Figure 2). Note that the edge between node 15
and the merged operations (22,10) shown in the updated AG in Figure
6(b) now has weight 32.10. The updated weight reflects the extra
delay for sharing three operations on the same resource unit (due to
more muxes at the input), than sharing two operations on one unit (as
reflected by the weight between node 15 and node 21 which is 30.28).
The updating of the edge weights is done by the delay estimation
algorithm described in [14].
� The new node v = (vi; vj), is assigned a level number which is
given by MAX(level(vi), level(vj)).

Safe Assign. Let V be a set of nodes in AG and R a subset of
the allocated resource types. There can be more than one unit of a
particular resource type available. The procedure Safe Assign assigns
the nodes in V to the units of R if the following two conditions hold:
(1) Each node in V can be assigned to a separate resource unit of a
type which is in R, and
(2) no operation nodes which is in AG but outside V is implementable
on a resource type belonging to R.
Condition (1) assures that the assignment is feasible. Condition (2)
makes it safe. It is safe, since nodes in (AG�V) cannot be imple-
mented on any resource of type R. Hence, if an assignmentof nodes in
(AG�V) existed before assigning the nodes in V to resources of type
R, the assignmentwould exist even after the nodes in V were assigned.
After assignment, the nodes in AG corresponding to the nodes in V
are marked assigned and the resource units in R are removed from the
list of resources, resource list.

The pseudo-code of the assignment algorithm is given below.

ClkMin(resource list, AG) f
1. merge all nodes in AG which have common inputs;
2. Safe Assign(AG, resource list);
3. while (9 nodes in AG that have not yet been assigned) f
4. (vi; vj) = Select Nodes To Share(AG);
5. if (no sharable pair (vi; vj) exists)
6. return ASSIGNMENT FAILED;
7. Update(vi; vj , AG);
8. Safe Assign(AG, resource list);

g

9. return assignment;
g

Select Nodes To Share(AG) f
1. found := FALSE;
2. while ((found == FALSE) & (9 compatible nodes in AG)) f
3. C0 all compatible pairs (vi; vj) in AG

s.t. both vi; vj are not assigned;
4. C1 all (vi; vj) 2 C0

s.t. j level(vi) + level(vj) j =2 is minimum;
5. C2 all (vi; vj) 2 C1

s.t. level(common ancestor(vi; vj)) is maximum;
6. C3 all (vi; vj) 2 C2

s.t. compat edge weight(vi; vj) is minimum;
7. C4 all (vi; vj) 2 C3

s.t. sharing them does not introduce combinational
false loops; delete compatibility edges between pairs
which introduce false loops;

8. if (C4 6= ;) found := TRUE;
g

9. return a pair (vi; vj) from C4 if any, else return (;; ;);
g

V. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed assignment tech-
nique, we have synthesized the following conditional-intensive
VHDL descriptions: the dealer process of Blackjack [7], Fancy [11],
and the controller for the AutoPilot of an Unmanned Aerial Vehicle
(UAV) [13]. Table 2 shows the synthesis results.

Each description is scheduled to satisfy the resource constraints
specified in column Resources. Assignment 1 is a feasible assignment
which satisfies the resource constraints, but does not focus on mini-
mizing clock period. Assignment2 has been obtained by the proposed
algorithm ClkMin to minimize the clock period of the resultant circuit.
The relevant portions of the CFG’s for the Blackjack, Fancy and UAV
AutoPilot processes, and the mapping of the CFG operations under
the two assignments, are illustrated in Figures 2, 3, and 5.

Each RT-level circuit generated by the assignments is subjected to
technology-dependentdelay optimization, including fanout optimiza-
tion, using the SIS technology mapper [8] and the lib2.genlib standard
cell SCMOS 2.0 library [10]. Subsequently, OASIS [9] place and
route tools are used to obtain the standard cell layout. Columns Clock
Period and Area report the delay and area of the final implementations.

