
Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1003.13/D2.1

Draft Standard for Information Technology—
Standardized Application Environment Profile—

POSIX Realtime and Embedded Application
Support (AEP)

Sponsor

Portable Applications Standards Committee
of the
IEEE Computer Society

Unapproved draft

Abstract: This standard is part of the POSIX series of standardized profiles for open
systems. It defines environment profiles for portable realtime and embedded applica-
tions.

Keywords: AEP, application portability, data processing environment, open systems,
operating system, portable application, POSIX profiles, realtime application environ-
ments, realtime, embedded

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

IEEE P1003.13/D2.1
February 2003

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Copyright © 2003 by the Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue
New York, NY 10016-5997, USA
All rights reserved.

This document is an unapproved draft of a proposed IEEE Standard. As
such, this document is subject to change. USE AT YOUR OWN RISK. Be-
cause this is an unapproved draft, this document must not be utilized for any
conformance/compliance purposes. Permission is hereby granted for IEEE
Standards Committee participants to reproduce this document for purposes
of IEEE standardization activities only. Prior to submitting this document
to another standard development organization for standardization activi-
ties, permission must first be obtained from the Manager, Standards Licens-
ing and Contracts, IEEE Standards Activities Department. Other entities
seeking permission to reproduce this document, in whole or in part, must ob-
tain permission from the Manager, Standards Licensing and Contracts,
IEEE Standards Activities Department.

IEEE Standards Activities Department
Standards Licensing and Contracts
445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331, USA

+1 (908) 562-3800
+1 (908) 562-1571 [FAX]

3/2/03

i

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Editor’s Notes

This section will not appear in the final document. It is used for editorial comments
concerning this draft. Please consult the balloting instructions document and the
cover letter for the ballot that accompanied this draft for information on how the
balloting process is accomplished.

This is the first draft of the POSIX.13 revision; POSIX.13-1998 defined four real-
time application environment profiles (or POSIX subsets), based on the ISO/IEC
9945-1:1996 (POSIX.1) and the IEEE Std 1003.5c-1998 (POSIX.5c) standards. The
goal of this revision is to update the profiles according to implementation experi-
ence, and to add the services defined in the new revised IEEE Std 1003.1-2001
(which incorporates among other services the recently approved POSIX amend-
ments POSIX.1d, POSIX.1g, POSIX.1j, and POSIX.1q) and the POSIX.5c amend-
ment. Also in the scope is to incorporate any new POSIX Ada bindings that might
get developed and approved before the completion of this revision. The POSIX.13
revision project incorporates and supersedes work developed previously in the
POSIX.13a and POSIX.13b projects

Changes to the previous standard have been marked with side bars like that af-
fecting this sentence. These side bars are for information only. Small numbers are
printed at the left margin of each page of the document to ease making references
to specific text during the ballot process. These numbers may not match actual
lines, and are only used as an approximate reference.

Please report typographical errors to:

Michael González Harbour
Dpto. de Electrónica y Computadores
Universidad de Cantabria
Avenida de los Castros s/n
39005 - Santander SPAIN
TEL: +34 942 201483
FAX: +34 942 201402
Email: mgh@unican.es (Electronic mail is preferred.)

The copying and distribution of IEEE balloting drafts is accomplished by the Stan-
dards Office. To report problems with reproduction of your copy, or to request ad-
ditional copies of this draft, contact:

Tracy Woods
IEEE Computer Society,
1730 Massachusetts Avenue, NW,
Washington DC 20036-1992, USA.
Phone: +1-202-371-1013
Fax: +1-202-728-0884
E-mail: twoods@computer.org
Web page: http://www.computer.org/standard/draftstd.htm

ii

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

POSIX.13 Change History

This section is provided to track major changes between drafts.

Draft 2 [July 2002] First ballot draft

Draft 1.2 [July 2002] First complete draft, for internal SSWG-RT use.

• Added new limits

• Eliminated requirement for reader/writer locks

• Added Annex B

• Added the alphabetical topical index

• Added requirement for priority ranges

Draft 1.1 [April 2002] Second draft for internal SSWG-RT use.

• Minor fixes and additions

• Incorporated some changes from discussions at the Open Group’s Real-
Time Forum.

Draft 1.0 [February 2002] First draft, incomplete, for internal SSWG-RT use.

• Scope of P1003.1a and P1003.1b (amendments to IEEE Std 1003.13-
1998) included in this revision

• Targets the newly approved POSIX.1 revision (IEEE Std 1003.1-2001)
and POSIX.5c

• Uses text developed for POSIX.13b, but reformatted as a revision to
POSIX.13

• Standard’s title changed to add support for embedded applications

iii

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Contents

Introduction . xi

Section 1: Overview. 1
1.1 Scope . 1
1.2 Taxonomy Position . 1

1.2.1 Rationale for Positioning (informative) . 2
1.3 Realtime System Profiles . 2

1.3.1 Minimal Realtime System Profile (PSE51) . 2
1.3.2 Realtime Controller System Profile (PSE52) 3
1.3.3 Dedicated Realtime System Profile (PSE53). 3
1.3.4 Multi-Purpose Realtime System Profile (PSE54) 3

1.4 Units of Functionality. 4
1.5 Development Environment . 16
1.6 Summary of Profile Features . 17

Section 2: Normative References . 23
2.1 Normative References. 23

Section 3: Terms and Definitions . 25
3.1 Terminology . 25
3.2 Definitions. 26
3.3 Rationale for definitions . 29

Section 4: Conventions and Abbreviations . 31
4.1 Conventions. 31
4.2 Abbreviations . 32

Section 5: Conformance . 35
5.1 Conformance . 35

5.1.1 Implementation Conformance . 35
5.1.2 Application Conformance . 36

Section 6: Minimal Realtime System Profile (PSE51) . 39
6.1 Introduction. 39

6.1.1 Identification . 39
6.1.2 Conformance . 39
6.1.3 Options . 40

6.2 Operating System Interface Requirements. 40
6.2.1 POSIX.1 Requirements (C Language Option). 40
6.2.2 POSIX.5c Requirements (Ada Language Option) 42

6.3 Application Constraints . 43
6.3.1 Constraints related to POSIX.1 Interfaces (C Language Option) . . 43
6.3.2 Constraints related to POSIX.5c Interfaces (Ada Language Option)

iv

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

. 45
6.4 Shell and Utility Requirements . 46
6.5 Development Platform Requirements . 46

6.5.1 C Language Development Option . 46
6.5.2 Ada Language Development Option . 47

6.6 Rationale for Operating System Requirements (informative) 47
6.6.1 Operating System Interface Requirements. 47
6.6.2 Shell and Utility Requirements . 55
6.6.3 Development Platform Requirements . 55

Section 7: Realtime Controller System Profile (PSE52) . 57
7.1 Introduction. 57

7.1.1 Identification . 57
7.1.2 Conformance . 57
7.1.3 Options . 58

7.2 Operating System Interface Requirements. 58
7.2.1 POSIX.1 Requirements (C language Option) 58
7.2.2 POSIX.5c Requirements (Ada Language Option) 60

7.3 Application Constraints . 61
7.3.1 Constraints related to POSIX.1 Interfaces (C Language Option) . . 61
7.3.2 Constraints related to POSIX.5c Interfaces (Ada Language Option)

. 62
7.4 Shell and Utility Requirements . 63
7.5 Development Platform Requirements . 63

7.5.1 C Language Development Option . 63
7.5.2 Ada Language Development Option . 64

7.6 Rationale for Operating System Requirements (informative) 64
7.6.1 Operating System Interface Requirements. 64
7.6.2 Shell and Utility Requirements . 72
7.6.3 Development Platform Requirements . 73

Section 8: Dedicated Realtime System Profile (PSE53) . 75
8.1 Introduction. 75

8.1.1 Identification . 75
8.1.2 Conformance . 75
8.1.3 Options . 76

8.2 Operating System Interface Requirements. 76
8.2.1 POSIX.1 Requirements (C Language Option). 76
8.2.2 POSIX.5c Requirements (Ada Language Option) 78

8.3 Application Constraints . 80
8.3.1 Constraints related to POSIX.1 Interfaces (C Language Option) . . 80
8.3.2 Constraints related to POSIX.5c Interfaces (Ada Language Option)

. 80
8.4 Shell and Utility Requirements . 81
8.5 Development Platform Requirements . 81

8.5.1 C Language Development Option . 81
8.5.2 Ada Language Development Option . 82

8.6 Rationale for Operating System Requirements (informative) 82
8.6.1 Operating System Interface Requirements. 82

v

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

8.6.2 Shell and Utility Requirements . 91
8.6.3 Development Platform Requirements . 91

Section 9: Multi-Purpose Realtime System Profile (PSE54) 93
9.1 Introduction. 93

9.1.1 Identification . 93
9.1.2 Conformance . 93
9.1.3 Options . 94

9.2 Operating System Interface Requirements. 94
9.2.1 POSIX.1 Requirements (C Language Option). 94
9.2.2 POSIX.5c Requirements (Ada Language Option) 97

9.3 Application Constraints . 99
9.3.1 Constraints related to POSIX.1 Interfaces (C Language Option) . . 99
9.3.2 Constraints related to POSIX.5c Interfaces (Ada Language Option)

. 99
9.4 Shell and Utility Requirements . 99
9.5 Development Platform Requirements . 100

9.5.1 C Language Development Option . 100
9.5.2 Ada Language Development Option . 100

9.6 Rationale for Operating System Requirements (informative) 101
9.6.1 Operating System Interface Requirements. 101
9.6.2 Shell and Utility Requirements . 109
9.6.3 Development Platform Requirements . 109

Annex A: POSIX Profiles Package (Ada Language). 111

Annex B: Description of Optional Interfaces . 113
B.1 POSIX.1 Options. 113
B.2 POSIX.5c Options . 123

Annex C: Bibliography. 127
C.1 Related Open Systems Standards . 127
C.2 Other Documents . 127

Alphabetic Topical Index. 129

vi

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

vii

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

List of Figures

Figure I.1. Main Building Blocks of the Profiles . xix

viii

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

ix

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

List of Tables

Table 1-1: POSIX.1 Units of Functionality .4
Table 1-2: POSIX.5 Units of Functionality (Ada Language Support) 10
Table 1-3: POSIX.5 Units of Functionality (Device IO). .11
Table 1-4: POSIX.5 Units of Functionality (Device Specific) 11
Table 1-5: POSIX.5 Units of Functionality (Event Management) 11
Table 1-6: POSIX.5 Units of Functionality (FD Management) 12
Table 1-7: POSIX.5 Units of Functionality (FIFO). .12
Table 1-8: POSIX.5 Units of Functionality (File Attributes) 12
Table 1-9: POSIX.5 Units of Functionality (File System) .12
Table 1-10: POSIX.5 Units of Functionality (Job Control). .13
Table 1-11: POSIX.5 Units of Functionality (Multi-Process)13
Table 1-12: POSIX.5 Units of Functionality (Networking) .14
Table 1-13: POSIX.5 Units of Functionality (Pipes). .14
Table 1-14: POSIX.5 Units of Functionality (Priority Ranges) 14
Table 1-15: POSIX.5 Units of Functionality (Signals) .15
Table 1-16: POSIX.5 Units of Functionality (Single Process) 15
Table 1-17: POSIX.5 Units of Functionality (System Database) 16
Table 1-18: POSIX.5 Units of Functionality (User Groups) .16
Table 1-19: Units of Functionality Requirements .17
Table 1-20: POSIX.1 Option Requirements .18
Table 1-21: POSIX.1 Options vs. POSIX.5c Options .20
Table 6-1: POSIX.1 Units of Functionality Requirements .40
Table 6-2: POSIX.1 Option Requirements .41
Table 6-3: POSIX.5c Units of Functionality Requirements .42
Table 6-4: POSIX.5c Option Requirements .42
Table 6-5: Functions required to be async-signal-safe .44
Table 7-1: POSIX.1 Units of Functionality Requirements .58
Table 7-2: POSIX.1 Option Requirements .59
Table 7-3: POSIX.5c Units of Functionality Requirements .60
Table 7-4: POSIX.5c Option Requirements .60
Table 7-5: Functions required to be async-signal-safe .62
Table 8-1: POSIX.1 Units of Functionality Requirements .76
Table 8-2: POSIX.1 Option Requirements .77
Table 8-3: POSIX.5c Units of Functionality Requirements .78
Table 8-4: POSIX.5c Option Requirements .79
Table 9-1: POSIX.1 Units of Functionality Requirements .94
Table 9-2: POSIX.1 Option Requirements .95
Table 9-3: POSIX.1 Units of Functionality Requirements .97

x

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Table 9-4: POSIX.5c Option Requirements .97
Table 9-5: Shell and Utilities Option Requirements

(C Language Option) .99
Table 9-6: Shell and Utilities Option Requirements

(Ada Language Option) .100
Table B-1: Functions under each POSIX.1

System Interface Option .113
Table B-2: Utilities under each POSIX.1 Shell and Utilities Option 121
Table B-3: Packages and Subprograms under

each POSIX.5c Option. .123

xi

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Introduction

(This introduction is not a normative part of IEEE Std P1003.13, Information technology—
Standardized Application Environment Profile—POSIX Realtime and Embedded Applica-
tion Support (AEP).

The purpose of this standard is to define realtime and embedded application envi-
ronments based on the ISO/IEC 9945 series of standards. It is intended for real-
time systems implementors and realtime applications software developers.

This standard is a revision of IEEE Std 1003.13-1998, where four realtime appli-
cation environment profiles (or POSIX subsets) are defined. The goal of this revi-
sion is to update each of the four profiles according to implementation experience,
and to add the services defined in the newly approved POSIX standards:

— IEEE Std 1003.1-2001, Standard for Information Technology—Portable Op-
erating System Interface (POSIX) (which includes among others the revised
ISO/IEC 9945-1: 1996 as amended by IEEE Std 1003.1d-1999, IEEE Std
1003.1j-2000, IEEE Std 1003.1g-2000, and IEEE Std 1003.1q-2000)

— and the amendment to IEEE Std 1003.5-1992, IEEE Standard for Informa-
tion Technology—POSIX Ada Language Interfaces—Part 1: Binding for
System Application Programming Interface (API) and IEEE Std 1003.5b-
1996, IEEE Standard for Information Technology—POSIX Ada Language
Interfaces—Binding for System Application Program Interface (API)—
Amendment 1: Realtime Extensions; this amendment is: IEEE Std 1003.5c-
1998.

The base standard, IEEE Std 1003.1-2001, allows profiling standards supporting
functional requirements less than those required in the full base standard to sub-
set both mandatory and optional functionality required for POSIX Conformance
(see the Base Definitions volume, Section 2.1.5.1, “Subprofiling Considerations”).
The POSIX.13 standard articulates these subprofiling options through units of
functionality, defined herein, and by use of named options defined in the base stan-
dard.

This standard specifies four realtime profiles both for the C Language and for the
Ada Language options. Because Ada Bindings to IEEE Std 1003.1-2001 are cur-
rently under development, the C Language option contains more services than the
Ada Language option in the current draft. If these Ada Bindings are completed be-
fore this proposed standard is sent to ballot, the draft will be amended to incorpo-
rate them. Otherwise, an amendment of IEEE 1003.13 will be produced in the
future, to incorporate the added Ada Language services.

This standard is designed to support building systems where not all the intercon-
nected boxes use the same profile, for example, a hierarchical system where the

xii

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

bottom-level device controllers use the “minimal” profile, the next level up follows
the larger “control” profile, and so on. There are interfaces called out for the small-
er profiles that make no sense in an isolated box; those interfaces are there solely
to support the construction of heterogeneous systems, and systems of communicat-
ing peers. Such systems are very common in practice.

To summarize, this standard is embedded in a much larger and widely supported
set of standards, which yields benefits during code development, as much develop-
ment and testing is done on the larger and more comfortable systems. It also may
be used in the construction of large and heterogeneous systems.

Four profiles have been defined to reflect the wide range of system requirements
presented by realtime designs. The intent is to provide a meaningful and coherent
set of interfaces that will provide software vendors and consumers with a uniform
framework for describing and specifying operating system capabilities. This allows
an application writer to construct an application that may be easily moved to a dif-
ferent system that supports the same profile. Similarly, it allows a vendor to claim
conformance with an established standard, even if that vendor's implementation
does not support the full POSIX feature set.

Initially, the focus of this standard is to provide standardized environments sup-
porting the C language. Options are provided for bindings to the Ada programming
language as well as for the C language. Bindings for other languages to these ser-
vices may be developed and this standard will be updated as appropriate.

Within this document, the term “POSIX.13” refers to this standard, IEEE Std
1003.13-200x.

Editor’s note: 200x will be changed to match the year the 1003.13
revision is approved as a standard.

Organization of This Standard

This Standard is divided into eight elements:

(1) General (Section 1)

(2) Normative references (Section 2)

(3) Definitions (Section 3)

(4) Conventions and abbreviations (Section 4)

(5) Conformance (Section 5)

(6) The various realtime profiles (Sections 6 through 9)

(7) ISPICS requirements (C) (Annex A)

(8) ISPICS requirements (Ada) (Annex B)

References are provided to direct the reader to other related sections.

xiii

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Informative annexes are not normative parts of the standard and are provided for
information only. They are provided for guidance and to help understanding.

In publishing this Standard, its developers simply intend to provide a yardstick
against which various operating system implementations can be measured for con-
formance. It is not the intent of the developers to measure or rate any products, to
reward or sanction any vendors of products for conformance or lack of conformance
to this Standard, or to attempt to enforce this Standard by these or any other
means. The responsibility for determining the degree of conformance or lack there-
of with this Standard rests solely with the individual who is evaluating a product
claiming to be in conformance with this Standard.

Base Documents

The various realtime application environments described herein are based on the
ISO/IEC 9945 and IEEE 1003 family of documents as well as ISO 9899 (C99 Lan-
guage) and 8652 (Ada95 Language).

Scenario

This standard is based directly on existing small and/or realtime (typically non-
UNIX™1) kernel practice as well as the growing body of practice with POSIX con-
formant kernels having realtime features. The general approach taken in this
standard is to specify interfaces (taken from POSIX) sufficient to deliver the func-
tionality typical of current realtime systems, (see Table 1-19 through Table 1-21).

Each profile is specified with full features, to give users clear direction. Vendors
may provide means to configure out those parts that are not needed by specific ap-
plications. Vendors wishing to expand on the specified profiles are strongly encour-
aged to take the added interfaces from other POSIX.13 profiles or from the base
standards, rather than invent new interfaces.

For each profile, the minimum hardware typically required is specified. This is the
hardware assumed to be present; implementations may, of course, have more, but
nothing in the profile requires—either directly or indirectly—more than the spec-
ified minimum hardware model.

Audience

The intended audience for this class of profiles is all persons concerned with an in-
dustry-wide standard realtime application environment based on the POSIX suite
of standards. This includes at least four groups of people:

1. UNIX is a registered trademark of The Open Group in the United States of America and
other countries.

xiv

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

(1) Persons buying hardware and software systems.

(2) Persons managing companies that are deciding on future corporate comput-
ing directions.

(3) Persons implementing realtime operating systems.

(4) Persons developing realtime applications where portability is a primary ob-
jective.

Rationale on Background

This subclause contains rationale common to all four realtime profiles.

The developers of POSIX.13 represent a cross section of hardware manufacturers,
vendors of operating systems and other software development tools, software de-
signers, consultants, academics, authors, applications programmers, and others.
In the course of their deliberations, the developers reviewed related U.S. and in-
ternational standards, both published and in progress.

Conceptually, POSIX.13 describes a set of application environment profiles needed
for the construction and execution of portable realtime application programs.

The developers of this standard have tried to capture the functionality of existing
realtime systems in a reasonable number of profiles that specify predominate ap-
plication environments. It is felt that these profiles, although not optimum, are a
best fit to existing classes of applications and systems.

Features of several commercial realtime kernels were considered during the devel-
opment of the 1998 version of POSIX.13. These included pSOS™1, VRTX32™2,
and VxWorks™3. Since these products were commercially successful, they must
have addressed a significant market segment. In addition, the uniprocessor subset
of VITA's ORKID specification, NGCR's “Tiny Real Time” (TRT), and the
uITRON specification were examined. These were all proposed standard interfac-
es for small realtime embedded systems.

