
Routing in a New 2-Dimensional FPGA/FPIC Routing Architecture�

Yachyang Sun C. L. Liu

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, Illinois 60801

Abstract - This paper studies the routing problem for
a new Field-Programmable Gate Array (FPGA) and
Field-Programmable Interconnect Chip (FPIC) routing
architecture which improves upon the one proposed in
[9] by providing continuing switches along the horizontal
and vertical wire segments. The addition of continuing
switches leads to higher routability and better timing
performance than that for the routing architecture in
[9]. A two-phase routing algorithm for the new rout-
ing architecture is developed. Both the initial routing
phase and the rip-up and reroute phase employ a dy-
namic programming technique. The rip-up and reroute
phase can also be applied to the segmented channel rout-
ing problem for row-based FPGA routing structures.
Experimental results show that routability is improved
dramatically and the number of active programmable
switches in connecting paths and the total number of
programmable switches are reduced, when compared
with the results in [9] and [3]. The running time of the
algorithm is less than 7 seconds for each of �ve industrial
circuits.

1 Introduction
Unlike conventional mask-programmable gate arrays, FP-
GAs use programmable switches in the connecting paths.
The ON/OFF status of each programmable switch is pro-
grammed by the user without going through the foundry
facility. To implement circuits that cannot be �tted on a
single FPGA, FPIC was introduced [2, 6]. A large circuit
is divided into several parts, and each part is implemented
on an FPGA. These FPGAs are then interconnected on
a printed circuit board using an FPIC. Fig. 1 shows the
conventional two-dimensional FPGA/FPIC routing archi-
tecture proposed in [3, 4, 8, 11] which contains only wire
segments of unit length. Each square represents a logic
block implementing logic functions in the case of FPGA and
represents an I/O pin in the case of FPIC. The terminals of
a block are connected to wire segments called terminal seg-

ments. Terminal segments are connected to wire segments
in the routing channel through programmable switches at
their intersections which are shown as black circles in Fig.
1. A programmable switch is said to be active, if its status
is ON or is conducting. The switch matrix is used to con-
nect wire segments in the horizontal and vertical channels.
In the switch matrix, each wire segment can be connected
to a subset of the wire segments on the other sides of the
matrix. A routing example of a 2-terminal net is shown
in bold lines in Fig. 1. There are eight active switches in

�Work partially supported by NSF underGrantMIP 92-22408
and by Fujitsu Company

of unit length
wire segment

matrix
switch

block
logic

3

*

terminal

3

Fig. 1. Conventional two-dimensional FPGA architecture and a
routing example

the connecting path, six of them are in switch matrices and
each of the remaining two connects a terminal segment to
a wire segment in a routing channel. Since the number of
active programmable switches in a connecting path is equal
to the length of the path (minus one), there will be sub-
stantial routing delay in the path. To improve upon the
situation, the recently-developed Xilinx XC4000 series pro-
vides double-length wire segments which are twice as long
as unit-length wire segments. However, the variety of wire
segments of di�erent lengths is still very limited.

A new FPGA/FPIC routing architecture that allows
a larger variety of wire segments of di�erent lengths was
proposed [9]. Programmable switches are available only
at some of the intersections between horizontal and ver-
tical wire segments. In this routing architecture, a sig-
nal passes through an active programmable switch only
when making a turn, whereas in the conventional FPGA
routing architecture there is an active switch in each unit
length. Consequently, signal delay is reduced dramatically.
Programmable switches provided to allow routing paths to
make turns are called turning switches. An example of the
routing architecture is shown in Fig. 2. A routing exam-
ple for the same 2-terminal net in Fig. 1 is also depicted.
Note that only seven turning switches are active in the con-
necting path, compared with eight switches used in Fig.
1. Nevertheless, low routability is a main drawback of this
routing architecture, although asymptotically it has been
shown to be as e�cient as conventional routing architec-
ture with free tracks. In this paper, we propose a routing

3

3

Fig. 2. Two-dimensional FPGA/FPIC routing architecture in
[11] and a routing example