The results also demonstrate the effectiveness of the assignment
algorithm in minimizing the clock period of the resultant circuit. For
instance, in the case of Blackjack,assignment 1 produces a circuit with
a clock period of 87.14 ns and an area of 121.8 mm2. In contrast,

Table 2: Results of appying ClkMin on several benchmarks.
Clock Area[mm2]

Benchmark Resources Assignment Prd [ns] � 100

Blackjack 3 (<;=; >) Assignment1 87.14 121.8
(dealer) 2 (+;�)
(8 bit) Assignment2 43.74 125.0

Fancy 1(=) Assignment1 53.96 2.91
(16 bit) 1(<)

2(+) Assignment2 37.11 2.95

UAV 2(<) Assignment1 49.27 3.29
AutoPilot 2(+=�)

(8 bit) Assignment2 39.69 3.11

the circuit produced by the proposed assignment algorithm ClkMin
has a clock period of 43.74 ns and an area of 125.0 mm2. A clock
period reduction of 50% could be achieved by ClkMin for a nominal
area penalty of 2:6%. On an average, a clock period reduction of 33%
could be achieved. The change in area is marginal, because the clock
period reduction was not effected by increasing the resources used,
but by different assignments to the same resources.

VI. CONCLUSIONS

This paper investigated the effect of resource sharing and assign-
ment on the clock period of circuits synthesized from conditional-
intensive behavioral descriptions. Under a fixed set of available re-
sources, different assignments can lead to circuits with significant
differences in clock period. An assignment algorithm has been pro-
posed to identify an assignmentwhich leads to a minimal clock period
implementation. Experimental results demonstrate the feasibility of
synthesizing high-speedcircuits, not by using more resources or faster
modules, but by effective assignment using a fixed set of resources.

Acknowledgments: We thank T. Misawa, K. Wakabayashi, and W.
Wolf for helpful discussions.

REFERENCES

[1] K. Wakabayashi and T. Yoshimura. A Resource Sharing and Control
Synthesis Method for Conditional Branches . In Proc. of the IEEE
ICCAD, 1989.

[2] T. Kim, J. W. S. Liu, and C. L. Liu. A Scheduling Algorithm For
Conditional Resource Sharing . In Proc. of the IEEE ICCAD, 1991.

[3] R. A. Bergamaschi, R. Camposano, and M. Payer. Data-Path Synthesis
Using Path Analysis. In Proc. of the 28th ACM/IEEE DAC, 1991.

[4] B. Gregory, D. MacMillen, and D. Fogg. ISIS: A System for Performance
Driven Resource Sharing. In Proc. of the 29th ACM/IEEE DAC, June
1992.

[5] E. A. Rundensteiner and D. D. Gajski. Functional Synthesis Using Area
and Delay Optimization. In Proc. of the 29th ACM/IEEE DAC, 1992.

[6] A. C. Parker, P. Gupta, and A. Hussain. Effects of Physical Design
Characteristics on the Area-Performance Tradeoff Curve. In Proc. of the
28th ACM/IEEE DAC, 1991.

[7] CLSI Users Guide.

[8] E.M. Sentovich, K.J. Singh, C. Moon, H. Savoj, R.K. Brayton, and
A. Sangiovanni-Vincentelli. Sequential Circuit Design using Synthesis
and Optimization. In Proceedings of the International Conference on
Computer Design, October 1992.

[9] K. Kozminski (ed.). OASIS Users Guide. MCNC, MCNC, Research
Triangle Park, N.C. 27709, 1992.

[10] S. Yang. Logic Synthesis and Optimization Benchmarks, User Guide
3.0. In Intl. Workshop on Logic Synthesis, MCNC, Research Triangle
Park, NC, May 1991.

[11] S. Bhattacharya, F. Brglez, and S. Dey. Transformations and Resynthe-
sis for Testability of RT-Level Control-Data Path Specifications. IEEE
Trans. on VLSI Systems, 1(3), September 1993.

[12] A. S. Tanenbaum. Computer Networks. Prentice Hall, Englewood Cliffs,
N.J., 1989.

[13] K. Hintz and D. Tabak. Microcontrollers: Architecture, Implementation,
and Programming. McGraw-Hill, New York, NY 10020, 1992.

[14] S. Bhattacharya, S. Dey, and F. Brglez. Clock Period Estimation and Op-
timization During Resource Sharing and Assignment. Technical Report
93-C013, C&C Research Labs, NEC USA, April 1993.

[15] L. Stok. False Loops Through Resource Sharing. In Proc. of the IEEE
ICCAD, August 1992.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