Features of other commercial realtime kernels such as RT-Linux4 and QNX5, as
well as free software products such as RTEMS6 were considered during the devel-
opment of the current revision of POSIX.13.

The following is a list of features that are representative of current realtime sys-
tems and highlights the range of system requirements. While some concepts are

1. pSOS is now a registered trademark of Wind River Systems, Inc.

2. VRTX32 is now a registered trademark of Mentor Graphics.

3. VxWorks is a registered trademark of Wind River Systems, Inc.

4. RT-Linux is... FSM Labs

5. QNX is ...

6. RTEMS is ...

xv

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

common to virtually all implementations (e.g., preemptive, priority-based schedul-
ing), some only apply to smaller systems (e.g., a single address space), and some
only to more full-featured systems (e.g., network support, self-hosting).

Basic Realtime Multitasking and Synchronization

— Multiple flows of control

— Preemptive priority scheduling of flows of control

— One address space for all flows of control

— Direct control of location of memory areas

— Inter-thread communications mechanism via message passing
(queues)

— Binary and counting semaphores, without priority inheritance

— Mutual exclusion, with optional priority inheritance or priority ceiling
protocols

— Local or global event flags (one thread awaits multiple things)

— Multiple memory areas, with both fixed- and variable-sized block allo-
cation policies

— System time in units of clock ticks

— Timeouts on all blocking services in units of clock ticks

— Hardware interrupt control and support for user interrupt handlers

— Signals

— Exception handling

— Minimal synchronous I/O interface: open(), close(), read(), write(), ioctl()

— Debugger interface

— No memory protection

— Application runs in privileged (supervisor) mode, if applicable

— Direct I/O, rather than via kernel

— System executable size and memory requirements are major con-
straints

I/O

Realtime systems supporting I/O generally provide the following features:

— Named I/O devices

xvi

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

— Support for serial I/O lines

— Pipes

— Installable user device drivers

— Memory mapped I/O

Local File System

Realtime systems supporting a file system generally provide the following
features:

— Named files

— Hierarchical filesystem (directories)

— Contiguous preallocation of disk space

— May provide media compatibility with another filesystem (e.g.
MSDOS™1, or RT-11™2)

— No user IDs or file protection

Historically, filesystems for embedded realtime systems typically have had
a one-level name space, contiguous allocation of disk space, and relatively
short filenames. They have not supported an arbitrary hierarchy of named
directories, non-contiguous allocation of disk space, or long filenames.
They may have had numbered directories (e.g. RSX-11M™3), or only con-
tiguous allocation of disk space (e.g., RT-11™)

However, recent commercial offerings have supported multilevel named
directories and both contiguous and non-contiguous disk space allocation.
In these implementations, the support of these features with potentially
non-deterministic performance does not preclude an application from
restricting itself to features with deterministic performance. For example,
it is still possible to use contiguous files exclusively. Because it is relatively
easy to implement both, and need not interfere with deterministic perfor-
mance, the working group did not make a distinction between realtime
and time-sharing file systems in this AEP.

Although few embedded systems had a hard drive and a file system,
present flash memory technology has enabled embedded systems, even
those with strict vibration requirements, to have a file system resident on
this kind of non-volatile media. This has caused the POSIX.13 profile
designed for large embedded systems, the Dedicated Realtime System Pro-
file (PSE53), to incorporate a simplified file system in this new revision of
the standard.

1. MS-DOS is a registered trademark of Microsoft Corporation.

2. RT-11 is now a registered trademark of Compaq.

3. RSX-11M is now a registered trademark of Compaq.

xvii

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Traditional implementations of POSIX.1 filesystems employ a disk buffer
cache to improve average performance by reducing the number of physical
media accesses, and by reordering the accesses to take advantage of the
characteristics of rotating media. These implementations have not made a
distinction between the buffering of data transfers [read() and write()], and
directory operations [creat(), link(), unlink(), mkdir(), rmdir(), rename()]. A
result of this is that a system crash at an unexpected moment can leave
the filesystem in a corrupted state. This situation is usually corrected at
the next system reboot by a filesystem checker and recovery program, such
as fsck. The checking and correcting of a corrupted filesystem may take a
long and variable amount of time to perform, may require a human opera-
tor to monitor and control its progress, and may nonetheless fail to repair
the filesystem. Any one of these characteristics would make a filesystem
check unacceptable for some embedded realtime applications. It was there-
fore suggested that such applications limit their use of directory opera-
tions to safe times, and that implementations maintain the filesystem in
such a way that a filesystem check during reboot is avoided. This was con-
sidered, but rejected on the grounds that not all applications would require
the capability, and that it was neither specifiable nor testable.

Network Communication

Realtime systems supporting networking generally provide the following
features:

— Compatibility with a protocol stack (e.g. TCP/IP)

— May support applications such as FTP, TELNET, TFTP, rcp

Distributed File System

Realtime systems supporting a distributed (non-local) file system gener-
ally provide the following features:

— Remote access to a filesystem

— Performance not realtime

Memory Protection

Realtime systems supporting memory protection (typically requiring a
memory management unit) generally provide the following features:

— Memory mapping and protection

— Ability to map to special areas of memory (I/O page, frame buffer)

— Typically do not have demand paging for realtime parts

xviii

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Multiprocessor Support

Realtime systems supporting multiprocessing generally provide one of the
following methods:

— network
Non-transparent access to remote objects, remote procedure calls

— distributed
Transparent access to objects, no load-balancing

— symmetric
Presence of a global task scheduling queue (may also have local sched-
uling queues)

Self-Hosting

Realtime systems supporting the capability for program development, text
editing, compilation, etc. generally provide the following features:

— Shell

— Text editor

— Compiler, assembler, linker, debugger

— May have user ID protection

Only the larger profiles (i.e., PSE54) are likely to be self-hosted.

Overview of the Profiles Structure (Rationale)

This subclause contains rationale common to all four realtime profiles.

The four profiles defined in this standard are designed to make applications up-
wards compatible to higher profiles. Figure I.1 shows the main building blocks of
each of the four profiles specified in this standard. Please note that the full differ-
ences between the different profiles are more complex than those appearing on this
figure. See subclause 1.6, “Summary of Profile Features”, for a full description of
the differences between the profiles.

The “core” building block in Figure I.1 refers to the units of functionality and op-
tions required in all four profiles. See subclause 6.2, “Operating System Interface
Requirements”, for a description of the core services. Profiles with only one implicit
process (PSE51 and PSE52) are shaded in the figure, to highlight this major differ-
ence with the larger profiles, which require support for multiple processes (and
thus require having a MMU).

xix

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Related Standards Activities

Activities to extend this Standard to address additional requirements are in
progress, and similar efforts can be anticipated in the future.

The following areas are under active consideration at this time or are expected to
become active in the near future1:

(1) Additional system application program interfaces (APIs) in C language

(2) Ada language bindings

(3) Additional realtime facilities

(4) Fault tolerance

(5) Profiles describing application- or user-specific combinations of Open Sys-
tems standards

1. A Standards Status Report that lists all current IEEE Computer Society standards
projects is available from the IEEE Computer Society, 1730 Massachusetts Avenue NW,
Washington, DC 20036-1903; Telephone: +1 202 371-0101; FAX: +1 202 728-9614. Work-
ing drafts of POSIX standards under development are available from the Institute of
Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ
08855-1331 (http://www.standards.ieee.org/).

Figure I.1. Main Building Blocks of the Profiles

Core

Simple
File System

Message
Queues

Tracing

Networking
Asynchronous

I/O
Multiple
Processes Shell &

Utilities

Multiple
Users

Full
File System

Others

Minimal

Controller

Dedicated

Multi-Purpose

xx

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

If you have interest in participating in the Portable Application Standards Com-
mittee (PASC) working groups addressing these issues, please send your name, ad-
dress, and phone number to

Secretary, IEEE Standards Board
Institute of Electrical and Electronics Engineers, Inc.
P.O. Box 1331
445 Hoes Lane
Piscataway, NJ 08855-1331
USA

When writing, ask to have your letter forwarded to the chairperson of the appro-
priate PASC working group.

If you have interest in participating in this work at the international level, contact
your International Organization for Standardization/International Electrotechni-
cal Committee (ISO/IEC) national body.

xxi

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE Std 1003.13-1998 was prepared by the System Services Working Group—Re-
altime, sponsored by the Portable Application Standards Committee of the IEEE
Computer Society. At the time this standard was approved, the membership of the
System Services Working Group—Realtime was as follows:

Portable Application Standards Committee

IEEE System Services Working Group—Realtime

Working Group

Chair: Lowell Johnson

Vice Chair: Joseph M. Gwinn

Functional Vice Chairs: Jay Ashford
Andrew Josey
Curtis Royster, Jr.

Secretary: Nick Stoughton

Chair: Joseph M. Gwinn
Susan Corwin (to 1995)

Secretary: Karen D. Gordon
Frank Prindle (1996)
Lee Schermerhorn (to
1994)

Technical Editor: Bob Luken

Ballot Coordinators: Andrew E. Wheeler, Jr.
James T. Oblinger

Technical Reviewers: Andrew E. Wheeler, Jr.
Joseph M. Gwinn
Karen D. Gordon

Ray Alderman Michael Feustel Dave Lunger
Larry Anderson Bill Gallmeister Bill Maes
Pierre-Jean Arcos Michael González James T. Oblinger
Charles R. Arnold Karen D. Gordon Offer Pazy
V. Raj Avula Randy Greene Carolyn Petersen
Theodore P. Baker Rick Greer Dave Plauger
Todd Bargorek Joseph M. Gwinn Arlan Pool
Robert Barned Steven A. Haaser Franklin C. Prindle
Richard M. Bergman Barbara Haleen François Riche
Nawaf Bitar Geoffrey R. Hall Robert Rose

xxii

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Ballot Group

The following persons were members of the 1003.13 Balloting Group that approved
the standard for submission to the IEEE Standards Board:

When the IEEE-SA Standards Board approved IEEE 1003.13 on 19 March 1998,
it had the following membership:

Steve Brosky Patrick Hebert Gordon W. Ross
David Butenhof Mary R. Hermann Barry Ruzek
Hans Petter Christiansen David Hughes Webb Scales
Dave Cooper Duane Hughes Lee Schermerhorn
Susan Corwin Michael B. Jones Del Swanson
Bill Cox Steven Kleiman Barry Traylor
June R. Curtis Robert Knighten Stephen R. Walli
Peter Dibble C. Douglass Locke Andrew E. Wheeler, Jr.
Christoph Eck Kent Long David Wilner
Maryland R. Edwards Robert D. Luken John Zolnowsky

Norman Aaronson John Gilbert Robert D. Luken
Alejandro Alonso-Muñoz Michael González Dave Lunger
Pierre-Jean Arcos Karen D. Gordon Marshall McKusick
Charles R. Arnold Mars J. Gralia Craig B. Meyers
Theodore P. Baker Randy Greene Diana Norwood
Robert Barned Joseph M. Gwinn James T. Oblinger
Jason Behm Steven A. Haaser Dave Plauger
Richard M. Bergman Geoffrey R. Hall Arlan Pool
Andy R. Bihain Patrick Hebert Franklin C. Prindle
Shirley Bockstahler-Brandt Hans H. Heilborn Paul Rabin
Steve Case Duane Hughes Wendy Rauch
Hu Cheng Hal Jespersen Henry H. Robbins
Hans Pietter Christiansen Michael B. Jones Steven Schwarm
Susan Corwin Joe Kelsey Del Swanson
Donald Cragun Judy Kerner Sandra Swearingen
June R. Curtis Lawrence J. Kilgallen James G. Tanner
Lee Damico Martin J. Kirk Mark-Rene Uchida
Christoph Eck Thomas M. Kurihara Andrew E. Wheeler, Jr.
James A. Eiler Kevin Lewis David Wilner
Philip H. Enslow C. Douglass Locke Oren Yuen
Donna K. Fisher Kent Long John J. Zenor
Michel Gien James P. Lonjers John Zolnowsky

Lee W. Lucas

Richard J. Holleman,
Chair

Judith Gorman,
Secretary

Donald N. Heirman,
Vice Chair

xxiii

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Noelle Humenick
IEEE Standards Project Editor

Satish K. Aggarwal James H. Gurney L. Bruce McClung
Clyde R. Camp Jim D. Isaak Louis-François Pau
James T. Carlo Lowell G. Johnson Ronald C. Petersen
Gary R. Engmann Robert Kennelly Gerald H. Peterson
Harold E. Epstein E.G. “Al” Kiener John B. Posey

Jay Forstera Joseph L. Koepfingera Gary S. Robinson

Thomas F. Garrity Stephen R. Lambert Hans E. Weinrich
Ruben D. Garzon Jim Logothetis Donald W. Zispe

Donald C. Loughry

a. Member emeritus

xxiv

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1003.13 was prepared by the System Services Working Group—Realtime,
sponsored by the Portable Application Standards Committee of the IEEE Comput-
er Society. At the time this standard was approved, the membership of the System
Services Working Group—Realtime was as follows:

Portable Application Standards Committee

IEEE System Services Working Group—Realtime

Working Group

<to be added later>

Ballot Group

<to be added later>

Chair: Lowell Johnson

Vice Chair: Joseph M. Gwinn

Functional Vice Chairs: Jay Ashford
Andrew Josey
Curtis Royster Jr.

Secretary: Nick Stoughton

Chair: Joseph M. Gwinn

Secretary: Karen D. Gordon

Technical Editor: Michael González

Ballot Coordinator: Jim Oblinger

Technical Reviewers: Michael González

Scope 1

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Draft Standard for Information
Technology—Standardized Application

Environment Profile —POSIX Realtime and
Embedded Application Support (AEP)

Section 1: Overview

1.1 Scope

This standard establishes a set of Realtime and Embedded Environment Profiles
based on IEEE Std 1003.1-2001, IEEE Std 1003.5-1992 as amended by IEEE Std
1003.5b-1996 and IEEE Std 1003.5c-1998, and related standards specifying foun-
dations for realtime applications. It is a revision of the previous IEEE Std 1003.13-
1998, which established Realtime Profiles based on ISO/IEC 9945-1:1990 as
amended by IEEE Std 1003.1b-1993, IEEE Std 1003.5b, and ISO/IEC 9945-2:1993.

The Application Environment Profiles specified herein are appropriate for the de-
velopment and execution of realtime or embedded applications using the services
and utilities provided by standards called out in this document.

1.2 Taxonomy Position

P— OSE Profiles

2 Overview

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

AEP— Application Environment Profiles

PS— System Profiles

PSE— Generic Environment Profiles

PSE5— Realtime Environments

PSE51— Minimal Realtime System Profile

PSE52— Realtime Controller System Profile

PSE53— Dedicated Realtime System Profile

PSE54— Multi-Purpose Realtime System Profile

1.2.1 Rationale for Positioning (informative)

(This subclause is not a normative part of IEEE Std P1003.13)

This document contains requirements for Application Program Interfaces and
Units of Functionality necessary to support four instances of the Generic Realtime
Environment class of applications. It specifies the behavior to be observed at the
interfaces of the Application Platform on which the class of applications can run.
This subset of an OSE profile is complete and coherent within the context of the
class of applications supported. As such, it is a System Profile class of Application
Environment Profile (AEP).

1.3 Realtime System Profiles

This document describes four realtime profiles and their minimum hardware re-
quirements.

1.3.1 Minimal Realtime System Profile (PSE51)

These systems are typically embedded in systems dedicated to unattended control
of one or more special I/O devices. Neither user interaction nor a file system (mass
storage) is required. The programming model is that of a single (implicit) POSIX
process (corresponding to the processor's hardware address space) containing one
or more threads of control (POSIX.1 threads or Ada tasks). Although there is only
one process, a Message Passing interface is provided for communications among
threads of control and between PSE5X instantiations. Special devices are operated

Realtime System Profiles 3

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

and controlled either by memory-mapped I/O or by the basic I/O interface, which
provides a standard way to access the intrinsically nonstandard I/O hardware and
its non-portable control code.

The hardware model for this profile assumes a single processor with its memory,
but no memory management unit (MMU) or common I/O devices are required. (If
there are in fact multiple processors, typically there are multiple instantiations of
the operating system, perhaps communicating via shared memory or a backplane
channel, perhaps isolated).

1.3.2 Realtime Controller System Profile (PSE52)

These systems are an extension of the Minimal Realtime System Profile. Support
for a file system interface and asynchronous (non-blocking) I/O interfaces has been
added.

The hardware model for this profile assumes a single processor and memory space
(a MMU is not required). Mass storage devices are not required; the file system
may, for instance, be implemented in memory (RAM disk or flash memory).

1.3.3 Dedicated Realtime System Profile (PSE53)

These systems are an extension of the Realtime Controller System Profile. Support
for multiple processes has been added. Although these are usually embedded sys-
tems, flash memory technology enables presence of a simplified file system, even
in those systems with mechanical or environmental requirements that preclude a
rotating-media hard drive. Since memory management hardware may be provid-
ed, the functionality of memory locking is provided.

The hardware model for this profile assumes one or more processors, each with its
own MMU, in the same system.

1.3.4 Multi-Purpose Realtime System Profile (PSE54)

These systems include all the functionality of the other three profiles. They provide
comprehensive functionality and run a mix of differing realtime and non-realtime
tasks. This functionality includes most of POSIX.1 and/or POSIX.5c. Since users
may conduct interactive sessions on those systems, all the mandatory elements of
the Shell and Utilities volume of POSIX.1 are also included. Support for multiple
multi-threaded processes is required so that multi-tasking may be done by threads
(POSIX.1 threads or Ada tasks), processes, or both.

4 Overview

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The hardware model for this profile assumes one or more processors with memory
management units, high-speed storage devices, special interfaces, network sup-
port, and display devices. The system supports a mix of realtime and non-realtime
tasks, some being interactive user tasks.

1.4 Units of Functionality

Some of the profiles specified in this standard do not require support for all the
functionality specified in a referenced standard. In this case, if that referenced
standard does not contain options for specifying just the required functionality,
only those Units of Functionality referenced by the profile may be used by a strictly
conforming application.

Table 1-1 shows the Units of Functionality defined for POSIX.1; each of these units
represents a Subprofiling Option Group (See the Base Definitions Volume of
POSIX.1 {3}, Section 2.1.5.1, “Subprofiling Considerations”), and is a set of func-
tions that represents a separately implementable element of POSIX.1. Table 1-2
through Table 1-18 show the Units of Functionality defined for POSIX.5c.