3

3

Fig. 3. Proposed two-dimensional FPGA/FPIC routing archi-
tecture and a routing example

architecture which improves upon the routability by adding
programmable switches between two horizontal (or verti-
cal) wire segments which can be programmed to connect
two horizontal (or vertical) wire segments to form a longer
horizontal (or vertical) segments. Programmable switches
for this purpose are called continuing switches. Fig. 3 de-
picts our new routing architecture corresponding to that in
Fig. 2 with the continuing switches shown as white cir-
cles. The dotted squares can be viewed as switch matrices
in the conventional FPGA/FPIC architecture, except that
segments can pass through them without activating any
programmable switch. The same 2-terminal net in Fig. 1
and 2 is routed passing through �ve switches, two of them
are continuing switches and the other three are turning
switches. It is easy to see that any routing path in Fig.
2 can also be found in Fig. 3, since all routing resource
in Fig. 2 is retained in Fig. 3. Moreover, the usage of
continuing switches usually reduces the number of turns in
the routing path and results in either a shorter path or a
path with fewer active switches. Therefore, introduction of
continuing switches not only enhances the routability, but
also decreases the number of active switches in the inter-
connecting routes, and thus, the routing delay.

2 A routing algorithm
The �rst step of our algorithm is to �nd a conventional
two-dimensional global routing solution which satis�es the
capacity constraints in the channels. A global routing solu-

tion not only ensures an even distribution of the nets in the
routing channels to avoid congestion but also reduces the
complexity of the overall routing problem. Note that the
global routing step is not appropriate for the architecture
proposed in [9] where there is no continuing switch in the
routing architecture. The very limited amount of routing
resource in this architecture makes the capacity constraint
a weak necessary condition for achieving a detailed routing
solution in most cases. That is, a global routing solution
satisfying the capacity constraint often does not lead to a
detailed routing solution. Fig. 2 shows an example of such
a scenario. The polygon with dashed-line boundary is a
given global route for net 3. In the absence of continuing
switches, we cannot �nd a detailed route corresponding to
the given global route. However, with continuing switches,
a detailed route for net 3 can be found easily as shown in
Fig. 3.

Our algorithm for �nding a detailed route corresponding
to a given global route consists of two phases. In the �rst
phase, we process the nets one at a time and a polynomial
time algorithm is used to �nd an optimal detailed route
for each net. When an unroutable net is encountered, a
polynomial time rip-up and reroute algorithm is used in the
second phase to resolve the con
ict. We assume that a route
cannot change track in a channel. From a practical point
of view, changing track activates more turning transistors
which degrades the timing performance. Moreover, the net
will occupy more wire segments in the same channel, and
thus, increases the possibility of blocking other nets. Note,
however, that our algorithm can nonetheless be extended
to handle the case in which track changing is allowed.

2.1 An optimal single-net routing algorithm

Suppose we are given a net and its global route as depicted
in Fig. 4(a) where the global route is shown as a dashed
polygon. We can represent these information using a two-
dimensional grid as follows : Each grid point corresponds
to a switch matrix and each grid edge (u; v) corresponds to
the channel between the two switch matrices corresponding
to u and v. Each rectangular region corresponds to a logic
block, the terminals of which are represented by points in
the region. There is a short edge, corresponding to a termi-
nal segment, which connects a terminal to a grid edge cor-
responding to a channel. A global route is represented by
a tree containing short edges and grid edges. We call such
a two-dimensional grid representation of a global route a
channel representation. Fig. 4(b) shows the channel repre-
sentation of the global route of net 3 in 4(a). It is not hard
to see that the number of detailed routes for a given global
route can grow exponentially with respect to the number
of terminals. Among these detailed routes, we want to de-
termine one with minimum cost. The cost is de�ned as a
weighted sum of the cost of active programmable switches
and the cost of wire segments in the route. The cost of
a wire segment is a weighted measure of the delay associ-
ated with the wire segment and how much the segment is
in demand for routing. The cost of an active programmable
switch is the time delay it introduces. If there is no turning
switch located at the intersection of a horizontal track and

3

32tt1t

3

3

3 3

v

(a) (b)

Fig. 4. A global route of net 3 and its channel representation

a vertical track in a switch matrix, we can conceptually as-
sume that there is one with in�nite cost at the intersection.
Therefore, we shall assume that there is a turning switch at
each intersection of a horizontal track and a vertical track
in a switch matrix in the rest of this section. Also, we set
the cost of any wire segment, turning switch, or continuing
switch to be in�nity, when it is occupied by a net processed
before.