Table 1-1: POSIX.1 Units of Functionality

Unit of Functionality Included Functions
POSIX_C_LANG_JUMP longjmp(), setjmp()

Units of Functionality 5

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

POSIX_C_LANG_MATH acos(), acosf(), acosh(), acoshf(), acoshl(), acosl(),
asin(), asinf(), asinh(), asinhf(), asinhl(), asinl(),
atan(), atan2(), atan2f(), atan2l(), atanf(), atanh(),
atanhf(), atanhl(), atanl(), cabs(), cabsf(), cabsl(),
cacos(), cacosf(), cacosh(), cacoshf(), cacoshl(),
cacosl(), carg(), cargf(), cargl(), casin(), casinf(),
casinh(), casinhf(), casinhl(), casinl(), catan(),
catanf(), catanh(), catanhf(), catanhl(), catanl(),
cbrt(), cbrtf(), cbrtl(), ccos(), ccosf(), ccosh(), ccoshf(),
ccoshl(), ccosl(), ceil(), ceilf(), ceill(), cexp(), cexpf(),
cexpl(), cimag(), cimagf(), cimagl(), clog(), clogf(),
clogl(), conj(), conjf(), conjl(), copysign(), copysignf(),
copysignl(), cos(), cosf(), cosh(), coshf(), coshl(), cosl(),
cpow(), cpowf(), cpowl(), cproj(), cprojf(), cprojl(),
creal(), crealf(), creall(), csin(), csinf(), csinh(),
csinhf(), csinhl(), csinl(), csqrt(), csqrtf(), csqrtl(),
ctan(), ctanf(), ctanh(), ctanhf(), ctanhl(), ctanl(),
erf(), erfc(), erfcf(), erfcl(), erff(), erfl(), exp(), exp2(),
exp2f(), exp2l(), expf(), expl(), expm1(), expm1f(),
expm1l(), fabs(), fabsf(), fabsl(), fdim(), fdimf(),
fdiml(), floor(), floorf(), floorl(), fma(), fmaf(), fmal(),
fmax(), fmaxf(), fmaxl(), fmin(), fminf(), fminl(),
fmod(), fmodf(), fmodl(), fpclassify(), frexp(), frexpf(),
frexpl(), hypot(), hypotf(), hypotl(), ilogb(), ilogbf(),
ilogbl(), isfinite(), isgreater(), isgreaterequal(), isinf(),
isless(), islessequal(), islessgreater(), isnan(),
isnormal(), isunordered(), ldexp(), ldexpf(), ldexpl(),
lgamma(), lgammaf(), lgammal(), llrint(), llrintf(),
llrintl(), llround(), llroundf(), llroundl(), log(),
log10(), log10f(), log10l(), log1p(), log1pf(), log1pl(),
log2(), log2f(), log2l(), logb(), logbf(), logbl(), logf(),
logl(), lrint(), lrintf(), lrintl(), lround(), lroundf(),
lroundl(), modf(), modff(), modfl(), nan(), nanf(),
nanl(), nearbyint(), nearbyintf(), nearbyintl(),
nextafter(), nextafterf(), nextafterl(), nexttoward(),
nexttowardf(), nexttowardl(), pow(), powf(), powl(),
remainder(), remainderf(), remainderl(), remquo(),
remquof(), remquol(), rint(), rintf(), rintl(), round(),
roundf(), roundl(), scalbln(), scalblnf(), scalblnl(),
scalbn(), scalbnf(), scalbnl(), signbit(), sin(), sinf(),
sinh(), sinhf(), sinhl(), sinl(), sqrt(), sqrtf(), sqrtl(),
tan(), tanf(), tanh(), tanhf(), tanhl(),tanl(), tgamma(),
tgammaf(),tgammal(), trunc(), truncf(), truncl()

Table 1-1: POSIX.1 Units of Functionality (Continued)

Unit of Functionality Included Functions

6 Overview

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

POSIX_C_LANG_SUPPORT abs(), asctime(), asctime_r(), atof(), atoi(), atol(),
atoll(), bsearch(), calloc(), ctime(), ctime_r(),
difftime(), div(), feclearexcept(), fegetenv(),
fegetexceptflag(), fegetround(), feholdexcept(),
feraiseexcept(), fesetenv(), fesetexceptflag(),
fesetround(), fetestexcept(), feupdateenv(), free(),
gmtime(), gmtime_r(), imaxabs(), imaxdiv(),
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(),
isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper(), isxdigit(), labs(), ldiv(), llabs(), lldiv(),
localeconv(), localtime(), localtime_r(), malloc(),
memchr(), memcmp(), memcpy(), memmove(),
memset(), mktime(), qsort(), rand(), rand_r(),
realloc(), setlocale(), snprintf(), sprintf(), srand(),
sscanf(), strcat(), strchr(), strcmp(), strcoll(), strcpy(),
strcspn(), strerror(), strerror_r(), strftime(), strlen(),
strncat(), strncmp(), strncpy(), strpbrk(), strrchr(),
strspn(), strstr(), strtod(), strtof(), strtoimax(),
strtok(), strtok_r(), strtol(), strtold(), strtoll(),
strtoul(), strtoull(), strtoumax(), strxfrm(), time(),
tolower(), toupper(), tzname, tzset(), va_arg(),
va_copy(), va_end(), va_start(), vsnprintf(), vsprintf(),
vsscanf()

POSIX_C_LANG_WIDE_CHAR btowc(), iswalnum(), iswalpha(), iswblank(),
iswcntrl(), iswctype(), iswdigit(), iswgraph(),
iswlower(), iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit(), mblen(), mbrlen(), mbrtowc(),
mbsinit(), mbsrtowcs(), mbstowcs(), mbtowc(),
swprintf(), swscanf(), towctrans(), towlower(),
towupper(), vswprintf(), vswscanf(), wcrtomb(),
wcscat(), wcschr(), wcscmp(), wcscoll(), wcscpy(),
wcscspn(), wcsftime(), wcslen(), wcsncat(), wcsncmp(),
wcsncpy(), wcspbrk(), wcsrchr(), wcsrtombs(),
wcsspn(), wcsstr(), wcstod(), wcstof(), wcstoimax(),
wcstok(), wcstol(), wcstold(), wcstoll(), wcstombs(),
wcstoul(), wcstoull(), wcstoumax(), wcsxfrm(),
wctob(), wctomb(), wctrans(), wctype(), wmemchr(),
wmemcmp(), wmemcpy(), wmemmove(), wmemset()

POSIX_DEVICE_IO clearerr(), close(), fclose(), fdopen(), feof (), ferror(),
fflush (), fgetc(), fgets(), fileno(), fopen(), fprintf(),
fputc(), fputs(), fread(), freopen(), fscanf(), fwrite(),
getc(), getchar(), gets(), open(), perror(), printf(),
putc(), putchar(), puts(), read(), scanf(), setbuf(),
setvbuf(), ungetc(), vfprintf (), vfscanf(), vprintf(),
vscanf(), write()

Table 1-1: POSIX.1 Units of Functionality (Continued)

Unit of Functionality Included Functions

Units of Functionality 7

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

POSIX_DEVICE_SPECIFIC cfgetispeed(), cfgetospeed(), cfsetispeed(),
cfsetospeed(), ctermid(), isatty(), tcdrain(), tcflow(),
tcflush(), tcgetattr(), tcsendbreak(), tcsetattr(),
ttyname(), ttyname_r()

POSIX_EVENT_MGMT FD_CLR(), FD_ISSET(), FD_SET(), FD_ZERO(),
pselect(), select()

POSIX_FD_MGMT dup(), dup2(), fcntl(), fgetpos(), fseek(), fseeko(),
fsetpos(), ftell(), ftello(), ftruncate(), lseek(), rewind()

POSIX_FIFO mkfifo()
POSIX_FILE_ATTRIBUTES chmod(), chown(), fchmod(), fchown(), umask()
POSIX_FILE_LOCKING flockfile(), ftrylockfile(), funlockfile(), getc_unlocked(),

getchar_unlocked(), putc_unlocked(),
putchar_unlocked()

POSIX_FILE_SYSTEM access(), chdir(), closedir(), creat(), fpathconf(), fstat(),
getcwd(), link(), mkdir(), opendir(), pathconf(),
readdir(), readdir_r(), remove(), rename(),
rewinddir(), rmdir(), stat(), tmpfile(), tmpnam(),
unlink(), utime()

POSIX_FILE_SYSTEM_EXT glob(), globfree()

POSIX_JOB_CONTROLa setpgid(), tcgetpgrp(), tcsetpgrp()
POSIX_MULTI_PROCESS _Exit(), _exit(), assert(), atexit(), clock(), execl(),

execle(), execlp(), execv(), execve(), execvp(), exit(),
fork(), getpgrp(), getpid(), getppid(), setsid(), sleep(),
times(), wait(), waitpid()

POSIX_NETWORKING accept(), bind(), connect(), endhostent(), endnetent(),
endprotoent(), endservent(), freeaddrinfo(),
gai_strerror(), getaddrinfo(), gethostbyaddr(),
gethostbyname(), gethostent(), gethostname(),
getnameinfo(), getnetbyaddr(), getnetbyname(),
getnetent(), getpeername(), getprotobyname(),
getprotobynumber(), getprotoent(), getservbyname(),
getservbyport(), getservent(), getsockname(),
getsockopt(), htonl(), htons(), if_freenameindex(),
if_indextoname(), if_nameindex(), if_nametoindex(),
inet_addr(), inet_ntoa(), inet_ntop(), inet_pton(),
listen(), ntohl(), ntohs(), recv(), recvfrom(), recvmsg(),
send(), sendmsg(), sendto(), sethostent(), setnetent(),
setprotoent(), setservent(), setsockopt(), shutdown(),
socket(), sockatmark(), socketpair()

POSIX_PIPE pipe()
POSIX_PRIORITY_RANGES sched_get_priority_max(), sched_get_priority_min(),

sched_rr_get_interval()

POSIX_REGEXPb regcomp(), regerror(), regexec(), regfree()

Table 1-1: POSIX.1 Units of Functionality (Continued)

Unit of Functionality Included Functions

8 Overview

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

POSIX_RW_LOCKSc pthread_rwlock_destroy(), pthread_rwlock_init(),
pthread_rwlock_rdlock(),
pthread_rwlock_timedrdlock()d,
pthread_rwlock_timedwrlock()d,
pthread_rwlock_tryrdlock(),
pthread_rwlock_trywrlock(),
pthread_rwlock_unlock(), pthread_rwlock_wrlock(),
pthread_rwlockattr_destroy(),
pthread_rwlockattr_getpshared()e,
pthread_rwlockattr_init(),
pthread_rwlockattr_setpshared()e

POSIX_SHELL_FUNC pclose(), popen(), system(), wordexp(), wordfree()
POSIX_SIGNALS abort(), alarm(), kill(), pause(), raise(), sigaction(),

sigaddset(), sigdelset(), sigemptyset(), sigfillset(),
sigismember(), signal(), sigpending(), sigprocmask(),
sigsuspend(), sigwait()

POSIX_SIGNAL_JUMP siglongjmp(), sigsetjmp()
POSIX_SINGLE_PROCESS confstr(), getenv(), setenv(), sysconf(), uname(),

unsetenv()
POSIX_STRING_MATCHING fnmatch(), getopt()
POSIX_SYMBOLIC_LINKS lstat(), readlink(), symlink()
POSIX_SYSTEM_DATABASE getgrgid(), getgrgid_r(), getgrnam(), getgrnam_r(),

getpwnam(), getpwnam_r(), getpwuid(), getpwuid_r()

POSIX_THREADS_BASEf pthread_atfork(), pthread_attr_destroy(),
pthread_attr_getdetachstate(),
pthread_attr_getschedparam(), pthread_attr_init(),
pthread_attr_setdetachstate(),
pthread_attr_setschedparam(), pthread_cancel(),
pthread_cleanup_pop(), pthread_cleanup_push(),
pthread_cond_broadcast(), pthread_cond_destroy(),
pthread_cond_init(), pthread_cond_signal(),
pthread_cond_timedwait(), pthread_cond_wait(),
pthread_condattr_destroy(), pthread_condattr_init(),
pthread_create(), pthread_detach(), pthread_equal(),
pthread_exit(), pthread_getspecific(), pthread_join(),
pthread_key_create(), pthread_key_delete(),
pthread_kill(), pthread_mutex_destroy(),
pthread_mutex_init(), pthread_mutex_lock(),
pthread_mutex_trylock(), pthread_mutex_unlock(),
pthread_mutexattr_destroy(),
pthread_mutexattr_init(), pthread_once(),
pthread_self(), pthread_setcalcelstate(),
pthread_setcanceltype(), pthread_setspecific(),
pthread_sigmask(), pthread_testcancel()

Table 1-1: POSIX.1 Units of Functionality (Continued)

Unit of Functionality Included Functions

Units of Functionality 9

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

POSIX_USER_GROUPS getegid(), geteuid(), getgid(), getgroups(), getlogin(),
getlogin_r(), getuid(), setegid(), seteuid, setgid(),
setuid()

POSIX_WIDE_CHAR_IO fgetwc(), fgetws(), fputwc(), fputws(), fwide(),
fwprintf(), fwscanf(), getwc(), getwchar(), putwc(),
putwchar(), ungetwc(), vfwprintf(), vfwscanf(),
vwprintf(), vwscanf(), wprintf(), wscanf()

XSI_C_LANG_SUPPORT _tolower(), _toupper(), a64l(), daylight(), drand48(),
erand48(), ffs(), getcontext(), getdate(), getsubopt(),
hcreate(), hdestroy(), hsearch(), iconv(), iconv_close(),
iconv_open(), initstate(), insque(), isascii(), jrand48(),
l64a(), lcong48(), lfind(), lrand48(), lsearch(),
makecontext(), memccpy(), mrand48(), nrand48(),
random(), remque(), seed48(), setcontext(), setstate(),
srand48(), srandom(), strcasecmp(), strdup(),
strfmon(), strncasecmp(), strptime(), swab(),
swapcontext(), tdelete(), tfind(), timezone(), toascii(),
tsearch(), twalk()

XSI_DBM dbm_clearerr(), dbm_close(), dbm_delete(),
dbm_error(), dbm_fetch(), dbm_firstkey(),
dbm_nextkey(), dbm_open(), dbm_store()

XSI_DEVICE_IO fmtmsg(), poll(), pread(), pwrite(), readv(), writev()
XSI_DEVICE_SPECIFIC grantpt(), posix_openpt(), ptsname(), unlockpt()
XSI_DYNAMIC_LINKING dlclose(), dlerror(), dlopen(), dlsym()
XSI_FD_MGMT truncate()
XSI_FILE_SYSTEM basename(), dirname(), fchdir(), fstatvfs(), ftw(),

lchown(), lockf(), mknod(), mkstemp(), nftw(),
realpath(), seekdir(), statvfs(), sync(), telldir(),
tempnam()

XSI_I18N catclose(), catgets(), catopen(), nl_langinfo()
XSI_IPC ftok(), msgctl(), msgget(), msgrcv(), msgsnd(),

semctl(), semget(), semop(), shmat(), shmctl(),
shmdt(), shmget()

XSI_JOB_CONTROL tcgetsid()
XSI_JUMP _longjmp(), _setjmp()
XSI_MATH j0(), j1(), jn(), scalb(), y0(), y1(), yn()
XSI_MULTI_PROCESS getpgid(), getpriority(), getrlimit(), getrusage(),

getsid(), nice(), setpgrp(), setpriority(), setrlimit(),
ulimit(), usleep(), vfork(), waitid()

XSI_SIGNALS bsd_signal(), killpg(), sigaltstack(), sighold(),
sigignore(), siginterrupt(), sigpause(), sigrelse(),
sigset(), ualarm()

XSI_SINGLE_PROCESS gethostid(), gettimeofday(), putenv()
XSI_SYSTEM_DATABASE endpwent(), getpwent(), setpwent()
XSI_SYSTEM_LOGGING closelog(), openlog(), setlogmask(), syslog()

Table 1-1: POSIX.1 Units of Functionality (Continued)

Unit of Functionality Included Functions

10 Overview

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

XSI_THREAD_MUTEX_EXT pthread_mutexattr_gettype(),
pthread_mutexattr_settype()

XSI_THREADS_EXT pthread_attr_getguardsize(), pthread_attr_getstack(),
pthread_attr_setguardsize(),
pthread_attr_setstack(), pthread_getconcurrency(),
pthread_setconcurrency()

XSI_TIMERS getitimer(), setitimer()
XSI_USER_GROUPS endgrent(), endutxent(), getgrent(), getutxent(),

getutxid(), getutxline(), pututxline(),
setgrent(), setregid(), setreuid(), setutxent()

XSI_WIDE_CHAR wcswidth(), wcwidth()

a. There is a matching option in POSIX.1 called _POSIX_JOB_CONTROL, but that standard
does not describe which functions fall under that option.

b. There is a matching option in POSIX.1 called _POSIX_REGEXP, but that standard does not
describe which functions fall under that option.

c. There is a matching option in POSIX.1 called _POSIX_READER_WRITER_LOCKS, but
that standard does not describe which functions fall under that option.

d. Dependent on the _POSIX_TIMEOUTS option.
e. Dependent on the _POSIX_THREAD_PROCESS_SHARED option.
f. POSIX_THREADS_BASE is the same as the _POSIX_THREADS option, but without the

functions belonging to the POSIX_RW_LOCKS unit of functionality.

Table 1-2: POSIX.5 Units of Functionality (Ada Language Support)

POSIX_ADA_LANG_SUPPORT

Package Subprograms
System Extra requirements specified in POSIX.5c,

Section 2.8
System_Storage_Elements Alla

POSIX_Page_Alignment All
POSIX_Supplement_To_Ada_IO All
Ada_Task_Identification All
Ada_Streams All

a. All: indicates all subprograms in a package are required to be supported. Where overloaded
versions of a subprogram exist, each instance is required, except as noted. All Image and
Value functions must be supported for all packages provided by the implementation.

Table 1-1: POSIX.1 Units of Functionality (Continued)

Unit of Functionality Included Functions

Units of Functionality 11

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Table 1-3: POSIX.5 Units of Functionality (Device IO)

POSIX_DEVICE_IO

Package Subprograms
POSIX_IO Open

Close
Read
Write
Generic_Read
Generic_Write
Is_Open

Table 1-4: POSIX.5 Units of Functionality (Device Specific)

POSIX_DEVICE_SPECIFIC

Package Subprograms
POSIX_Terminal_Functions Get_Terminal_Characteristics

Get_Controlling_Terminal_Name
Set_Terminal_Characteristics
Terminal_Modes_Of
Define_Terminal_Modes
Bits_Per_Character_Of
Define_Bits_Per_Character
Special_Control_Character_Of
Define_Special_Control_Character
Disable_Control_Character
Input_Time_Of
Define_Input_Time
Minimum_Input_Count_Of
Define_Minimum_Input_Count
Input_Baud_Rate_Of
Output_Baud_Rate_Of
Define_Input_Baud_Rate
Define_Output_Baud_Rate
Send_Break
Drain
Discard_Data
Flow

POSIX_IO Is_A_Terminal
Get_Terminal_Name

Table 1-5: POSIX.5 Units of Functionality (Event Management)

POSIX_EVENT_MGMT

Package Subprograms

POSIX_Event_Managementa Make_Empty
Add
Remove
In_Set
Select_File
For_Every_File_In

12 Overview

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

a. The subprograms listed in this table are those under the Select option in POSIX.5c. But
instead of using this option, a unit of functionality has been created because there is no equiv-
alent option in POSIX.1.

Table 1-6: POSIX.5 Units of Functionality (FD Management)

POSIX_FD_MGMT

Package Subprograms
POSIX_File_Locking All
POSIX_IO Duplicate

Duplicate_And_Close
Get_File_Control
Set_File_Control
Get_Close_On_Exec
Set_Close_On_Exec
Seek
File_Size
File_Position

Table 1-7: POSIX.5 Units of Functionality (FIFO)

POSIX_FIFO

Package Subprograms
POSIX_Files Create_FIFO

Table 1-8: POSIX.5 Units of Functionality (File Attributes)

POSIX_FILE_ATTRIBUTES

Package Subprograms
POSIX_Permissions Set_Allowed_Process_Permissions

Get_Allowed_Process_Permissions

POSIX_Files Change_Owner_And_Group
Change_Permissions

Table 1-9: POSIX.5 Units of Functionality (File System)

POSIX_FILE_SYSTEM

Package Subprograms
POSIX_Configurable_File_Limits All
POSIX_File_Status All

Units of Functionality 13

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

POSIX_Files For_Every_Directory_Entry
Create_Directory
Unlink
Remove_Directory
Rename
Accessibility
Is_Accessible
Existence
Is_File_Present
Set_File_Times
Link
Filename_Of
Is_File
Is_Directory
Is_FIFO
Is_Character_Special_File
Is_Block_Special_File
Is_Socket

POSIX_Process_Environment Change_Working_Directory
Get_Working_Directory

POSIX_IO Open_Or_Create

Table 1-10: POSIX.5 Units of Functionality (Job Control)

POSIX_JOB_CONTROLa

Package Subprograms
POSIX_Process_Identification Set_Process_Group_Id

Create_Process_Group

POSIX_Terminal_Functions Get_Process_Group_Id
Set_Process_Group_Id

POSIX_Signals Set_Stopped_Child_Signal
Stopped_Child_Signal_Enabled

a. The subprograms listed in this table are those under the Job Control option in POSIX.5c. But
instead of using this option, a unit of functionality has been created because the equivalent
option in POSIX.1 does not specify the functions that fall under it.

Table 1-11: POSIX.5 Units of Functionality (Multi-Process)

POSIX_MULTI_PROCESS

Package Subprograms
POSIX_Process_Primitives All
POSIX_Unsafe_Process_Primitives All
POSIX_Process_Times All
POSIX_Process_Identification Get_Process_Id

Get_Parent_Process_Id

Table 1-9: POSIX.5 Units of Functionality (File System) (Continued)

POSIX_FILE_SYSTEM

Package Subprograms

14 Overview

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Table 1-12: POSIX.5 Units of Functionality (Networking)

POSIX_NETWORKING

Package Subprograms
POSIX_IO Get_Owner

Set_Socket_Process_Owner
Set_Socket_Group_Owner
Set_Buffer
Get_Buffer

POSIX_Sockets Alla

POSIX_Sockets_Local Alla

POSIX_Sockets_Internet Allb

a. The POSIX_Sockets and POSIX_Sockets_Local packages depend on the Sockets
Detailed Network Interface option (and partly on the Network Management option) defined
in POSIX.5c, but they are included here because there are no equivalent options in POSIX.1.

b. The POSIX_Sockets_Internet package depends on the Sockets Detailed Network
Interface option (and partly on the Internet Protocol, Internet Datagram, and Internet Stream
options) defined in POSIX.5c, but it is included here because there are no equivalent options
in POSIX.1.

Table 1-13: POSIX.5 Units of Functionality (Pipes)

POSIX_PIPES

Package Subprograms
POSIX_IO Create_Pipe

Table 1-14: POSIX.5 Units of Functionality (Priority Ranges)

POSIX_PRIORITY_RANGES

Package Subprograms
POSIX_Process_Scheduling Get_Maximum_Priority

Get_Minimum_Priority
Get_Round_Robin_Interval

Units of Functionality 15

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Table 1-15: POSIX.5 Units of Functionality (Signals)

POSIX_SIGNALS

Package Subprograms
POSIX_Signals Add_Signal

Add_All_Signals
Delete_Signal
Delete_All_Signals
Is_Member
Send_Signal
Set_Blocked_Signals
Block_Signals
Unblock_Signals
Blocked_Signals
Ignore_Signal
Unignore_Signal
Is_Ignored
Install_Empty_Handler
Pending_Signals

Await_Signala

Await_Signal_Or_Timeouta

Interrupt_Task

Get_Signalb

Set_Signalb

Get_Notification
Set_Notification

Get_Datab

Set_Datab

a. Return type Signal
b. Operation on type Signal_Event

Table 1-16: POSIX.5 Units of Functionality (Single Process)

POSIX_SINGLE_PROCESS

Package Subprograms
POSIX All
POSIX_Limits All
POSIX_Options All
POSIX_Profiles Alla

POSIX_Configurable_System_Limits All
POSIX_Calendar All

16 Overview

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

1.5 Development Environment

Although the Shell and Utilities part of POSIX.1 is not required for the execution
environment of PSE51, PSE52, or PSE53, option POSIX2_SW_DEV is required in
the development environments for all four profiles. The options POSIX2_C_BIND
and POSIX2_C_DEV are required for C-Language development environments.

POSIX_Process_Environment Argument_List
Copy_From_Current_Environment
Copy_To_Current_Environment
Copy_Environment
Clear_Environment
Set_Environment_Variable
Delete_Environment_Variable
Length
For_Every_Environment_Variable
For_Every_Current_Environment_Variable
Environment_Value_Of
Is_Environment_Variable

a. The POSIX_Profiles package is defined in Annex B of this document

Table 1-17: POSIX.5 Units of Functionality (System Database)

POSIX_SYSTEM_DATABASE

Package Subprograms
POSIX_Group_Database All
POSIX_User_Database All

Table 1-18: POSIX.5 Units of Functionality (User Groups)

POSIX_USER_GROUPS

Package Subprograms
POSIX_Process_Identification Get_Real_User_ID

Get_Effective_User_ID
Get_Real_Group_ID
Get_Effective_Group_ID
Set_User_ID
Create_Session
Set_Group_ID
Get_Groups
Get_Login_Name
Get_Process_Group_ID

Table 1-16: POSIX.5 Units of Functionality (Single Process) (Continued)

POSIX_SINGLE_PROCESS

Package Subprograms

Summary of Profile Features 17

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

1.6 Summary of Profile Features

The following tables summarize the requirements of the four profiles. Since
POSIX.1, and/or POSIX.5 do not provide sufficient options to remove features un-
necessary for some profiles, Units of Functionality have been developed and are de-
scribed in Table 1-1 through Table 1-18 and defined by Annex A and Annex B.

Table 1-19: Units of Functionality Requirements

Unit of Functionality PSE51 PSE52 PSE53 PSE54

POSIX_ADA_LANG_SUPPORTa X X X X

POSIX_C_LANG_JUMPb X X X X

POSIX_C_LANG_MATHb - X X X

POSIX_C_LANG_SUPPORTb X X X X

POSIX_C_LANG_WIDE_CHARb - - - X
POSIX_DEVICE_IO X X X X
POSIX_DEVICE_SPECIFIC - - - X
POSIX_EVENT_MGMT - - X X
POSIX_FD_MGMT - X X X
POSIX_FIFO - - - X
POSIX_FILE_ATTRIBUTES - - - X

POSIX_FILE_LOCKINGb X X X X
POSIX_FILE_SYSTEM - X X X

POSIX_FILE_SYSTEM_EXTb - - - X
POSIX_JOB_CONTROL - - - X
POSIX_MULTI_PROCESS - - X X
POSIX_NETWORKING - - X X
POSIX_PIPE - - X X
POSIX_PRIORITY_RANGES X X - -

POSIX_REGEXPb - - - X

POSIX_RW_LOCKSb - - - -

POSIX_SHELL_FUNCb - - - X
POSIX_SIGNALS X X X X

POSIX_SIGNAL_JUMPb - - X X
POSIX_SINGLE_PROCESS X X X X

POSIX_STRING_MATCHINGb - - - X

POSIX_SYMBOLIC_LINKSb - - - X
POSIX_SYSTEM_DATABASE - - - X

POSIX_THREADS_BASEb X X X X
POSIX_USER_GROUPS - - - X

POSIX_WIDE_CHAR_IOb - - - X

XSI_C_LANG_SUPPORTb - - - -

XSI_DBMb - - - -

18 Overview

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

XSI_DEVICE_IOb - - - -

XSI_DEVICE_SPECIFICb - - - -

XSI_DYNAMIC_LINKINGb - - - X

XSI_FD_MGMTb - - - -

XSI_FILE_SYSTEMb - - - -

XSI_I18Nb - - - -

XSI_IPCb - - - -

XSI_JOB_CONTROLb - - - -

XSI_JUMPb - - - -

XSI_MATHb - - - -

XSI_MULTI_PROCESSb - - - -

XSI_SIGNALSb - - - -

XSI_SINGLE_PROCESSb - - - -

XSI_SYSTEM_DATABASEb - - - -

XSI_SYSTEM_LOGGINGb - - - X

XSI_THREAD_MUTEX_EXTb X X X X

XSI_THREADS_EXTb X X X X

XSI_TIMERSb - - - -

XSI_USER_GROUPSb - - - -

XSI_WIDE_CHARb - - - -

a. Required only for the Ada-Language option
b. Required only for the C-Language option

Table 1-20: POSIX.1 Option Requirements

Option PSE51 PSE52 PSE53 PSE54
_POSIX_ADVISORY_INFO - - - X
_POSIX_ASYNCHRONOUS_IO - - X X
_POSIX_BARRIERS - - - -
_POSIX_CHOWN_RESTRICTED - - - X
_POSIX_CLOCK_SELECTION X X X X
_POSIX_CPUTIME - - X X
_POSIX_FSYNC X X X X
_POSIX_IPV6 - - - -
_POSIX_JOB_CONTROL - - - X
_POSIX_MAPPED_FILES - X X X
_POSIX_MEMLOCK X X X X
_POSIX_MEMLOCK_RANGE X X X X
_POSIX_MEMORY_PROTECTION - - X X
_POSIX_MESSAGE_PASSING - X X X

Table 1-19: Units of Functionality Requirements (Continued)

Unit of Functionality PSE51 PSE52 PSE53 PSE54

Summary of Profile Features 19

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

_POSIX_MONOTONIC_CLOCK X X X X
_POSIX_NO_TRUNC X X X X
_POSIX_PRIORITIZED_IO - - X X
_POSIX_PRIORITY_SCHEDULING - - X X
_POSIX_RAW_SOCKETS - - X X
_POSIX_READER_WRITER_LOCKS X X X X
_POSIX_REALTIME_SIGNALS X X X X
_POSIX_REGEXP - - - X
_POSIX_SAVED_IDS - - - X
_POSIX_SEMAPHORES X X X X
_POSIX_SHARED_MEMORY_OBJECTS X X X X
_POSIX_SHELL - - - X
_POSIX_SPAWN - - X X
_POSIX_SPIN_LOCKS - - - -
_POSIX_SPORADIC_SERVER - - X X
_POSIX_SYNCHRONIZED_IO X X X X
_POSIX_THREAD_ATTR_STACKADDR X X X X
_POSIX_THREAD_ATTR_STACKSIZE X X X X
_POSIX_THREAD_CPUTIME X X X X
_POSIX_THREAD_PRIO_INHERIT X X X X
_POSIX_THREAD_PRIO_PROTECT X X X X
_POSIX_THREAD_PRIORITY_SCHEDULING X X X X
_POSIX_THREAD_PROCESS_SHARED - - X X
_POSIX_THREAD_SAFE_FUNCTIONS See units of functionality
_POSIX_THREAD_SPORADIC_SERVER X X X X
_POSIX_THREADS See units of functionality
_POSIX_TIMEOUTS X X X X
_POSIX_TIMERS X X X X
_POSIX_TRACE - X X X
_POSIX_TRACE_EVENT_FILTER - X X X
_POSIX_TRACE_INHERIT - - - -
_POSIX_TRACE_LOG - X X X
_POSIX_TYPED_MEMORY_OBJECTS - - - -
_POSIX_VDISABLE - - - X

_POSIX2_C_BINDa Xb Xb Xb X

_POSIX2_C_DEVa Xb Xb Xb X

_POSIX2_CHAR_TERM - - - X
_POSIX2_FORT_DEV - - - -
_POSIX2_FORT_RUN - - - X
_POSIX2_LOCALEDEF - - - -
_POSIX2_PBS - - - -
_POSIX2_PBS_ACCOUNTING - - - -

Table 1-20: POSIX.1 Option Requirements (Continued)

Option PSE51 PSE52 PSE53 PSE54

20 Overview

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The correspondence between the options listed in Table 1-20 and the options de-
scribed in POSIX.5c, clause 2.5, are as follows:

_POSIX2_PBS_CHECKPOINT - - - -
_POSIX2_PBS_LOCATE - - - -
_POSIX2_PBS_MESSAGE - - - -
_POSIX2_PBS_TRACK - - - -
_POSIX2_SW_DEV Xb Xb Xb X

_POSIX2_UPE - - - X
_XOPEN_CRYPT - - - -
_XOPEN_ENH_I18N No interfaces fall under this option
_XOPEN_LEGACY - - - -
_XOPEN_REALTIME See individual suboptions
_XOPEN_REALTIME_THREADS See individual suboptions
_XOPEN_SHM No interfaces fall under this option
_XOPEN_STREAMS - - - -
_XOPEN_UNIX See units of functionality

a. Required only for the C-language option.
b. Required only for the development platform, which will often differ from the execution plat-

form.

Table 1-21: POSIX.1 Options vs. POSIX.5c Options

POSIX.1 Option POSIX.5c Option
_POSIX_ADVISORY_INFO none
_POSIX_ASYNCHRONOUS_IO Asynchronous I/O
_POSIX_BARRIERS none
_POSIX_CHOWN_RESTRICTED Change Owner Restriction
_POSIX_CLOCK_SELECTION none
_POSIX_CPUTIME none
_POSIX_FSYNC File Synchronization
_POSIX_IPV6 none
_POSIX_MAPPED_FILES Memory Mapped Files
_POSIX_MEMLOCK Memory Locking
_POSIX_MEMLOCK_RANGE Memory Range Locking
_POSIX_MEMORY_PROTECTION Memory Protection
_POSIX_MESSAGE_PASSING Message Queues
_POSIX_MONOTONIC_CLOCK none
_POSIX_NO_TRUNC Filename Truncationa

_POSIX_PRIORITIZED_IO Prioritized I/O
_POSIX_PRIORITY_SCHEDULING Priority Process Scheduling
_POSIX_RAW_SOCKETS none
_POSIX_READER_WRITER_LOCKS none
_POSIX_REALTIME_SIGNALS Realtime Signals

Table 1-20: POSIX.1 Option Requirements (Continued)

Option PSE51 PSE52 PSE53 PSE54

Summary of Profile Features 21

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

_POSIX_REGEXP none
_POSIX_SAVED_IDS Saved IDs Support
_POSIX_SEMAPHORES Semaphores
_POSIX_SHARED_MEMORY_OBJECTS Shared Memory Objects
_POSIX_SHELL not applicable
_POSIX_SPAWN C-language specific
_POSIX_SPIN_LOCKS none
_POSIX_SPORADIC_SERVER none
_POSIX_SYNCHRONIZED_IO Synchronized I/O
_POSIX_THREAD_ATTR_STACKADDR C-language specific
_POSIX_THREAD_ATTR_STACKSIZE C-language specific
_POSIX_THREAD_CPUTIME none
_POSIX_THREAD_PRIO_INHERIT Mutex Priority Inheritance
_POSIX_THREAD_PRIO_PROTECT Mutex Priority Ceiling
_POSIX_THREAD_PRIORITY_SCHEDULING C-language specific
_POSIX_THREAD_PROCESS_SHARED Process Shared
_POSIX_THREAD_SAFE_FUNCTIONS C-language specific
_POSIX_THREAD_SPORADIC_SERVER none
_POSIX_THREADS C-language specific
_POSIX_TIMEOUTS none
_POSIX_TIMERS Timers
_POSIX_TRACE none
_POSIX_TRACE_EVENT_FILTER none
_POSIX_TRACE_INHERIT none
_POSIX_TRACE_LOG none
_POSIX_TYPED_MEMORY_OBJECTS none
_POSIX_VDISABLE C-language specific
_POSIX2_C_BIND not applicable
_POSIX2_C_DEV not applicable
_POSIX2_CHAR_TERM not applicable
_POSIX2_FORT_DEV not applicable
_POSIX2_FORT_RUN not applicable
_POSIX2_LOCALEDEF not applicable
_POSIX2_PBS not applicable
_POSIX2_PBS_ACCOUNTING not applicable
_POSIX2_PBS_CHECKPOINT not applicable
_POSIX2_PBS_LOCATE not applicable
_POSIX2_PBS_MESSAGE not applicable
_POSIX2_PBS_TRACK not applicable
_POSIX2_SW_DEV not applicable
_POSIX2_UPE not applicable
_XOPEN_CRYPT none
_XOPEN_ENH_I18N none

Table 1-21: POSIX.1 Options vs. POSIX.5c Options (Continued)

POSIX.1 Option POSIX.5c Option

22 Overview

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

In all profiles that do not support the POSIX_JOB_CONTROL unit of functionality,
the subprogram POSIX_Signals.Set_Stopped_Child_Signal shall fail si-
lently.

In all profiles that do not support the POSIX_JOB_CONTROL unit of functionality,
the subprogram POSIX_Signals.Stopped_Child_Signal_Enabled shall re-
turn False.

POSIX_Limits.Groups_Maxima'First shall be zero for PSE51, PSE52, and
PSE53. For PSE54 it shall be greater than or equal to eight.

POSIX_Terminal_Functions.Disable_Control_Character (which corre-
sponds to _POSIX_VDISABLE is not supported in PSE51, PSE52, and PSE53. For
PSE54, POSIX_Terminal_Functions.Disable_Control_Character shall
not raise POSIX_Error with an error code of Operation_Not_Implemented.

For PSE51 and PSE52, the blocking behavior of all reentrant operations defined
by POSIX.5c shall be per task, i.e., a blocked task cannot prevent any other task
from executing. Therefore, the corresponding Blocking_Behavior constants
shall have the value Tasks. (See POSIX.5c, clause 2.4.1.5.)

_XOPEN_LEGACY none
_XOPEN_REALTIME none
_XOPEN_REALTIME_THREADS none
_XOPEN_SHM none
_XOPEN_STREAMS none
_XOPEN_UNIX none

a. Note that the POSIX.5c Filename Truncation option has the opposite sense relative to the
POSIX.1 option _POSIX_NO_TRUNC

Table 1-21: POSIX.1 Options vs. POSIX.5c Options (Continued)

POSIX.1 Option POSIX.5c Option

Normative References 23

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Section 2: Normative References

2.1 Normative References

The following standards contain provisions which, through references in this text,
constitute provisions of this standard1. At the time of publication, the editions in-
dicated were valid. All standards are subject to revision, and parties to agreements
based on this profile of IEEE and ISO are encouraged to investigate the possibility
of applying the most recent editions of the standards listed below. Members of IEC
and ISO maintain registers of currently valid International Standards.

{1} ISO/IEC 8652:19952, Information Technology—Programming languages—
Ada, including Technical Corrigendum No.1.

{2} ISO/IEC 9899:1999, Information processing systems—Programming lan-
guages—C, including Technical Corrigendum No. 1.

{3} IEEE Std 1003.1:2001, Information Technology—Portable Operating System
Interface (POSIX®) (Revision of IEEE Std 1003.1-1996 and IEEE Std 1003.2-
1992)3.

{4} IEEE Std 1003.5-1992, IEEE Standard for Information Technology—POSIX
Ada Language Interfaces—Part 1: Binding for System Application Program
Interface (API).

{5} IEEE Std 1003.5b-1996, IEEE Standard for Information Technology—
POSIX Ada Language Interfaces—Part 1: Binding for System Application
Program Interface (API)—Amendment 1: Realtime Extensions.

1. Other references to related standards and other documents can be found in Annex C of
this document. Common names for these standards can be found in 4.2, “Abbreviations”.

2. ISO/IEC documents can be obtained from the ISO office, 1 rue de Varembé, Case Postale
56, CH-1211, Genève 20, Switzerland/Suisse (http://www.iso.ch/) and from the IEC office,
3 rue de Varembé, Case Postale 131, CH-1211, Genève 20, Switzerland/Suisse (http://
www.iec.ch/). ISO/IEC publications are also available in the United States from the Sales
Department, American National Standards Institute, 11 West 42nd Street, 13th Floor,
New York, NY 10036, USA (http://www.ansi.org/).

3. Includes IEEE Std 1003.1d-1999, IEEE Std 1003.1j-1999, and IEEE Std 1003.1q-2000

24 Normative References

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

{6} IEEE Std 1003.5c-1998, IEEE Standard for Information Technology—
POSIX Ada Language Interfaces—Part 1: Binding for System Application
Program Interface (API)—Amendment 2: Protocol Independent Interfaces.

{7} ISO/IEC TR 10000-1:1998 Information technology -- Framework and taxon-
omy of International Standardized Profiles -- Part 1: General principles and
documentation framework.

{8} ISO/IEC TR 10000-3:1998 Information technology -- Framework and taxon-
omy of International Standardized Profiles -- Part 3: Principles and Taxono-
my for Open System Environment Profiles.

Terminology 25

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Section 3: Terms and Definitions

3.1 Terminology

For the purposes of this standard, the following terms apply:

3.1.1 implementation defined: Describes a value or behavior that is not de-
fined by the standard, but is selected by an implementor. The value or behavior
may vary among implementations that conform to POSIX.13. An application
should not rely on the existence of the value or behavior. An application that relies
on such a value or behavior cannot be assured to be portable across conforming im-
plementations.

The implementor shall document such a value or behavior in the conformance doc-
ument, so that it can be used correctly by an application.

3.1.2 may: Describes a feature or behavior that is optional for an implementa-
tion that conforms to POSIX.13. An application should not rely on the existence of
the feature or behavior. An application that relies on such a feature or behavior
cannot be assured to be portable across conforming implementations.