Given the channel representation of a global route, we
decompose the channel representation into maximal line
segments. A maximal line segment is a line segment that
is not properly contained in any other line segment in the
channel representation. For example, the line segment be-
tween the two arrows in Fig. 4(b) is a maximal line seg-
ment. We arbitrarily choose a terminal x and build a rooted
tree, T = (VT ; ET), which represents the intersection rela-
tionship between maximal line segments as follows: Each
maximal line segment has a corresponding vertex in VT and
(u;w) 2 ET if and only if the maximal line segments corre-
sponding to u and w intersect in the channel representation.
The root of T is the maximal line segment incident with x.
The rooted tree T for the channel representation in Fig.
4(b) is shown in Fig. 5. Given a node w in T , we use l(w)

root

Fig. 5. T for the channel representation in Fig. 4

to denote the maximal line segment corresponding to w.
For a maximal line segment h, we use r(h) to denote the
channel that contains h. Also, we use l�1(h) to denote the
node w of T such that l(w) = h. If w is a leaf in T , then
r(l(w)) is a terminal segment. If w is an internal node of
T , r(l(w)) is the channel which contains the maximal line
segment l(w).

Given T , the routing problem becomes that of choosing
a track in r(l(w)) for the detailed route of the maximal line
segment l(w), for each w 2 T . Suppose we have chosen a
track for the maximal line segment l(w), for each w 2 T .

Then, we can compute the cost of a subtree in T , rooted at a
node, say s, by adding the costs of the wire segments used
in the route for the maximal line segment l(w), for each
descendant w of s, and the costs of all turning switches and
continuing switches used in the route. (We assume a node
in a rooted tree to be a descendant of itself.)

Suppose that there are t tracks in each channel. We use
Cs

j to denote the minimum cost of the route for the entire
subtree rooted at s, with track j, 1 � j � t, being chosen for
the route of l(s). We call Cs

j , for each j such that 1 � j � t,
a C-cost of s. In the case that s is a leaf, the cost of the
subtree rooted at s is simply the cost of a terminal segment.
In this case, we can conceptually assume that there are t
terminal segments the terminal is connected to and then
Cs

j , for 1 � j � t, is well-de�ned. In the case that s is an
internal node of T , let v1; v2; : : : ; vn denote the children of
s in T . Then, we have the following recurrence equation:

C
s

k
=

nX

i=1

min
m=1;2;::: ;t

(C
vi
m + cost of turning switch at(k;m; i))

+costs of continuing switches on track k in r(l(s))

+costs of wire segments on track k in r(l(s)) (1)

8k 2 f1;2; : : : ; tg

where cost of turning switch at(k;m; i) is the cost of the
turning switch located at the intersection of the kth track in
r(l(s)) and the mth track in r(l(vi)). According to formula
(1), to compute the values of all Cw

k 's, we need to compute
the C-costs of all children of w. Therefore, our algorithm
processes the tree T in a bottom-up fashion and computes
the C-costs for each node until the root is reached. Then, we
choose one with minimum C-cost and trace back to decide
the track for each maximal line segment.

Our algorithm computes an optimal detailed route for a
given global route as stated in the following theorem:

Theorem 1 Our algorithm computes a detailed route with

minimum cost in O(mt(mt+p)) time, where m is the num-

ber of nodes in T , t is the number of tracks in each channel,

and p is the maximum number of wire segments among all

tracks.

To analyze the time complexity of our algorithm, we observe
that there are m nodes in T and for each node there are t
C-costs to be computed, one for each track. To compute
the C-cost of a node for a track using the formula described
above, we need to use the costs of the wire segments along
this track and the C-costs of its children for this track.
The number of all these variables is O(p + kt), where k is
number of children of the node considered and it is at most
m. Therefore, the time complexity stated in the theorem
follows.