To avoid ambiguity, the opposite of may is expressed as need not, instead of may
not.

3.1.3 shall: For an implementation that conforms to POSIX.13, describes a fea-
ture or behavior that is mandatory. An application can rely on the existence of the
feature or behavior.

For an application or user, describes a behavior that is mandatory.

3.1.4 should: For an implementation that conforms to POSIX.13, describes a
feature or behavior that is recommended but not mandatory. An application
should not rely on the existence of the feature or behavior. An application that re-
lies on such a feature or behavior cannot be assured to be portable across conform-
ing implementations.

26 Terms and Definitions

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

For an application, describes a feature or behavior that is recommended program-
ming practice for optimum portability.

3.1.5 undefined: Describes the nature of a value or behavior not defined by
POSIX.13 which results from use of an invalid program construct or invalid data
input.

The value or behavior may vary among implementations that conform to
POSIX.13. An application should not rely on the existence or validity of the value
or behavior. An application that relies on any particular value or behavior cannot
be assured to be portable across conforming implementations.

3.1.6 unspecified: Describes the nature of a value or behavior not specified by
POSIX.13 which results from use of a valid program construct or valid data input.

The value or behavior may vary among implementations that conform to
POSIX.13. An application should not rely on the existence or validity of the value
or behavior. An application that relies on any particular value or behavior cannot
be assured to be portable across conforming implementations.

3.2 Definitions

For the purposes of this standard, the following definitions apply:

3.2.1 Application Environment Profile (AEP): An OSE profile which speci-
fies a complete and coherent subset of the Open System Environment. [ISO/IEC
TR 10000-3:1998 {8}]

3.2.2 Application Platform: A set of resources on which an application will
run.

3.2.3 Base Standard: An approved IEEE, National, Regional, or International
Standard which defines and describes basic functionality and capability. [ISO/IEC
TR 10000-1:1998 {7}]

3.2.4 Component Profile: An Application Environment Profile that specifies a
unit of functionality in terms of the interfaces that it supports and the interfaces

Definitions 27

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

that it uses, and the relationships between these interfaces. [ISO/IEC TR 10000-
3:1998 {8}]

3.2.5 Conformance Document: A document provided by an implementor that
contains implementation details as described in 5.1.1.2.

3.2.6 Development Platform: A system used to prepare an application for ex-
ecution. Such a system is possibly distinct from the system on which the applica-
tion will execute.

3.2.7 Embedded Computer System: A computer (and its software) is consid-
ered embedded if it is an integral component of a larger system and is used to con-
trol and/or directly monitor that system, using special hardware devices.

3.2.8 Generic Application Environment Profile: An Application Environ-
ment Profile which is not specific to a particular community of use [ISO/IEC TR
10000-3:1998 {8}]

3.2.9 Generic Interface Profile: An Interface Profile which is not specific to a
particular community of use. [ISO/IEC TR 10000-3:1998 {8}]

3.2.10 Industry Specific Application Environment Profile: An Application
Environment Profile which deals with specific industry requirements. [ISO/IEC
TR 10000-3:1998 {8}]

3.2.11 Industry Specific Interface Profile: An Interface Profile which deals
with specific industry requirements. [ISO/IEC TR 10000-3:1998 {8}]

3.2.12 Interface Profile (IP): An OSE Profile defining one interface of the Open
System Environment. [ISO/IEC TR 10000-3:1998 {8}]

3.2.13 International Standardized Profile (ISP): An internationally agreed-
to, harmonized document which identifies a standard or group of standards, to-
gether with options and parameters, necessary to accomplish a function or set of
functions. [ISO/IEC TR 10000-1:1998 {8}]

28 Terms and Definitions

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.2.14 Open System Environment (OSE): The comprehensive set of interfac-
es, services, and supporting formats for interoperability and/or for portability of
applications, data or people, as specified by information technology standards and
profiles. [ISO/IEC TR 10000-3:1998 {8}]

3.2.15 Priority Inversion: A condition in which a thread that is waiting for a
shared resource (including a CPU) is prevented from executing while a thread with
a lower application-specified priority is running. The delays caused by priority in-
version can be extremely large in the case of unbounded priority inversion (see def-
inition). But there are mechanisms to bound these delays to small predictable
intervals.

See also 3.2.21, “Unbounded Priority Inversion”.

3.2.16 Profile (for ISO standardization): A set of one or more base standards
(and where applicable) chosen classes, subsets, options, and parameters of those
base standards to accomplish a function. [ISO/IEC TR 10000-1:1998 {7}]

3.2.17 Realtime Environment Profile: A profile designed to support applica-
tions requiring bounded response.

3.2.18 System Documentation: All documentation provided with an imple-
mentation, except the conformance document.

Electronically distributed documents for an implementation are considered part of
the system documentation.

3.2.19 Subprofiling Option Group: A unit of functionality (See 3.2.22).

3.2.20 System Profile: An Application Environment Profile that specifies a set
of functions necessary to support a class of applications. It specifies the behavior
to be observed at the interfaces of the application platform on which the class of
applications can run. [ISO/IEC TR 10000-3:1998 {8}]

NOTE: A system profile is defined in terms of component profiles that specify units of func-
tionality that can be combined to realize the application platform.

3.2.21 Unbounded Priority Inversion: A priority inversion condition in which
the delay caused to the waiting thread cannot be bounded by the duration of the
intervals during which lower priority threads hold the shared resource. For exam-

Rationale for definitions 29

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

ple, this can happen when a lower priority thread is holding a lock also requested
by the high priority thread, and then one or more medium priority threads request
execution, thus preempting the lower priority thread

See also 3.2.15, “Priority Inversion”.

3.2.22 Unit of Functionality: A separately implementable element of an OSE
system. [ISO/IEC TR 10000-3:1998 {8}]

3.3 Rationale for definitions

(This subclause is not a normative part of IEEE Std P1003.13)

Embedded Computer System. For the definition of an embedded computer system
the following canonical examples were taken into account:

— Are programs that understand physics and/or hardware embedded? For ex-
ample one that uses finite-element methods to predict fluid flow over air-
plane wings? No. These programs are never considered to be embedded
because they are not an integral component of a larger system.

— Is the internal microprocessor controlling a disk drive an example of an em-
bedded system? Yes, regardless of what the disk drive is used for. The soft-
ware (firmware, actually) within the disk drive controls the HDA (head disk
assembly) hardware, and is hard realtime as well.

— I/O drivers control hardware, so does presence of an I/O driver imply that
the computer executing the driver is embedded? No, because that computer
may be a general-purpose computer that is not part of a larger system.

— Is a PDA (Personal Digital Assistant) an embedded system? No. People of-
ten say that PDAs are embedded because they are very small and con-
strained, and because PDA OS and application software is kept in non-
volatile memory, but PDAs parallel the desktop systems used to run office
productivity applications, and no special hardware is being controlled.

— Is the microprocessor controlling a cellphone an embedded system? Yes.
The firmware in the cellphone is controlling the radio hardware.

— Are the computers in a big phased-array radar considered embedded?
These radars are ten-story buildings with one to three 100-foot diameter ra-
diating patches on the sloped sides of the building. Yes. These computers
are generally some of the most powerful computers available when the sys-
tem was built, live in a large computer room occupying almost one whole
floor of a building, may be hundreds of meters away from the radar hard-

30 Terms and Definitions

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

ware, but these computers are still an integral component of a larger sys-
tem.

— Is a traditional Flight Management System (FMS) built into an airplane
cockpit considered embedded? If the FMS is not connected to the avionics,
and is used only for logistics computations, a function readily performed on
a laptop, then the FMS is clearly not embedded.

— Are the computers in a hardware-in-the-loop (HIL) simulator embedded?
Yes, both in the simulator, and in the thing being tested in the HIL simu-
lator. Hardware is being controlled on both sides.

— Is the computer controlling a pacemaker in a person’s chest an embedded
computer? Yes. In this case the “system” is the combination of the pacemak-
er and the person’s heart.

— Is the computer controlling fuel injection in an automobile engine embed-
ded? Yes. It is part of a larger system, the engine, and it is directly monitor-
ing and controlling the engine through special hardware.

Conventions 31

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Section 4: Conventions and Abbreviations

4.1 Conventions

This document uses the following typographic conventions:

(1) The italic font is used for:

— Symbolic parameters that are generally substituted with real values by
the application

— C language data types and function names

— Global external variable names

— Function families; references to groups of closely related functions

(2) The bold font is used with a word in all capital letters, such as

PATH

to represent an environment variable. It is also used for the term “NULL
pointer.”

Sometimes it is used in tables to enhance visibility of option names.

(3) The constant-width (Courier) font is used:

— For references to utility names and C language headers

— For names of attributes in attributes objects

— For references to Ada identifiers.

(4) Symbolic constants returned by many functions as error numbers are rep-
resented as:

[ERRNO]

(5) Symbolic constants or limits defined in certain headers are represented as:

_POSIX_AEP_REALTIME_

In some cases tabular information is presented “inline”; in others it is presented in
a separately labeled table. This arrangement was employed purely for ease of type-
setting and there is no normative difference between these two cases.

32 Conventions and Abbreviations

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The conventions listed previously are for ease of reading only. Editorial inconsis-
tencies in the use of typography are unintentional and have no normative meaning
in this standard.

Notes provided as parts of labeled tables and figures are integral parts of this Stan-
dard (normative). Footnotes and notes within the body of the text are for informa-
tion only (informative).

Numerical quantities are presented in international style: comma is used as a dec-
imal sign and units are from the International System (SI).

4.2 Abbreviations

For the purposes of this document the following abbreviations apply:

4.2.1 Ada95 RM: ISO/IEC 8652:1995, Information Technology—Programming
languages—Ada [Revision of the first edition (ISO 8652:1987)], including Technical
Corrigendum No. 1.

4.2.2 C99 Standard: ISO/IEC 9899:1999, Information processing systems—
Programming languages—C, including Technical Corrigendum No. 1.

4.2.3 MMU: Memory management unit.

4.2.4 POSIX.1: IEEE Std 1003.1:2001, Information Technology—Portable Op-
erating System Interface (POSIX®) (Revision of IEEE Std 1003.1-1996 and IEEE
Std 1003.2-1992).

4.2.5 POSIX.5c: IEEE Std 1003.5-1992, IEEE Standard for Information Tech-
nology—POSIX Ada Language Interfaces—Part 1: Binding for System Application
Program Interface (API) as amended by IEEE Std 1003.5b-1996, IEEE Standard
for Information Technology—POSIX Ada Language Interfaces—Part 1: Binding
for System Application Program Interface (API)—Amendment 1: Realtime Exten-
sions and IEEE Std 1003.5c-1998, IEEE Standard for Information Technology—
POSIX Ada Language Interfaces—Part 1: Binding for System Application Program
Interface (API)—Amendment 2: Protocol Independent Interfaces.

Abbreviations 33

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

4.2.6 POSIX.13: This standard.

4.2.7 AEP: Application Environment Profile.

4.2.8 ISP: International Standardized Profile.

4.2.9 OSE: Open System Environment.

4.2.10 PSE: Generic Environment Profile.

4.2.11 PSE51: The Minimal Realtime System Profile defined herein.

4.2.12 PSE52: The Realtime Controller System Profile defined herein.

4.2.13 PSE53: The Dedicated Realtime System Profile defined herein.

4.2.14 PSE54: The Multi-Purpose Realtime System Profile defined herein.

4.2.15 PSE5X: Any one of the PSE51, PSE52, PSE53 or PSE54 profiles.

34 Conventions and Abbreviations

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Conformance 35

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Section 5: Conformance

5.1 Conformance

5.1.1 Implementation Conformance

5.1.1.1 Requirements

An implementation may claim conformance to one or more of the profiles defined
by this standard. For any given profile a conforming implementation shall meet all
of the following criteria:

(1) The system shall support all required interfaces referenced in the appropri-
ate standardized profile. These interfaces shall support the functional be-
havior described in the appropriate base standard, and any additional
constraints or options described herein.

(2) The system may provide additional functions or facilities not required by
this standard. Nonstandard extensions should be identified as such in the
system documentation. Nonstandard extensions, when used, may change
the behavior of functions or facilities defined in the appropriate base stan-
dard. The conformance document shall define an environment in which an
application can be run with predictable behavior specified by the referenced
standards. In no case shall such an environment require modification of a
Strictly Conforming POSIX.13 Application.

5.1.1.2 Documentation

An implementation conforming to one or more of the profiles defined by this stan-
dard shall provide a conformance document that shall document conformance in
one of two specific manners:

(1) If the implementation is fully conformant to the referenced base stan-
dard(s), then that implementation may cite the separate conformance doc-

36 Conformance

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

uments that document the base standard conformance. This will primarily
apply to implementations that support the PSE53 or PSE54 Profiles.

(2) If the implementation does not fully conform to one or more of the refer-
enced base standards, or if separate base standard conformance documents
are not cited, the implementation shall document the specific extent of con-
formance to each such base standard. This specification shall include:

— A complete list of interfaces from the base standard that are present in
the implementation.

— Limit values whose specification is normally required in a conformance
document for the base standard (e.g. the limit values found in the
<limits.h> and <unistd.h> headers), stating values, the conditions
under which those values may change, and the limits of such varia-
tions, if any.

— A description of the behavior of the implementation for all implemen-
tation-defined features specified by those portions of the base standard
that the implementation provides. This requirement shall be met by
listing these features and providing either a specific reference to the
system documentation or providing full syntax and semantics of these
features. The conformance document may specify the behavior of the
implementation for those features where the referenced standards
state that the implementations may vary or where features are identi-
fied as undefined or unspecified.

Regardless of whether separate base standard conformance documents are cited,
the conformance document for these profile(s) shall contain a statement that indi-
cates the full name, number, and date of the standard (i.e. the profile standard)
that applies. The conformance document may also list international standards
that are available for use by a Conforming POSIX.13 Application. Applicable char-
acteristics where documentation is required by one of these standards or by stan-
dards of government bodies, may also be included.

5.1.2 Application Conformance

An application claiming conformance to one or more of these profiles shall use only
the facilities described in that profile and included referenced standard elements,
and shall fall within one of the categories in 5.1.2.1, 5.1.2.2, or 5.1.2.3.

Any application that conforms to one or more of these profiles under the C-Lan-
guage option also conforms to POSIX.1. Any application that conforms to one or
more of these profiles under the Ada-Language option also conforms to POSIX.5c.

Conformance 37

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

5.1.2.1 Strictly Conforming Application

An application is said to be strictly conforming to a given POSIX.13 profile if the
application requires only the facilities required in that profile. Such an application
shall accept any behavior described in the profile as unspecified or implementation-
defined, and for symbolic constants, shall accept any value in the range permitted
by the profile. Such applications are permitted to adapt to the availability of facil-
ities whose availability is indicated by the constants in 6.1.3, 7.1.3, 8.1.3 and 9.1.3.

5.1.2.2 Conformant Application

5.1.2.2.1 ISO/IEC Conformant Application

An application is said to be ISO/IEC Conformant to a given POSIX.13 profile if the
application requires only the facilities required in that profile and approved Con-
formant Language bindings for any ISO or IEC standard. Such an application
shall include a statement of conformance that documents all options and limit de-
pendencies, and all other ISO or IEC standards used.

5.1.2.2.2 <National Body> Conformant POSIX.13 Application

An application is said to be <National Body> Conformant to a given POSIX.13 pro-
file if the application requires only the facilities required in that profile. Such an
application shall include a statement of conformance to document all options and
limit dependencies, and all other <National Body> standards used.

5.1.2.3 Conformant Application Using Extensions

An application is said to be conformant using extensions if it only uses nonstand-
ard facilities consistent with this standard. Such an application shall fully docu-
ment its requirements for these extended facilities, in addition to the
documentation required of a Conformant Application. A Conformant Application
Using Extensions shall be either an ISO/IEC Conformant Application Using Ex-
tensions or a <National Body> Conformant Application Using Extensions. (See
5.1.2.2.1 and 5.1.2.2.2)

38 Conformance

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Introduction 39

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Section 6: Minimal Realtime System Profile (PSE51)

6.1 Introduction

This section specifies those standards required for conformance to the Minimal Re-
altime System Profile option and, where applicable, the state of any options con-
tained in those standards.

When a referenced standard specifies services beyond those required by the Mini-
mal Realtime System Profile, only those services included in the specified Units of
Functionality referenced by this profile shall be required (See Table 1-1 through
Table 1-18). All the applicable definitions in POSIX.1 and/or POSIX.5c shall still
apply.

6.1.1 Identification

For the C-Language implementation, symbolic names shall be used to specify the
presence or absence of each option in this profile. Names reserved for use in this
profile begin with the string _POSIX_AEP_REALTIME_. For the Ada Language im-
plementation a set of Boolean subtypes contained in package POSIX_Options
(defined in POSIX.5c, section 2.5) shall be used to specify the presence or absence
of each option in this profile.

6.1.2 Conformance

Conformance to the Minimal Realtime System Profile option shall be indicated as
follows:

— For the C-Language implementation the symbol
_POSIX_AEP_REALTIME_MINIMAL being defined in the header
<unistd.h>.

— For the Ada Language implementation the Boolean subtype
POSIX_Profiles.Realtime_Minimal subtype having the range
True..True.

40 Minimal Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

6.1.3 Options

The presence or absence of optional features shall be indicated as follows:

— For the C-language implementation, if any of the following symbols are de-
fined in the header <unistd.h>:

_POSIX_AEP_REALTIME_LANG_C99

_POSIX_AEP_REALTIME_LANG_Ada95

— For the Ada language implementation, if any of the following Boolean sub-
types has the range True..True, then the corresponding option is support-
ed:

POSIX_Profiles.Realtime_Lang_C99

POSIX_Profiles.Realtime_Lang_Ada95

6.2 Operating System Interface Requirements

6.2.1 POSIX.1 Requirements (C Language Option)

The Minimal Realtime System Profile implementation shall include interfaces as
defined in POSIX.1 for the following Units of Functionality (see Table 1-1):

Table 6-1: POSIX.1 Units of Functionality Requirements

Unit of Functionality
POSIX_C_LANG_JUMP
POSIX_C_LANG_SUPPORT
POSIX_C_LIB_EXT
POSIX_DEVICE_IO
POSIX_FILE_LOCKING
POSIX_PRIORITY_RANGES
POSIX_SIGNALS
POSIX_SINGLE_PROCESS
POSIX_THREADS_BASE
XSI_THREAD_MUTEX_EXT
XSI_THREADS_EXT

Operating System Interface Requirements 41

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The Minimal Realtime System Profile implementation shall support the following
options defined in POSIX.1, by defining the associated symbol with a value greater
than zero:

The value of _POSIX_TIMER_MAX shall be at least 64.

The value of _POSIX_RTSIG_MAX shall be at least 16.

The range of priorities associated with the SCHED_RR scheduling policy shall have
at least 31 distinct values that are less than the maximum priority of the
SCHED_FIFO policy.

An implementation conforming to PSE51 shall provide a mechanism to configure
the system so that the scheduling allocation domain has size one, and so that the
binding of threads to scheduling allocation domains remains static. The mecha-
nism by which this requirement is achieved shall be implementation defined. In
addition, a PSE51 implementation may provide other configurations or facilities to
change the size of the allocation domain and the bindings of threads to allocation
domains. For a description of the scheduling allocation domain see the System In-
terfaces volume of POSIX.1, Section 2.9.2, “Thread Scheduling”.

Table 6-2: POSIX.1 Option Requirements

Option
_POSIX_CLOCK_SELECTION
_POSIX_FSYNC
_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MONOTONIC_CLOCK
_POSIX_NO_TRUNC
_POSIX_REALTIME_SIGNALS
_POSIX_SEMAPHORES
_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SYNCHRONIZED_IO
_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_CPUTIME
_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_SPORADIC_SERVER
_POSIX_TIMEOUTS
_POSIX_TIMERS

42 Minimal Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

6.2.2 POSIX.5c Requirements (Ada Language Option)

The Minimal Realtime System Profile implementation shall include interfaces as
defined in POSIX.5c for the following units of functionality (see Table 1-2 through
Table 1-18):

The Minimal Realtime System Profile implementation shall support the following
options defined in POSIX.5c, by defining the associated option subtypes to have the
range True..True, with the exception of the Filename Truncation option for
which the associated subtype shall have the range False..False:

POSIX_Limits.Timers_Maxima’First shall be at least 64.

POSIX_Limits.Realtime_Signals_Maxima’First shall be at least 16.

Regarding task priority scheduling, the implementation shall support the follow-
ing requirements from POSIX.5c and the Ada95 RM:

— The implementation shall support the priority model defined in the Ada95
RM, clause D.1, and the pragmas and package interfaces defined in the
Ada95 RM, clauses D.2-D.5.

Table 6-3: POSIX.5c Units of Functionality Requirements

Unit of Functionality
POSIX_ADA_LANG_SUPPORT
POSIX_DEVICE_IO
POSIX_FILE_LOCKING
POSIX_SIGNALS
POSIX_SINGLE_PROCESS

Table 6-4: POSIX.5c Option Requirements

Option
File Synchronization
Memory Locking
Memory Range Locking
Filename Truncation
Realtime Signals
Semaphores
Shared Memory Objects
Synchronized I/O
Mutexes Support
Mutex Priority Inheritance
Mutex Priority Ceiling
Timers

Application Constraints 43

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

— The implementation shall meet the requirements of POSIX.5c, section
13.3.1.

The blocking behavior of all reentrant operations defined by POSIX.5c shall be per
task, i.e., a blocked task cannot prevent any other task from executing. Therefore,
the corresponding Blocking_Behavior constants shall have the value Tasks.
(See POSIX.5c, clause 2.4.1.5.)

Implementations of the PSE51 profile shall support the POSIX_Profiles pack-
age defined in Annex A of this standard.

The subprogram POSIX_Signals.Set_Stopped_Child_Signal shall fail si-
lently.

The subprogram POSIX_Signals.Stopped_Child_Signal_Enabled shall re-
turn False.

POSIX_Limits.Groups_Maxima’First shall be zero.

Subprograms not supported by a given profile shall raise POSIX_Error, returning
an error code of Operation_Not_Supported, except as noted otherwise.

All Image and Value functions that appear in the packages supported by a profile
must be implemented.

Where an overloaded subprogram is required by a unit of functionality, all forms
of the subprogram appearing in the referenced clause must be supported, except
as otherwise noted.

6.3 Application Constraints

The Minimal Realtime System profile defined in this standard requires only spe-
cific Units of Functionality of the required standards. The absence of particular el-
ements of these standards introduces constraints on the use of some of the features
of particular operations. This clause defines the constraints that an application
strictly conforming to one of the profiles shall observe when using each of the op-
erations required by that profile.

6.3.1 Constraints related to POSIX.1 Interfaces (C Language Option)

The following table defines a set of functions that shall be either reentrant or non-
interruptible by signals and shall be async-signal-safe. Therefore applications may
invoke them, without restriction, from signal-catching functions. No other func-
tion, including those defined in the System Interfaces Volume of POSIX.1, Section
2.4.3, “Signal Actions”, is required to be async-safe in an implementation of the

44 Minimal Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

PSE51 profile, and thus PSE51 Strictly Conforming Applications shall not use
them from inside signal handlers.

The sysconf() function has the following constraints:

(1) An application strictly conforming to the PSE51 profile shall not call the
sysconf() function with the parameter _POSIX_VERSION since a meaningful
value cannot be returned.1

(2) A conforming application must act as if CHILD_MAX=0.

An application strictly conforming to PSE51 shall be considered erroneous if any
signal results in abnormal termination of the process because this profiles does not
support multiple processes.

An application strictly conforming to PSE51 shall not call the kill() function with
a negative but not -1 argument because this profile does not require process group
functionality.

An application strictly conforming to PSE51 shall be guaranteed that the file mode
creation mask for any object created by any process is S-IRWXU; that is, the object
shall be fully accessible to the creator.

An application strictly conforming to PSE51 shall not use the open(), fopen(), or
freopen() functions to create new files, since this profile does not require general
file system capabilities.

An application strictly conforming to PSE51 shall use the path or file argument for
any function using a file pathname (e.g., open()) only to specify the name of the ob-
ject without any file system semantics implied, since this profile does not require
general file system semantics.

An application strictly conforming to PSE51 shall not require that any input/out-
put function (e.g., fclose(), fflush(), fgetc(), fgets(), fopen(), fprintf(), fputc(), fputs(),
fread(), fscanf(), fwrite(), getc(), getchar(), gets(), open(), perror(), printf(), putc(),
putchar(), puts(), read(), scanf(), vfprintf(), vfscanf(), vprintf(), vscanf(), write()) up-
date an access, creation, or modification time for the device read or written, be-
cause this profile requires no interfaces that could query such an access time.

Table 6-5: Functions required to be async-signal-safe

alarm()
clock_gettime()
kill()
raise()
sem_post()
sigaction()

sigaddset()
sigdelset()
sigemptyset()
sigfillset()
sigismember()
signal()

sigpending()
sigprocmask()
sigqueue()
sigset()
sysconf()
time()

timer_getoverrun()
timer_gettime()
timer_settime()
times()
uname()

1. Conformance to this profile can be checked with the symbols defined in 6.1.3.

Application Constraints 45

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

6.3.2 Constraints related to POSIX.5c Interfaces (Ada Language Option)

An application strictly conforming to PSE51 shall not call the functions
POSIX_Configurable_System_Limits.System_POSIX_Version or
POSIX_Configurable_System_Limits.System_POSIX_Ada_Version, since
a meaningful value cannot be returned.1

A conforming application must act as if
POSIX_Limits.Child_Processes_Maxima'Last=0.

An application strictly conforming to PSE51 shall be considered erroneous if any
signal results in abnormal termination of the process because this profile does not
support multiple processes.

An application strictly conforming to PSE51 shall not call the form of
POSIX_Signals.Send_Signal that takes a process group ID as an argument be-
cause this profile does not require process group functionality.

An application strictly conforming to PSE51 shall not attempt to bind a signal to a
task entry.

An application strictly conforming to PSE51 shall not use the
POSIX_IO.Open_Or_Create function to create new files, since this profile does
not require general file system capabilities.

An application strictly conforming to PSE51 shall use a parameter representing a
pathname (such as the Name parameter of POSIX_IO.Open or
POSIX_IO.Open_Or_Create) only to specify the name of the object without any
file system semantics implied, since this profile does not require general file sys-
tem semantics.

An application strictly conforming to PSE51 shall not require that any input/out-
put function such as POSIX_IO.Read, POSIX_IO.Generic_Read,
POSIX_IO.Write, or POSIX_IO.Generic_Write, update an access, creation, or
modification time for the device read or written, because this profile requires no
interfaces that could query such an access time.

Implementations of PSE51 need not support the Owner, Group, and Other fields
of the form parameter (See POSIX.5c, clause 8.1.1.2), but may instead raise
Use_Error. The default value used shall be Read_Write_Execute.

Implementations of PSE51 need not support the File_Structure field of the
form parameter (See POSIX.5c, clause 8.1.1.2), but may instead raise Use_Error.
All files shall default to regular files.

In addition, the following constraints apply to the usage of the predefined Ada I/O
packages:

1. Conformance to this profile can be checked with the subtypes defined in 6.1.3.

46 Minimal Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

(1) An application strictly conforming to PSE51 shall not require any of the In-
put/Output operations (Read, Write, Get, Put, etc.) contained in the pre-
defined Ada I/O packages or their instantiations to update an access,
creation, or modification time for the device read or written, because this
profile requires no interfaces that could query such an access time.

(2) An application strictly conforming to PSE51 shall use the Name of the Open
operations contained in the predefined Ada I/O packages or their instanti-
ations only to specify the name of the object without any file system seman-
tics implied, since this profile does not require general file system
capabilities.

(3) An application strictly conforming to PSE51 shall not call any of the
Create or Delete operations contained in the predefined Ada I/O packag-
es or their instantiations, since this profile does not require general file sys-
tem capabilities.

6.4 Shell and Utility Requirements

An implementation of the Minimal Realtime System Profile is not required to sup-
port any of the services described in the Shell and Utilities Volume of POSIX.1.

6.5 Development Platform Requirements

One or more of the development options in 6.5.1 and 6.5.2 shall be implemented.

6.5.1 C Language Development Option

If this option is provided, the implementor shall define a Development Platform
and an environment capable of preparing for execution an application conformant
with this standard profile. This platform shall include the POSIX2_C_BIND,
POSIX2_C_DEV, and POSIX2_SW_DEV options from the Shell and Utilities Volume
of POSIX.1.

Rationale for Operating System Requirements (informative) 47

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

6.5.1.1 Option Indicator

The presence of the C Language Development Option shall be indicated by the
symbol _POSIX_AEP_REALTIME_LANG_C99 being defined in the required header
<unistd.h>. In addition, the presence of the C Language Development Option
may be indicated by the subtype POSIX_Profiles.Realtime_Lang_C99 having
the range True..True.

6.5.2 Ada Language Development Option

If this option is provided, the implementor shall define a Development Platform
and an environment capable of preparing for execution an application conformant
with this profile including applicable portions of the following:

— The Ada95 RM {1}

— POSIX.5c {6}

— The POSIX2_SW_DEV option from the Shell and Utilities Volume of
POSIX.1.

6.5.2.1 Option Indicator

The presence of the Ada Language Development Option shall be indicated by the
subtype POSIX_Profiles.Realtime_Lang_Ada95 having the range
True..True. In addition, the presence of the Ada Language Development Option
may be indicated by the symbol _POSIX_AEP_REALTIME_LANG_Ada95 being de-
fined in the header <unistd.h>.

6.6 Rationale for Operating System Requirements (informative)

(This subclause is not a normative part of IEEE Std P1003.13)

6.6.1 Operating System Interface Requirements

After reviewing several commercially available small realtime kernels, it was con-
cluded that the POSIX.1 threads model (with all options enabled, but without a file
system) best reflected current industry practice in certain embedded realtime ar-

48 Minimal Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

eas. Instead of full file system support, basic device I/O (read, write, open, close,
control) is considered sufficient for kernels of this size. Systems of this size fre-
quently do not include process isolation hardware or software; therefore, multiple
processes (as opposed to threads) may not be supportable.

System options that allow an application to be upwards compatible without modi-
fying application source code have been chosen. For example, although the as-
sumed hardware model implies fixed address space without a Memory
Management Unit (MMU), the symbol _POSIX_MEMLOCK is still defined. This in-
creases portability of the application code to higher level systems that do not nec-
essarily have the same restrictions.

6.6.1.1 Process Primitives

Because this profile uses the POSIX.1 Threads model only as the mechanism to
achieve concurrency, most POSIX.1 process primitives do not apply. This includes
the multi-process, pipes, and signal jump units of functionality, as well as the pro-
cess spawn option.

The main() function is needed to allow application-specific information to be
passed from boot code to the single (implicit) process (and its threads).

6.6.1.2 Signals

Signal services are a basic mechanism within POSIX-based systems and are re-
quired for error and event handling. Realtime systems typically have several logi-
cally concurrent software elements executing. Each such entity must respond to
several cyclic and/or acyclic stimuli, often in a time-critical manner. Although
purely synchronous models can supply such functionality via the use of additional
processes or threads, the current realtime practice for asynchronous notification
for events such as timeout, message arrival, and hardware interrupt can generally
be expected to offer higher performance and lower latency. Realtime Signals pro-
vide the reliable high-performance mechanism to support such notification.

The minimum number of realtime signals that the implementation is required to
support has been increased from the number specified in the POSIX.1 standard, 8,
up to 16. The rationale for this increase is that there are many applications that
have more than 8 different kinds of events. Doubling the number of required real-
time signals should have a minimum impact on the signal management overhead,
while significantly increases the number of event kinds that can be used by a
strictly conforming application.

Rationale for Operating System Requirements (informative) 49

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

6.6.1.3 Process Environment

The functions from the POSIX.1 Process Environment group are deemed necessary
to allow an application to determine and configure its system environment. This
allows a single version of an application to be run on similar but differing plat-
forms; however, conforming applications must act as if CHILD_MAX=0.

6.6.1.4 Files and Directories

The open() function is needed to do basic device I/O and also to provide device ini-
tialization. Although this requires some form of name resolution, a full pathname
space is specifically not required. Directories also are not required. Units of func-
tionality or options associated with files, such as POSIX_FD_MGMT, POSIX_FIFO,
POSIX_FILE_ATTRIBUTES, POSIX_FILE_SYSTEM, POSIX_FILE_SYSTEM_EXT,
_POSIX_ADVISORY_INFO, and _POSIX_MAPPED_FILES, are not required.

Since a file system is not a part of this realtime profile, the _POSIX_NO_TRUNC op-
tion is applied to the names of devices and shared memory objects.

The File Locking option is required in the C-language option to maintain a consis-
tent and safe way of accessing stdio (FILE *) objects from threads, across the four
realtime profiles.

6.6.1.5 Input and Output Primitives

The functions contained in the Device I/O unit of functionality are required to do
basic I/O and device cleanup.

Asynchronous I/O is not required because it can be easily implemented using
threads dedicated to I/O.

6.6.1.6 Synchronized Input and Output

The Synchronized (unbuffered) I/O interface (including the File Synchronization
option) is typical for basic device I/O and is required for upward portability.

6.6.1.7 Device- and Class-Specific Functions

POSIX.1 Device- or Class-Specific functions are not required, because small em-
bedded systems usually don’t require general-purpose terminal interfaces.

50 Minimal Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

6.6.1.8 System Databases, Users and Groups

Implementations are not required to support more than one user and group id
since there are not multiple users and groups. No POSIX.1 System Database func-
tions are required.

6.6.1.9 Synchronization

Mutexes and Condition Variables are required as part of the threads model of con-
currency.

The Process Shared option is not required because there is only a single process.

Semaphores are required in the PSE51 profile for synchronization between
threads to maintain compatibility with past industry practice. However, mutexes
and condition variables are preferred in most current applications. It must be not-
ed that POSIX semaphores do not have the mechanisms built in to avoid unbound-
ed priority inversion when using them for mutually exclusive access to shared
resources. Mutexes with the appropriate priority inheritance or priority ceiling (al-
so called priority protection) protocols can be used to avoid this unbounded priority
inversion.

Barriers are not required because they can easily be implemented using mutexes
and condition variables. Although a direct implementation of barriers can have a
significant efficiency benefit in some multiprocessor architectures, a mutex-and-
condition-variable implementation will not be significantly slower in most archi-
tectures, and thus requiring barriers for all implementations is not justified.

Spin locks are not required because, although they are an efficient synchronization
mechanism, they cannot be portably used with the current POSIX.1 interfaces in
realtime applications. If a realtime scheduling policy such as SCHED_FIFO or
SCHED_RR is used, spin locks may cause deadlock on a single processor. On mul-
tiprocessors, to avoid deadlock, it would be necessary for threads using a given lock
to be allocated to different processors. There are no standard APIs in the current
POSIX.1 to allocate threads to specific processors.

Reader/Writer Locks are not required because they are not designed to avoid un-
bounded priority inversion, and thus very long delays could occur in realtime ap-
plications, with a low but nevertheless non-zero probability. It is expected that a
future revision of the POSIX.1 standard will add the priority inheritance and/or
priority ceiling options to reader/writer locks, which would eliminate the unbound-
ed priority inversion.

Rationale for Operating System Requirements (informative) 51

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

6.6.1.10 Priority Scheduling

Thread priority scheduling is required for realtime applications. The Sporadic
Server Scheduling option is also required to enhance support of applications with
aperiodic timing requirements. The POSIX_PRIORITY_RANGES unit of function-
ality is required because threads need to obtain the values of the priority ranges
associated with realtime scheduling policies to use those policies.

A common requirement of realtime systems is that they be able to run threads with
real-time requirements together with threads with no real-time requirements. One
common way of doing this is by having the real-time threads run under the
SCHED_FIFO scheduling policy, while the non real-time threads run at a lower pri-
ority under the round-robin policy (SCHED_RR) to fairly share the available por-
tion of the processor among them. POSIX requires each policy to have a range of
priorities of at least 32 distinct values, but does not impose any requirements on
how these priority ranges relate to each other. It could happen that most or all of
the SCHED_RR priorities were larger than the SCHED_FIFO priorities, thus mak-
ing it impossible to mix realtime and non-realtime threads as required above. To
solve this problem in a portable way, this profile requires that there are at least 31
SCHED_RR priority levels below the maximum priority of SCHED_FIFO. In this
way, a strictly conforming application can use the inclusive priority range
[max_FIFO_prio, max_FIFO_prio-30] with SCHED_FIFO for real-time threads
(with a total of 31 priority levels), and then use the priority value
min(max_FIFO_prio-31,max_RR_prio) with the SCHED_RR policy, for the non
real-time threads, with guarantee that the latter priority value is valid for the
round-robin policy.

Support for a scheduling allocation domain of size one and static binding of threads
to allocation domains is required in all the realtime profiles to achieve predictable
scheduling behavior. The allocation domain of a thread is the set of processors on
which that thread can be scheduled at any given time. The POSIX.1 standard spec-
ifies that the scheduling rules have predictable effects only if the allocation domain
is of size one; hence the need for this requirement. For single-processor systems the
allocation domain is generally of size one and thus the application can meet the re-
quirement just by specifying in the conformance document that the scheduling al-
location domain is of size one and that static binding of threads to allocation
domains is the default behavior.

6.6.1.11 Process Memory Locking

Process memory locking is inherent in systems following this profile because most
PSE51 targets have no MMU and thus swapping is not supported; code and data
stay in physical memory until explicitly removed. Nevertheless, memory locking
APIs are required for upward portability to allow an application developer to take
code intended for a bare PSE51 target and unit test that code on a much larger and
more capable platform, perhaps a PSE54, with minimal modification. In those tar-

52 Minimal Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

gets not using a MMU for virtual memory, the locking functions do nothing and al-
ways report success, while in the larger profiles there really is memory to be
locked. In summary, by requiring this service in the PSE51 profile, it is possible to
write portable application code that runs correctly in all the profiles.

6.6.1.12 Shared Memory

Memory Mapped I/O may be implemented using the Shared Memory facility. An
implementation is required to provide facilities for creating (shared) memory ob-
jects that represent ranges of physical memory that contain device control and sta-
tus registers or buffers. These facilities encourage the development of portable
applications.

Typed Memory objects are not required because they are useful only to systems
with special hardware architectures that have various often specialized kinds of
memory. Implementors providing support for such special architectures always
have the option to provide typed memory objects as an extension.

6.6.1.13 Clocks and Timers

High-resolution timer functions are required in most realtime systems for imple-
menting time management operations such as periodic activations, short duration
time-outs, etc. The normal POSIX.1 time management functions sleep() and
alarm() only provide a time resolution of one second, but many realtime systems
require finer resolution for specifying time.

The Monotonic Clock is required for realtime applications to ensure that deadlines
and timing requirements are not affected by clock jumps.

The Clock Selection option is required to enable choosing the clock on which sleep
operations are performed, and to have access to an absolute sleep operation, which
is a common requirement in realtime applications with periodic timing require-
ments.

CPU-Time clocks and timers are required as a means to detect and handle situa-
tions in which a thread overruns its assigned maximum execution time. Bounding
the execution times of the different threads in the application increases predict-
ability and reliability.

The Timeouts option is a general requirement for realtime applications and thus
is required in this profile.

The minimum number of timers that the implementation is required to support
has been increased from the number specified in the POSIX.1 standard, 32, up to
64, which is the required minimum number of threads. The reason for this increase

Rationale for Operating System Requirements (informative) 53

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

is that there are many applications that require one timer per thread (either real-
time or CPU-time based).

6.6.1.14 Message Passing

In the PSE51 profile of IEEE Std 1003.13-1998, message queues were required be-
cause commercial realtime kernels available at that time with similar functional-
ity to the Minimal Realtime System Profile typically included some form of
message queueing mechanism for communication between threads.

However, many embedded realtime applications for small systems do not require
message queues and this feature makes the implementation larger. Because mes-
sage queues can be easily implemented by the application using mutexes and con-
dition variables, this version of the standard has dropped the requirement to
support message queues.