2.2 rip-up and reroute

Since the global router tries to avoid congestion by dis-
tributing the global routes evenly in the channels, it is likely
that the detailed routing algorithm presented in the previ-
ous subsection will succeed in �nding a detailed route for
each net. In the case that it fails to �nd a detailed route,
we use a rip-up and reroute algorithm to reroute some of
the existing routes one track at a time to make room for
the route of the current net.

Suppose the global route for net n7 passes through chan-
nel c in which there are existing detailed routes of other nets
as shown in Fig. 6(a). Speci�cally, the detailed route for

1
2
3

n6

c

c

(a)

(b)

global route for net

n n n n

nnnn1

n7
2 3 4

n5
n6n7

1

3
2

n1 2 3 4 5

Fig. 6. Dashed lines sketch part of the global route of the cur-
rently processed net.

net n7 is blocked by nets n1, n2, n3, and n4 in track 1, by
net n5 in track 3, and by net n6 in track 2. We examine
the tracks in the channel one at a time and shall rip-up and
reroute all detailed routes which existed in the track. Let
t1 be the track under consideration. We route the blocked
net in track t1 and then try to reroute all detailed routes
which existed in track t1. If we succeed in rerouting all
these nets we then return to the �rst phase for the next
net. Otherwise, we consider the next track in the channel
until either rerouting is successful in some track or it fails
in all tracks. In the latter case, the global route of the net
under consideration is modi�ed and the �rst phase of our
routing algorithm is repeated.

We now consider the problem of rerouting the detailed
routes that existed in track t1. If we want to reroute all the
nets in track 2 for the example in Fig. 6, then the answer
is no, since it is impossible to reroute the detailed route of
net n6 in track 1 and track 3. So is the case when we try to
reroute all the nets in track 3. However, if we try to reroute
the nets in track 1, we can reroute the nets n1, n2, n3, and
n4 in tracks 2 and 3 as shown in Fig. 6(b). Therefore, track
1 can be used to route the blocked net n7.

Formally speaking, let < denote the set of detailed routes
in track t1 of channel c, no two of them overlap. Let U de-
note the set of unused wire segments in channel c. We want
to know if there is a way to reroute the nets in < using the
unused wire segments in U . First of all, our algorithm la-
bels the detailed routes in < from left to right as l1, l2, : : :,
lj<j . For each detailed route in <, say lm, we use Li(m) to
denote the leftmost unused wire segment in track i whose
span overlaps with that of lm and Ri(m) to denote the right-
most unused wire segment in track i whose span overlaps
with that of lm. For example, in Fig. 6(b), L2(2) denote
the leftmost wire segment in track 2 and R2(3) denote the
third leftmost wire segments in track 2. Suppose we have
succeeded in rerouting the detailed routes l1, l2, : : :, lm,
where m < j<j. When we try to reroute the detailed route
lm+1, we list all tracks which are available for lm+1. Let t be
the number of tracks in the channel. We can use a binary
string (am+1

1 ; am+1

2 ; : : : ; am+1
t

) to represent the availability
of the tracks for lm+1 . If lm+1 cannot be rerouted in track
i, then am+1

i
= 1. Otherwise, am+1

i
= 0. We call such a

binary string an availability vector for lm+1 . According to
the de�nition of an availability vector, if the existing de-
tailed route of another net con
icts with the rerouting of
lm+1 in track i, then am+1

i
= 1, no matter how l1, l2, : : :,

lm are rerouted. Moreover, to reroute lm in track i, there
must be turning switches available for connecting lm to the
remaining route of the net. For the example in Fig. 6(b),
we cannot reroute net 2 in track 2, if there is no turning
switch between the intersection of the middle track in one
of the two vertical channels and track 2 in the horizontal
channel. Therefore, am+1

i
will be 1 for all such tracks. We

use Vm+1 to denote the set of tracks which are candidates
for the rerouting of lm+1. Given an availability vector for
lm, (a

m

1 ; a
m

2 ; : : : ; a
m

t), we determine the following �ve sets
of tracks,
A = fi j track i 2 Vm+1 , ami = 0 and Ri(m) 6= Li(m+1)g,
B = fi j track i 2 Vm+1, a

m

i = 0 and Ri(m) = Li(m+1)g,
C = fi j track i 2 Vm+1, a

m

i = 1 and Li(m) 6= Li(m+1)g,
D = fi j track i 2 Vm+1, ami = 1 and Li(m) = Li(m+1)g,
E = fi j track i 62 Vm+1g.
We will generate jBj + 1 availability vectors for lm+1 which
satisfy the constraints :

1. am+1

i
= 0, for each i in Set A,

2. am+1

i
= 0, for each i in Set C,

3. am+1

i
= 1, for each i in Set D,

4. am+1

i
= 1, for at most one i in Set B,

5. am+1

i
= 1, for each i in Set E.

Note that there are exactly jBj + 1 availability vectors sat-
isfying the �ve constraints above. The �rst constraint states
that if track i is available for lm and rerouting lm does not
prohibit lm+1 from being rerouted in track i, then track i

is available for lm+1. The second constraint states that if
track i is occupied by some existing route and this route
does not block the rerouting of lm+1 in track i, then track
i is available for lm+1. The third constraint states that
if some existing route uses the leftmost segment which is
needed for lm+1 , then track i is not available for lm+1. Note
that we can only reroute lm in track i for i in Sets A and
B, since ami = 0. If we choose track i in Set A for rerouting
lm, then all the tracks in both Set A and B are available for
rerouting lm+1. If we choose track i in Set B for rerouting
lm, then that track is no longer available for rerouting lm+1.
The fourth constraint is imposed based on this observation.
The last constraint states that if track i is not in Vm+1,
then it is impossible to reroute lm+1 in track i. Note that
there is only one availability vector for l1, the ith coordi-
nate of which is 0, if track i 2 V1, and the ith coordinate
of which is 1, otherwise. Based on the relationship between
the availability vectors for lm and lm+1 and the availability
vector for l1, we can compute all the availability vectors for
li, for each i, 2 � i � j<j. Note that if all the availability
vectors are (1; 1; : : : ; 1) for some li , then it is impossible
to reroute < using U . Otherwise, if there is a zero entry in
any of the availability vectors for lj<j , then a way to reroute
each li, 1 � i � j<j, in < using U can be found by tracing
back the computation of that availability vector.

Note that if there are two availability vectors for lm,
(am1 , a

m

2 , : : :, a
m

t) and (bm1 , b
m

2 , : : :, b
m

t), such that ami �

bmi , for 1 � i � t, then the latter is redundant, since the
tracks available for lm speci�ed in the former include those
speci�ed in the latter. Therefore, it is unnecessary to keep
the redundant availability vector. To store the availability
vectors for each route in <, we use the data structure trie
[1]. The number of nonredundant availability vectors is
bounded by

�
t
t

2

�
, which is the number of binary sequence of

length t with t

2
ones. If we do not use the data structure

tries, the storage size will be t
�
t
t

2

�
. However, when a trie is

used the storage is at most 2 + 4 + : : : + 2t = 2t+1 � 2.

3 Experimental results

Our algorithm was implemented in the C language and
executed on a SPARC-10 station. The program was used
to route �ve industrial circuits used in [3, 9]. Each track is
segmented such that the number of segments of length l is
proportional to 1