6.6.1.15 Threads

The basic assumption in this profile is that the system will consist of a single (im-
plicit) process, with multiple threads. Therefore, all basic thread services are re-
quired, except for those related to multiple processes. The
POSIX_THREADS_BASE unit of functionality was specified in this document in-
stead of the _POSIX_THREADS option, because this option requires reader/writer
locks, but this profile does not.

6.6.1.16 Tracing

Tracing is not required for the PSE51 environment to keep the implementation of
this profile small.

6.6.1.17 Networking

Although some small embedded systems require networking services, most don’t,
so to keep the implementation small, this unit of functionality is not required.

54 Minimal Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

6.6.1.18 Event Management

The select() function is usually associated with networking facilities, which are not
required for PSE51. Although the function could be used for regular device I/O op-
erations, most kernels that do not have networking services do not support select().
Therefore, to keep the implementation small, the event management unit of func-
tionality is not required.

6.6.1.19 Interfaces Related to the Shell and Utilities

Interfaces defined in the POSIX_REGEXP and POSIX_SHELL_FUNC units of func-
tionality are related to shells and utilities, which are not required in this profile;
therefore, these units of functionality are not required either.

6.6.1.20 X/Open Units of Functionality and Options

Some XSI Units of Functionality (XSI_C_LANG_SUPPORT, XSI_DEVICE_IO,
XSI_DEVICE_SPECIFIC, XSI_FD_MGMT, XSI_FILE_SYSTEM, XSI_IPC,
XSI_JOB_CONTROL, XSI_JUMP, XSI_MATH, XSI_MULTI_PROCESS, XSI_SIGNALS,
XSI_SINGLE_PROCESS, XSI_SYSTEM_DATABASE, XSI_TIMERS,
XSI_USER_GROUPS, XSI_WIDE_CHAR) have interfaces that represent extensions
or alternatives to interfaces in other Units of Functionality or POSIX.1 options,
and therefore are not necessary for PSE51 environments.

The XSI_DBM unit of functionality includes interfaces for database management
that are not required in the PSE51 application environment.

The XSI_DYNAMIC_LINKING unit of functionality is not required for small embed-
ded systems, which usually operate in a static context.

The XSI_I18N unit of functionality provides facilities for natural language messag-
es to the user, which are not required in small embedded systems, which typically
do not have general-purpose human interfaces.

The XSI_SYSTEM_LOGGING unit of functionality provides facilities for logging sys-
tem activities, which are not required in PSE51 environments.

The XSI_THREAD_MUTEX_EXT unit of functionality is required because it has op-
tions for controlling the behavior of mutexes under erroneous application use. This
capability is interesting for any realtime application, including those targeted at
small embedded systems.

The XSI_THREADS_EXT unit of functionality is required because it provides func-
tions to better control a thread’s stack. This is considered useful for any realtime
application.

Rationale for Operating System Requirements (informative) 55

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The _XOPEN_CRYPT option provides cryptography facilities that are not required
in PSE51 environments.

The _XOPEN_LEGACY option provides facilities for backwards compatibility that
are not required in PSE51 environments.

The _XOPEN_STREAMS option provides facilities that are mainly related to net-
working, and thus are not required for PSE51 environments, as discussed above.

6.6.1.21 Language-Specific Services for the C Programming Language

Support for the C Language is required in the C Language option, with the excep-
tions of the POSIX_C_LANG_MATH and POSIX_C_LANG_WIDE_CHAR units of func-
tionality. The reasons for these exceptions are that these are very large libraries
that are not necessary for many of the PSE51 applications.

6.6.1.22 Language-Specific Services for the Ada Programming Language

Support for the Ada language-specific services defined in POSIX.5c is required in
the Ada Language option.

6.6.2 Shell and Utility Requirements

Because the Minimal Realtime System Profile is intended for small embedded sys-
tems which usually have no terminal or graphical user interface, such a platform
would be incapable of executing a shell. In such an environment the utilities de-
scribed in the Shell and Utilities Volume of POSIX.1 are not usually required.

6.6.3 Development Platform Requirements

The embedded nature of the PSE51 execution platform makes it difficult to use as
a development platform. Therefore, the implementation is required to define a de-
velopment environment in which a PSE51 application can be prepared for execu-
tion on the target platform. The development platform depends on the language
option chosen by the implementation.

56 Minimal Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Introduction 57

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Section 7: Realtime Controller System Profile (PSE52)

7.1 Introduction

This section specifies those standards required for conformance to the Realtime
Controller System Profile option and, where applicable, the state of any options
contained in those standards.

When a referenced standard specifies services beyond those required by the Real-
time Controller System Profile, only those services included in the specified Units
of Functionality referenced by this profile shall be required (See Table 1-1 through
Table 1-18). All the applicable definitions in POSIX.1 and/or POSIX.5c still apply.

7.1.1 Identification

For the C Language implementation, symbolic names shall be used to specify the
presence or absence of each option in this profile. Names reserved for use in this
profile begin with the string _POSIX_AEP_REALTIME_. For the Ada language im-
plementation a set of Boolean subtypes contained in package POSIX_Options
(defined in POSIX.5c, clause 2.5) shall be used to specify the presence or absence
of each option in this profile.

7.1.2 Conformance

Conformance to the Realtime Controller System Profile option shall be indicated
as follows:

— For the C language implementation the symbol
_POSIX_AEP_REALTIME_CONTROLLER being defined in the header
<unistd.h>.

— For the Ada language implementation the Boolean subtype
POSIX_Profiles.Realtime_Controller having the range
True..True.

58 Realtime Controller System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

7.1.3 Options

The presence or absence of optional features shall be indicated as follows:

— For the C language implementation, if any of the following symbols are de-
fined in the header <unistd.h>, then the corresponding option is support-
ed:

_POSIX_AEP_REALTIME_LANG_C99

_POSIX_AEP_REALTIME_LANG_Ada95

— For the Ada language implementation, if any of the following Boolean sub-
types has the range True..True, then the corresponding option is support-
ed:

POSIX_Profiles.Realtime_Lang_C99

POSIX_Profiles.Realtime_Lang_Ada95

7.2 Operating System Interface Requirements

7.2.1 POSIX.1 Requirements (C language Option)

The Realtime Controller System Profile implementation shall include interfaces as
defined in POSIX.1 for the following Units of Functionality (see Table 1-1):

Table 7-1: POSIX.1 Units of Functionality Requirements

Unit of Functionality
POSIX_C_LANG_JUMP
POSIX_C_LANG_MATH
POSIX_C_LANG_SUPPORT
POSIX_DEVICE_IO
POSIX_FD_MGMT
POSIX_FILE_LOCKING
POSIX_FILE_SYSTEM
POSIX_PRIORITY_RANGES
POSIX_SIGNALS
POSIX_SINGLE_PROCESS
POSIX_THREADS_BASE
XSI_THREAD_MUTEX_EXT
XSI_THREADS_EXT

Operating System Interface Requirements 59

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The Realtime Controller System Profile implementation shall support the follow-
ing options defined in POSIX.1, by defining the associated symbol with a value
greater than zero:

The value of _POSIX_TIMER_MAX shall be at least 64.

The value of _POSIX_RTSIG_MAX shall be at least 16.

The range of priorities associated with the SCHED_RR scheduling policy shall have
at least 31 distinct values that are less than the maximum priority of the
SCHED_FIFO policy.

An implementation conforming to PSE52 shall provide a mechanism to configure
the system so that the scheduling allocation domain has size one, and so that the
binding of threads to scheduling allocation domains remains static. The mecha-
nism by which this requirement is achieved shall be implementation defined. In
addition, a PSE52 implementation may provide other configurations or facilities to
change the size of the allocation domain and the bindings of threads to allocation
domains. For a description of the scheduling allocation domain see the System In-
terfaces volume of POSIX.1, Section 2.9.2, “Thread Scheduling”.

Table 7-2: POSIX.1 Option Requirements

Option
_POSIX_CLOCK_SELECTION
_POSIX_FSYNC
_POSIX_MAPPED_FILES
_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MESSAGE_PASSING
_POSIX_MONOTONIC_CLOCK
_POSIX_NO_TRUNC
_POSIX_REALTIME_SIGNALS
_POSIX_SEMAPHORES
_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SYNCHRONIZED_IO
_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_CPUTIME
_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_SPORADIC_SERVER
_POSIX_TIMEOUTS
_POSIX_TIMERS
_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_LOG

60 Realtime Controller System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

7.2.2 POSIX.5c Requirements (Ada Language Option)

The Realtime Controller System Profile implementation shall include interfaces as
defined in POSIX.5c for the following Units of Functionality (see Table 1-1):

The Realtime Controller System Profile implementation shall support the follow-
ing options defined in POSIX.5c, by defining the associated option subtypes to have
the range True..True, with the exception of the Filename Truncation option for
which the associated subtype shall have the range False..False:

POSIX_Limits.Timers_Maxima’First shall be at least 64.

POSIX_Limits.Realtime_Signals_Maxima’First shall be at least 16.

Regarding task priority scheduling, the implementation shall support the follow-
ing requirements from POSIX.5c and the Ada95 RM:

— The implementation shall support the priority model defined in the Ada95
RM, clause D.1, and the pragmas and package interfaces defined in the
Ada95 RM, clauses D.2-D.5.

Table 7-3: POSIX.5c Units of Functionality Requirements

Unit of Functionality
POSIX_ADA_LANG_SUPPORT
POSIX_DEVICE_IO
POSIX_FD_MGMT
POSIX_FILE_SYSTEM
POSIX_SIGNALS
POSIX_SINGLE_PROCESS

Table 7-4: POSIX.5c Option Requirements

Option
File Synchronization
Memory Mapped Files
Memory Locking
Memory Range Locking
Message Queues
Filename Truncation
Realtime Signals
Semaphores
Shared Memory Objects
Synchronized I/O
Mutexes Support
Mutex Priority Inheritance
Mutex Priority Ceiling
Timers

Application Constraints 61

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

— The implementation shall meet the requirements of POSIX.5c, section
13.3.1.

The blocking behavior of all reentrant operations defined by POSIX.5c shall be per
task, i.e., a blocked task cannot prevent any other task from executing. Therefore,
the corresponding Blocking_Behavior constants shall have the value Tasks.
(See POSIX.5c, clause 2.4.1.5.)

Implementations of the PSE52 profile shall support the POSIX_Profiles pack-
age defined in Annex A of this standard.

The subprogram POSIX_Signals.Set_Stopped_Child_Signal shall fail si-
lently.

The subprogram POSIX_Signals.Stopped_Child_Signal_Enabled shall re-
turn False.

POSIX_Limits.Groups_Maxima’First shall be zero.

Subprograms not supported by a given profile shall raise POSIX_Error, returning
an error code of Operation_Not_Supported, except as noted otherwise.

All Image and Value functions that appear in the packages supported by a profile
must be implemented.

Where an overloaded subprogram is required by a unit of functionality, all forms
of the subprogram appearing in the referenced clause must be supported, except
as otherwise noted.

7.3 Application Constraints

The Realtime Controller System profile defined in this standard requires only spe-
cific Units of Functionality of the required standards. The absence of particular el-
ements of these standards introduces constraints on the use of some of the features
of particular operations. This clause defines the constraints that an application
strictly conforming to one of the profiles shall observe when using each of the op-
erations required by that profile.

7.3.1 Constraints related to POSIX.1 Interfaces (C Language Option)

The following table defines a set of functions that shall be either reentrant or non-
interruptible by signals and shall be async-signal-safe. Therefore applications may
invoke them, without restriction, from signal-catching functions. No other func-
tion, including those defined in the System Interfaces Volume of POSIX.1, Section
2.4.3, “Signal Actions”, is required to be async-safe in an implementation of the

62 Realtime Controller System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

PSE52 profile, and thus PSE52 Strictly Conforming Applications shall not use
them from inside signal handlers.

The sysconf() function has the following constraints:

(1) An application strictly conforming to the PSE52 profile shall not call the
sysconf() function with the parameter _POSIX_VERSION since a meaningful
value cannot be returned.1

(2) A conforming application must act as if CHILD_MAX=0.

An application strictly conforming to PSE52 shall be considered erroneous if any
signal results in abnormal termination of the process because this profiles does not
support multiple processes.

An application strictly conforming to PSE52 shall not call the kill() function with
a negative but not -1 argument because this profile does not require process group
functionality.

An application strictly conforming to PSE52 shall be guaranteed that the file mode
creation mask for any object created by any process is S-IRWXU; that is, the object
shall be fully accessible to the creator.

7.3.2 Constraints related to POSIX.5c Interfaces (Ada Language Option)

An application strictly conforming to PSE52 shall not call the functions
POSIX_Configurable_System_Limits.System_POSIX_Version or
POSIX_Configurable_System_Limits.System_POSIX_Ada_Version, since
a meaningful value cannot be returned.2

A conforming application must act as if
POSIX_Limits.Child_Processes_Maxima'Last=0.

An application strictly conforming to PSE52 shall be considered erroneous if any
signal results in abnormal termination of the process because this profile does not
support multiple processes.

Table 7-5: Functions required to be async-signal-safe

alarm()
clock_gettime()
kill()
raise()
sem_post()
sigaction()

sigaddset()
sigdelset()
sigemptyset()
sigfillset()
sigismember()
signal()

sigpending()
sigprocmask()
sigqueue()
sigset()
sysconf()
time()

timer_getoverrun()
timer_gettime()
timer_settime()
times()
uname()

1. Conformance to this profile can be checked with the symbols defined in 7.1.3.

2. Conformance to this profile can be checked with the subtypes defined in 7.1.3.

Shell and Utility Requirements 63

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

An application strictly conforming to PSE52 shall not call the form of
POSIX_Signals.Send_Signal that takes a process group ID as an argument be-
cause this profile does not require process group functionality.

An application strictly conforming to PSE52 shall not attempt to bind a signal to a
task entry.

Implementations of PSE52 need not support the File_Structure field of the
form parameter (See POSIX.5c, clause 8.1.1.2), but may instead raise Use_Error.
All files shall default to regular files.

7.4 Shell and Utility Requirements

An implementation of the Realtime Controller System Profile is not required to
support any of the services described in the Shell and Utilities Volume of POSIX.1.

7.5 Development Platform Requirements

One or more of the development options in 7.5.1 and 7.5.2 shall be implemented.

7.5.1 C Language Development Option

If this option is provided, the implementor shall define a Development Platform
and an environment capable of preparing for execution an application conformant
with this standard profile. This platform shall include the POSIX2_C_BIND,
POSIX2_C_DEV, and POSIX2_SW_DEV options from the Shell and Utilities Volume
of POSIX.1.

7.5.1.1 Option Indicator

The presence of the C Language Development Option shall be indicated by the
symbol _POSIX_AEP_REALTIME_LANG_C99 being defined in the required header
<unistd.h>. In addition, the presence of the C Language Development Option
may be indicated by the subtype POSIX_Profiles.Realtime_Lang_C99 having
the range True..True.

64 Realtime Controller System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

7.5.2 Ada Language Development Option

If this option is provided, the implementor shall define a Development Platform
and an environment capable of preparing for execution an application conformant
with this profile including applicable portions of the following:

— The Ada95 RM {1}

— POSIX.5c {6}

— The POSIX2_SW_DEV option from the Shell and Utilities Volume of
POSIX.1.

7.5.2.1 Option Indicator

The presence of the Ada Language Development Option shall be indicated by the
subtype POSIX_Profiles.Realtime_Lang_Ada95 having the range
True..True. In addition, the presence of the Ada Language Development Option
may be indicated by the symbol _POSIX_AEP_REALTIME_LANG_Ada95 being de-
fined in the header <unistd.h>.

7.6 Rationale for Operating System Requirements (informative)

(This subclause is not a normative part of IEEE Std P1003.13)

7.6.1 Operating System Interface Requirements

This model introduces system functionality that is more sophisticated than in the
Minimal Realtime System Profile, specifically in the area of I/O. Two general cat-
egories of services are added.

The first extension is support for a simplified file and directory system. These fea-
tures are used in applications that require an alterable file name space, typically
in systems that support secondary storage and require the ability to create,
change, and delete named regular files located on a storage device. The included
functions allow the creation, deletion, and changing of file attributes of regular
files.

This profile assumes the following hardware model: one or more processors with
local memory and one or more serial interfaces. (It is anticipated that the serial in-
terface(s) may be removed in final production systems.) Driver-level I/O to stan-

Rationale for Operating System Requirements (informative) 65

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

dard and non-standard devices are supported. In addition, a file system device is
supported. The hardware is not required to provide memory management.

7.6.1.1 Process Primitives

Because this profile uses the POSIX.1 Threads model only as the mechanism to
achieve concurrency, most POSIX.1 process primitives do not apply. This includes
the multi-process, pipes, and signal jump units of functionality, as well as the pro-
cess spawn option. Although PSE52 has only a single (implicit) process, some in-
terprocess APIs are required to support communication between applications.

The main() function is needed to allow application-specific information to be
passed from boot code to the single process (and its threads).

7.6.1.2 Signals

Signal services are a basic mechanism within POSIX-based systems and are re-
quired for error and event handling. Realtime systems typically have several logi-
cally concurrent software elements executing. Each such entity must respond to
several cyclic and/or acyclic stimuli, often in a time-critical manner. Although
purely synchronous models can supply such functionality via the use of additional
processes or threads, the current realtime practice for asynchronous notification
for events such as timeout, message arrival, and hardware interrupt can generally
be expected to offer higher performance and lower latency. Realtime Signals pro-
vide the reliable high-performance mechanism to support such notification.

The minimum number of realtime signals that the implementation is required to
support has been increased from the number specified in the POSIX.1 standard, 8,
up to 16. The rationale for this increase is that there are many applications that
have more than 8 different kinds of events. Doubling the number of required real-
time signals should have a minimum impact on the signal management overhead,
while significantly increases the number of event kinds that can be used by a
strictly conforming application.

7.6.1.3 Process Environment

The functions from the POSIX.1 Process Environment group are deemed necessary
to allow an application to determine and configure its system environment. This
allows a single version of an application to be run on similar but differing plat-
forms; however, conforming applications must act as if CHILD_MAX=0.

66 Realtime Controller System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

7.6.1.4 Files and Directories

Since this profile has a file system, all POSIX.1 functions that manage a basic file
systems are required. However, the file system in a PSE52 platform is a simplified
version of a full POSIX.1 file system, and for this reason the POSIX_FIFO,
POSIX_FILE_ATTRIBUTES, and POSIX_FILE_SYSTEM_EXT, units of functionality
and the _POSIX_ADVISORY_INFO option are not required.

The File Locking option is required in the C-language option to maintain a consis-
tent and safe way of accessing stdio (FILE *) objects from threads, across the four
realtime profiles.

7.6.1.5 Input and Output Primitives

The functions contained in the Device I/O and File Descriptor Management units
of functionality are required to do basic I/O and device cleanup.

Asynchronous I/O is not required because it can be easily implemented using
threads dedicated to I/O.

7.6.1.6 Synchronized Input and Output

The Synchronized (unbuffered) I/O interface (including the File Synchronization
option) is typical for basic device I/O and is required for upward portability.

Those realtime systems that use file management systems will frequently require
synchronized I/O to provide data integrity and/or relinquish resources to other us-
ers. Synchronized I/O as defined in POSIX.1 provides these mechanisms.

7.6.1.7 Device- and Class-Specific Functions

POSIX.1 Device- or Class-Specific functions are not required, because PSE52 sys-
tems usually don’t require general-purpose terminal interfaces.

7.6.1.8 System Databases, Users and Groups

Implementations are not required to support more than one user and group id
since there are not multiple users and groups. No POSIX.1 System Database func-
tions are required.

Rationale for Operating System Requirements (informative) 67

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

7.6.1.9 Synchronization

Mutexes and Condition Variables are required as part of threads model of concur-
rency.

The Process Shared option is not required because there is only a single process.