l
, where l is a power of 2. Segments in each

track are arranged in a random manner so that there is no
bias on the distribution of routing resource. The �rst cir-
cuit, BUS CNTL, is a bus controller. Let k be the number
of turning switches allocated to the horizontal segments and
vertical segments at the intersection of a horizontal channel
and a vertical channel. For each of the cases in which the
number of tracks in a channel is 11, 12, 13, and 14, we de-
termined the minimum value of k such that our algorithm
produces a 100% completion routing solution. Two di�er-
ent ways to allocate these k turning switches are used in our
experiments. One is to randomly generate the positions of
these k turning switches such that routing resource is spread
evenly without any bias. Fig. 7(c) shows an example of a
random arrangement, where the number of tracks in each
channel is 6 and k = 3. Results corresponding to such an al-
location of turning switches are shown in the second column
of Table 2. The other way is to arrange consecutive loca-
tions for the k turning switches in each row with an o�set
of one column between adjacent rows. Fig. 8 shows such an
arrangement when the number of tracks is 6 and k = 3. Re-
sults corresponding to such an allocation of turning switches
are shown in the third column of Table 2. Note that the ex-
periments show that the arrangement illustrated in Fig. 8
has better routability than the random arrangement. Fur-
ther justi�cation is needed. BUS CNTL was routed on an
array of 13 � 12 blocks with 151 nets, or 392 equivalent
two-terminal nets. The routing result in [3] used a total of
1616 active switches in the connecting paths. In [9], fewer
than 1170 are used in all these instances. The results in [9]
and [3] for BUS CNTL are summarized in Table 1. In our
case, we further reduce the number of switches used. Note
that in [3], the channel density of the global route is used
as a lower bound on the number of tracks required in their
algorithm. Their algorithm achieves the lower bound in two
benchmark circuits and uses at most two more tracks than
the lower bound in the other three circuits. However, in our
routing architecture, given a global route, the channel den-
sity is usually a loose lower bound of the number of tracks
required in each channel. Consider the example in Fig. 7.

(c)(b)(a)

switch matrix

Fig. 7. 6 is a loose lower bound for the routing architecture in
(c). 7 tracks are required.

Fig. 8. One way to allocate turning switches

Given the global route in 7(a), if we use the routing archi-
tecture in [3], then 6 tracks are enough as shown in 7(b).
However, for our routing architecture, 7 tracks are required
since each net needs a horizontal wire segment in order to
pass through the intersection of the horizontal channel and
the vertical channel. Based on this observation, we analyzed
the same given global route used in [9] and found that the
minimum number of tracks required is at least 11 in our
architecture, which was achieved using our algorithm. The
number of tracks used in [3] is 10, one more than the chan-
nel density. The number of tracks for the architecture in [9]
is at least 12. It should be emphasized that the minimum
value of k for achieving a 100% completion routing solution
decreases dramatically in our architecture. This is due to
the increase in routability by the introduction of the contin-
uing switches. The total numbers of ripped up and rerouted
nets are only 5, 1, 3, and 0, respectively. Therefore, most
of the routing is done by our router in Section 2.1 and only
in very rare case the rip-up and reroute algorithm is used
to resolve the con
ict.

Table 1

Summary of Results in [9] and [3] for bus cntl

of min. # active total

tracks k switches switches

11 - - -
[9] 12 11 1165 17424

13 9 1151 15444
14 6 1167 11088

[3] 10 6 1616 15840

For the other four circuits, we used the same number of
tracks as in [9] and found the corresponding minimum value
of k in order to achieve a 100% completion routing solu-
tion. Results for a random allocation of turning switches
are shown in the third column of Table 3 and results for the
\o�-set" allocation of turning switches as illustrated in Fig.
8 are shown in the fourth column which indicates a slight
improvement in routability. Compared with the results of
[9], the dramatic reduction in the values of k demonstrates

Table 2

Summary of Our Results for bus cntl
of min. min. # active active sw. (Ours) total # total sw. (Ours) rerouted time

tracks k k
y switches active sw. [3] switches total sw. [9] nets (seconds)

11 4 4 1124 70% 7326 - 5 0.73
12 5 3 1093 68% 9576 55% 1 0.73
13 3 3 1123 69% 6942 45% 3 0.67

14 3 2 1116 69% 7476 67% 0 0.78

Table 3

Summary of Our Results for the Other Four Circuits
circuit # of min. min. # active active sw.(Ours) total # total sw.(Ours) rerouted time

name tracks k k
y switches active sw. [3] switches total sw. [9] nets (sec.)

DMA 13 6 5 2188 65% 23439 54% 4 1.73
EBNR 15 6 6 3383 59% 43950 54% 9 3.12
FSM 16 3 3 3907 64% 29744 57% 1 3.33

Z03 16 8 8 6092 61% 93808 60% 2 6.35

Table 4

Summary of Results in [9] and [3] for the Other

Four Circuits
circuit # of min. # active total #

name tracks k switches switches

DMA 13 13 2237 43095
[9] EBNR 15 13 3830 81900

FSM 16 7 4193 51744
Z03 16 15 6054 156000
DMA 10 6 3354 30600

[3] EBNR 12 6 5700 60480
FSM 10 6 6132 55440
Z03 13 6 10039 101400

again that our architecture has much better routability than
that proposed in [9]. Also, the number of active switches in
the routing solution is substantially smaller than that in [3].
The algorithm is very e�cient. It took less than 7 seconds
for each circuit. The results are summarized in Table 3 and
4.

4 Conclusion

We have proposed a new two-dimensional FPGA/FPIC
routing architecture which has better routability and uses
fewer active programmable switches than the architecture
proposed in [9]. An e�ective routing algorithm is devel-
oped based on the characteristics of the routing architec-
ture. The rip-up and reroute phase of this algorithm can
also be used to solve Actel row-based channel routing prob-
lem. Experimental results show that the routing architec-
ture is
exible and the routing algorithm performs well. It
is interesting to note that our rip-up and reroute algorithm
for two-dimensional FPGA/ FPIC routing architecture can
be also used as a heuristic method to solve Actel row-based
channel routing problem. First of all, we use the left edge
algorithm [7] to divide the 2-terminal nets into d groups,
where d is the density of these 2-terminal nets. We then
process the 2-terminal nets in one group at a time during
which we use our rip-up and reroute algorithm described in
Section 2.2 to assign these 2-terminal nets to tracks subject
to the constraint that no two nets can share the same wire
segment. Recent investigation [10] found that this track as-

signment problem for non-overlapping nets can be done in
linear time.
Acknowledgment The authors are grateful to their col-
league Peichen Pan for his discussion in the rip-up and
reroute algorithm, Professor Stephen Brown in the Univer-
sity of Toronto for providing experimental examples and
anonymous reviewers for their valuable comments .

References

[1] A. Aho, J. Hopcroft, and J. Ullman, Data Structures
and Algorithms, Addison-Wesley, 1983.

[2] Aptix Inc., FPIC AX1024D, Preliminary Data Sheet,
August 1992.

[3] S. Brown, J. Rose, and Z. Vranesic, \A detailed router
for �eld-programmable gate arrays," IEEE Transac-
tions on Computer-Aided Design, vol. 11, no. 5, pp.
620-628, May 1992.

[4] J. Frankle, \Iterative and adaptive slack allocation for
performance-driven layout and FPGA routing," 29th
ACM/IEEE Design Automation Conference, 1992, pp.
536-542.

[5] A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-
Ayat, and A. Mohsen, \An architecture for electrically
con�gurable gate arrays," IEEE Journal of Solid-State
Circuits, vol. 24, no. 2, pp. 394-398, April 1989.

[6] R. Guo, H. Nguyen, A. Srinivasan, H. Verheyen,
H. Cai, S. Law, and A. Mohsen, \A 1024 pin uni-
versal interconnect array with routing architecture,"
IEEE Custom Integrated Circuits Conference, 1992,
pp. 4.5.1-4.5.4.

[7] A. Hashimoto and J. Stevens, \Wire routing by opti-
mizing channel assignment within large apertures, "
Proceedings of 8th IEEE Design Automation Work-
shop, 1971.

[8] M. Palczewski, \Plane parallel A* maze router and
its application to FPGAs," 29th ACM/IEEE Design
Automation Conference, 1992, pp. 691-697.

[9] Y. Sun, T. C. Wang, C. K. Wong, and C. L. Liu,
\Routing on Symmetric FPGA/FPIC," IEEE/ACM
International Conference on Computer-Aided Design,
1993.

[10] Y. Sun and C. L. Liu, manuscript, February 1994.

[11] Xilinx Inc., XC4000 Logic Cell Array Family, Techni-
cal Data, 1990.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