Semaphores are required in the PSE52 profile for synchronization between
threads to maintain compatibility with past industry practice. However, mutexes
and conditional variables are preferred in most current applications. It must be
noted that POSIX semaphores do not have the mechanisms built in to avoid un-
bounded priority inversion when using them for mutually exclusive access to
shared resources. Mutexes with the appropriate priority inheritance or priority
ceiling (also called priority protection) protocols can be used to avoid this unbound-
ed priority inversion.

Barriers are not required because they can easily be implemented using mutexes
and condition variables. Although a direct implementation of barriers can have a
significant efficiency benefit in some multiprocessor architectures, a mutex-and-
condition-variable implementation will not be significantly slower in most archi-
tectures, and thus requiring barriers for all implementations is not justified.

Spin locks are not required because, although they are an efficient synchronization
mechanism, they cannot be portably used with the current POSIX.1 interfaces in
realtime applications. If a realtime scheduling policy such as SCHED_FIFO or
SCHED_RR is used, spin locks may cause deadlock on a single processor. On mul-
tiprocessors, to avoid deadlock, it would be necessary for threads using a given lock
to be allocated to different processors. There are no standard APIs in the current
POSIX.1 to allocate threads to specific processors.

Reader/Writer Locks are not required because they are not designed to avoid un-
bounded priority inversion, and thus very long delays could occur in realtime ap-
plications, with a low but nevertheless non-zero probability. It is expected that a
future revision of the POSIX.1 standard will add the priority inheritance and/or
priority ceiling options to reader/writer locks, which would eliminate the unbound-
ed priority inversion.

7.6.1.10 Priority Scheduling

Thread priority scheduling is required for realtime applications. The Sporadic
Server Scheduling option is also required to enhance support of applications with
aperiodic timing requirements. The POSIX_PRIORITY_RANGES unit of function-
ality is required because threads need to obtain the values of the priority ranges
associated with realtime scheduling policies to use those policies.

A common requirement of realtime systems is that they be able to run threads with
real-time requirements together with threads with no real-time requirements. One

68 Realtime Controller System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

common way of doing this is by having the real-time threads run under the
SCHED_FIFO scheduling policy, while the non real-time threads run at a lower pri-
ority under the round-robin policy (SCHED_RR) to fairly share the available por-
tion of the processor among them. POSIX requires each policy to have a range of
priorities of at least 32 distinct values, but does not impose any requirements on
how these priority ranges relate to each other. It could happen that most or all of
the SCHED_RR priorities were larger than the SCHED_FIFO priorities, thus mak-
ing it impossible to mix realtime and non-realtime threads as required above. To
solve this problem in a portable way, this profile requires that there are at least 31
SCHED_RR priority levels below the maximum priority of SCHED_FIFO. In this
way, a strictly conforming application can use the inclusive priority range
[max_FIFO_prio, max_FIFO_prio-30] with SCHED_FIFO for real-time threads
(with a total of 31 priority levels), and then use the priority value
min(max_FIFO_prio-31,max_RR_prio) with the SCHED_RR policy, for the non
real-time threads, with guarantee that the latter priority value is valid for the
round-robin policy.

Support for a scheduling allocation domain of size one and static binding of threads
to allocation domains is required in all the realtime profiles to achieve predictable
scheduling behavior. The allocation domain of a thread is the set of processors on
which that thread can be scheduled at any given time. The POSIX.1 standard spec-
ifies that the scheduling rules have predictable effects only if the allocation domain
is of size one; hence the need for this requirement. For single-processor systems the
allocation domain is generally of size one and thus the application can meet the re-
quirement just by specifying in the conformance document that the scheduling al-
location domain is of size one and that static binding of threads to allocation
domains is the default behavior.

7.6.1.11 Process Memory Locking

Process memory locking is inherent in systems following this profile because most
PSE52 targets have no MMU and thus swapping is not supported; code and data
stays in physical memory until explicitly removed. Nevertheless, memory locking
APIs are required for upward portability to allow an application developer to take
code intended for a bare PSE52 target and unit test that code on a much larger and
more capable platform, perhaps a PSE54, with minimal modification. In those tar-
gets not using an MMU for virtual memory, the locking functions do nothing and
always report success, while in the larger profiles there really is memory to be
locked. In summary, by requiring this service in the PSE52 profile, it is possible to
write portable application code that runs correctly in all the profiles.

Rationale for Operating System Requirements (informative) 69

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

7.6.1.12 Shared Memory

Memory Mapped I/O may be implemented using the Shared Memory facility. An
implementation is required to provide facilities for creating (shared) memory ob-
jects that represent ranges of physical memory that contain device control and sta-
tus registers or buffers. These facilities encourage the development of portable
applications.

The Memory-Mapped Files option is included because the implementation has file-
system capabilities, and memory-mapped files are a convenient paradigm for read-
ing and writing information in applications following this profile. In memory-
mapped files, I/O is not managed by the programmer because data can be manip-
ulated as memory. The implementation of memory-mapped files does not require
a significant amount of additional memory or execution overhead to achieve the
additional capability.

System vendors are expected to implement the chosen interface in a manner that
meets the needs of the applications. In particular, a rotating media-based imple-
mentation is allowed but not required by the interface definition.

Typed Memory objects are not required because they are useful only to systems
with special hardware architectures that have various often specialized kinds of
memory. Implementors providing support for such special architectures always
have the option to provide typed memory objects as an extension.

7.6.1.13 Clocks and Timers

High-resolution timer functions are required in most realtime systems for imple-
menting time management operations such as periodic activations, short duration
time-outs, etc. The normal POSIX.1 time management functions sleep() and
alarm() only provide a time resolution of one second, but many realtime systems
require finer resolution for specifying time.

The Monotonic Clock is required for realtime applications to ensure that deadlines
and timing requirements are not affected by clock jumps.

The Clock Selection option is required to enable choosing the clock on which sleep
operations are performed, and to have access to an absolute sleep operation, which
is a common requirement in realtime applications with periodic timing require-
ments.

CPU-Time clocks and timers are required as a means to detect and handle situa-
tions in which a thread overruns its assigned maximum execution time. Delimiting
the execution times of the different threads in the application provides temporal
partitioning in realtime applications, and thus increases predictability and reli-
ability.

70 Realtime Controller System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The Timeouts option is a general requirement for realtime applications and thus
is required in this profile.

The minimum number of timers that the implementation is required to support
has been increased from the number specified in the POSIX.1 standard, 32, up to
64, which is the required minimum number of threads. The reason for this increase
is that there are many applications that require one timer per thread (either real-
time or CPU-time based).

7.6.1.14 Message Passing

Currently available commercial realtime kernels with similar functionality to the
Realtime Controller System Profile typically include some form of message queue-
ing mechanism for communication between threads. The POSIX.1 Message Pass-
ing offers an appropriate level of performance to provide this functionality.

7.6.1.15 Threads

The basic assumption in this profile is that the system will consist of a single (im-
plicit) process, with multiple threads. Therefore, all basic thread services are re-
quired, except for those related to multiple processes. The
POSIX_THREADS_BASE unit of functionality was specified in this document in-
stead of the _POSIX_THREADS option, because this option requires reader/writer
locks, but this profile does not.

7.6.1.16 Tracing

Tracing is required for the PSE52 environment because most of these systems
work in an unattended mode for long periods of time, and tracing provides an ex-
cellent mechanism to support post-failure analysis, particularly for failures having
a low probability of occurrence.

The Trace Event Filtering option is required for the system to be able to filter out
those trace events that are not meaningful for the application, thus making better
use of system resources by capturing only the interesting events.

The presence of a file system in the PSE52 profile facilitates the recording of the
trace events, through the Trace Log option, which is required for this profile.

Rationale for Operating System Requirements (informative) 71

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

7.6.1.17 Networking

Although some small controller systems require networking services, most don’t,
so to keep the implementation small, this unit of functionality is not required.

7.6.1.18 Event Management

The select() function is usually associated with networking facilities, which are not
required for PSE52. Although the function could be used for regular device I/O op-
erations, most kernels that do not have networking services do not support select().
Therefore, to keep the implementation small, the event management unit of func-
tionality is not required.

7.6.1.19 Interfaces Related to the Shell and Utilities

Interfaces defined in the POSIX_REGEXP and POSIX_SHELL_FUNC units of func-
tionality are related to shells and utilities, which are not required in this profile;
therefore, these units of functionality are not required either.

7.6.1.20 X/Open Units of Functionality and Options

Some XSI Units of Functionality (XSI_C_LANG_SUPPORT, XSI_DEVICE_IO,
XSI_DEVICE_SPECIFIC, XSI_FD_MGMT, XSI_FILE_SYSTEM, XSI_IPC,
XSI_JOB_CONTROL, XSI_JUMP, XSI_MATH, XSI_MULTI_PROCESS, XSI_SIGNALS,
XSI_SINGLE_PROCESS, XSI_SYSTEM_DATABASE, XSI_TIMERS,
XSI_USER_GROUPS, XSI_WIDE_CHAR) have interfaces that represent extensions
or alternatives to interfaces in other Units of Functionality or POSIX.1 options,
and therefore are not necessary for PSE52 environments.

The XSI_DBM unit of functionality includes interfaces for database management
that are not required in the PSE52 application environment.

The XSI_DYNAMIC_LINKING unit of functionality is not required for small embed-
ded systems, which usually operate in a static context.

The XSI_I18N unit of functionality provides facilities for natural language messag-
es to the user, which are not required in realtime controller systems, which typi-
cally do not have general-purpose human interfaces.

The XSI_SYSTEM_LOGGING unit of functionality provides facilities for logging sys-
tem activities, which are not required in PSE52 environments.

72 Realtime Controller System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The XSI_THREAD_MUTEX_EXT unit of functionality is required because it has op-
tions for controlling the behavior of mutexes under erroneous application use. This
capability is interesting for any realtime application, including those targeted at
control systems.

The XSI_THREADS_EXT unit of functionality is required because it provides func-
tions to better control a thread’s stack. This is considered useful for any realtime
application.

The _XOPEN_CRYPT option provides cryptography facilities that are not required
in PSE52 environments.

The _XOPEN_LEGACY option provides facilities for backwards compatibility that
are not required in PSE52 environments.

The _XOPEN_STREAMS option provides facilities that are mainly related to net-
working, and thus are not required for PSE52 environments, as discussed above.

7.6.1.21 Language-Specific Services for the C Programming Language

Support for the C Language is required in the C Language option, with the excep-
tion of the POSIX_C_LANG_WIDE_CHAR unit of functionality. The reason for this
exception is that this is a very large library that is not necessary for many of the
PSE52 applications.

7.6.1.22 Language-Specific Services for the Ada Programming Language

Support for the Ada language-specific services defined in POSIX.5c is required in
the Ada Language option.

7.6.2 Shell and Utility Requirements

Because the Realtime Controller System Profile is intended for control systems
which usually have no terminal or graphical user interface, such a platform would
be incapable of executing a shell. In such an environment the utilities described in
the Shell and Utilities Volume of POSIX.1 are not usually required.

Rationale for Operating System Requirements (informative) 73

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

7.6.3 Development Platform Requirements

The special-purpose nature of the PSE52 execution platform makes it difficult to
use as a development platform. Therefore, the implementation is required to de-
fine a development environment in which a PSE52 application can be prepared for
execution on the target platform. The development platform depends on the lan-
guage option chosen by the implementation.

74 Realtime Controller System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Introduction 75

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Section 8: Dedicated Realtime System Profile (PSE53)

8.1 Introduction

This section specifies those standards required for conformance to the Dedicated
Realtime System Profile option and, where applicable, the state of any options con-
tained in those standards.

When a referenced standard specifies services beyond those required by the Dedi-
cated Realtime System Profile, only those services included in the specified Units
of Functionality referenced by this profile shall be required (See Table 1-1 through
Table 1-18). All the applicable definitions in POSIX.1 and/or POSIX.5c still apply.

8.1.1 Identification

For the C-Language implementation, symbolic names shall be used to specify the
presence or absence of each option in this profile. Names reserved for use in this
profile begin with the string _POSIX_AEP_REALTIME_. For the Ada Language im-
plementation a set of Boolean subtypes contained in package POSIX_Options
(defined in POSIX.5c, section 2.5) shall be used to specify the presence or absence
of each option in this profile.

8.1.2 Conformance

Conformance to the Dedicated Realtime System Profile option shall be indicated
as follows:

— For the C-Language implementation the symbol
_POSIX_AEP_REALTIME_DEDICATED being defined in the header
<unistd.h>.

— For the Ada Language implementation the Boolean subtype
POSIX_Profiles.Realtime_Dedicated subtype having the range
True..True.

76 Dedicated Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

8.1.3 Options

The presence or absence of optional features shall be indicated as follows:

— For the C-language implementation, if any of the following symbols are de-
fined in the header <unistd.h>:

_POSIX_AEP_REALTIME_LANG_C99

_POSIX_AEP_REALTIME_LANG_Ada95

— For the Ada language implementation, if any of the following Boolean sub-
types has the range True..True, then the corresponding option is support-
ed:

POSIX_Profiles.Realtime_Lang_C99

POSIX_Profiles.Realtime_Lang_Ada95

8.2 Operating System Interface Requirements

8.2.1 POSIX.1 Requirements (C Language Option)

The Dedicated Realtime System Profile implementation shall include interfaces as
defined in POSIX.1 for the following Units of Functionality (see Table 1-1)

Table 8-1: POSIX.1 Units of Functionality Requirements

Unit of Functionality
POSIX_C_LANG_JUMP
POSIX_C_LANG_MATH
POSIX_C_LANG_SUPPORT
POSIX_DEVICE_IO
POSIX_EVENT_MGMT
POSIX_FD_MGMT
POSIX_FILE_LOCKING
POSIX_FILE_SYSTEM
POSIX_MULTI_PROCESS
POSIX_NETWORKING
POSIX_PIPE
POSIX_SIGNALS
POSIX_SIGNAL_JUMP
POSIX_SINGLE_PROCESS
POSIX_THREADS_BASE
XSI_THREAD_MUTEX_EXT

Operating System Interface Requirements 77

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The Dedicated Realtime System Profile implementation shall support the follow-
ing options defined in POSIX.1, by defining the associated symbol with a value
greater than zero:

The value of _POSIX_TIMER_MAX shall be at least 64.

The value of _POSIX_RTSIG_MAX shall be at least 16.

XSI_THREADS_EXT

Table 8-2: POSIX.1 Option Requirements

Option
_POSIX_ASYNCHRONOUS_IO
_POSIX_CLOCK_SELECTION
_POSIX_CPUTIME
_POSIX_FSYNC
_POSIX_MAPPED_FILES
_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MEMORY_PROTECTION
_POSIX_MESSAGE_PASSING
_POSIX_MONOTONIC_CLOCK
_POSIX_NO_TRUNC
_POSIX_PRIORITIZED_IO
_POSIX_PRIORITY_SCHEDULING
_POSIX_RAW_SOCKETS
_POSIX_REALTIME_SIGNALS
_POSIX_SEMAPHORES
_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SPAWN
_POSIX_SPORADIC_SERVER
_POSIX_SYNCHRONIZED_IO
_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_CPUTIME
_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_PROCESS_SHARED
_POSIX_THREAD_SPORADIC_SERVER
_POSIX_TIMEOUTS
_POSIX_TIMERS
_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_LOG

Table 8-1: POSIX.1 Units of Functionality Requirements (Continued)

Unit of Functionality

78 Dedicated Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The range of priorities associated with the SCHED_RR scheduling policy shall have
at least 31 distinct values that are less than the maximum priority of the
SCHED_FIFO policy.

An implementation conforming to PSE53 shall support the
PTHREAD_SCOPE_SYSTEM scheduling contention scope. In addition, it may sup-
port PTHREAD_SCOPE_PROCESS. For a description of the scheduling contention
scope see the System Interfaces volume of POSIX.1, Section 2.9.2, “Thread Sched-
uling”.

An implementation conforming to PSE53 shall provide a mechanism to configure
the system so that the scheduling allocation domain has size one, and so that the
binding of threads to scheduling allocation domains remains static. The mecha-
nism by which this requirement is achieved shall be implementation defined. In
addition, a PSE53 implementation may provide other configurations or facilities to
change the size of the allocation domain and the bindings of threads to allocation
domains. For a description of the scheduling allocation domain see the System In-
terfaces volume of POSIX.1, Section 2.9.2, “Thread Scheduling”.

8.2.2 POSIX.5c Requirements (Ada Language Option)

The Dedicated Realtime System Profile implementation shall include interfaces as
defined in POSIX.5c for the following units of functionality (see Table 1-2 through
Table 1-18):

The Dedicated Realtime System Profile implementation shall support the follow-
ing options defined in POSIX.5c, by defining the associated option subtypes to have

Table 8-3: POSIX.5c Units of Functionality Requirements

Unit of Functionality
POSIX_ADA_LANG_SUPPORT
POSIX_DEVICE_IO
POSIX_EVENT_MGMT
POSIX_FD_MGMT
POSIX_FILE_SYSTEM

POSIX_MULTI_PROCESSa

a. The POSIX_MULTI_PROCESS unit of functionality shall be supported, with
the provision that the package POSIX_Unsafe_Process_Primitives is
not required

POSIX_NETWORKING
POSIX_PIPE
POSIX_SIGNALS
POSIX_SINGLE_PROCESS

Operating System Interface Requirements 79

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

the range True..True, with the exception of the Filename Truncation option for
which the associated subtype shall have the range False..False:

POSIX_Limits.Timers_Maxima’First shall be at least 64.

POSIX_Limits.Realtime_Signals_Maxima’First shall be at least 16.

Regarding task priority scheduling, the implementation shall support the follow-
ing requirements from POSIX.5c and the Ada95 RM:

— The implementation shall support the priority model defined in the Ada95
RM, clause D.1, and the pragmas and package interfaces defined in the
Ada95 RM, clauses D.2-D.5.

— The implementation shall meet the requirements of POSIX.5c, section
13.3.1.

Implementations of the PSE53 profile shall support the POSIX_Profiles pack-
age defined in Annex A of this standard.

The subprogram POSIX_Signals.Set_Stopped_Child_Signal shall fail si-
lently.

The subprogram POSIX_Signals.Stopped_Child_Signal_Enabled shall re-
turn False.

POSIX_Limits.Groups_Maxima’First shall be zero.

Table 8-4: POSIX.5c Option Requirements

Option

Asynchronous I/O
File Synchronization
Memory Mapped Files
Memory Locking
Memory Range Locking
Memory Protection
Message Queues
Filename Truncation
Prioritized I/O
Priority Process Scheduling
Realtime Signals
Semaphores
Shared Memory Objects
Synchronized I/O
Mutexes Support
Mutex Priority Inheritance
Mutex Priority Ceiling
Process Shared
Timers

80 Dedicated Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Subprograms not supported by a given profile shall raise POSIX_Error, returning
an error code of Operation_Not_Supported, except as noted otherwise.

All Image and Value functions that appear in the packages supported by a profile
must be implemented.

Where an overloaded subprogram is required by a unit of functionality, all forms
of the subprogram appearing in the referenced clause must be supported, except
as otherwise noted.

8.3 Application Constraints

The Dedicated Realtime System profile defined in this standard requires only spe-
cific units of functionality of the required standards. The absence of particular el-
ements of these standards introduces constraints on the use of some of the features
of particular operations. This clause defines the constraints that an application
strictly conforming to one of the profiles shall observe when using each of the op-
erations required by that profile.

8.3.1 Constraints related to POSIX.1 Interfaces (C Language Option)

The sysconf() function has the following constraints:

(1) An application strictly conforming to the PSE53 profile shall not call the
sysconf() function with the parameter _POSIX_VERSION since a meaningful
value cannot be returned.1

An application strictly conforming to PSE53 shall not call the kill() function with
a negative argument because this profile does not require process group function-
ality.

An application strictly conforming to PSE53, shall be guaranteed that the file
mode creation mask for any object created by any process is S-IRWXU; that is, the
object shall be fully accessible to the creator.

8.3.2 Constraints related to POSIX.5c Interfaces (Ada Language Option)

An application strictly conforming to PSE53 shall not call the functions
POSIX_Configurable_System_Limits.System_POSIX_Version or

1. Conformance to this profile can be checked with the symbols defined in 8.1.3.

Shell and Utility Requirements 81

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

POSIX_Configurable_System_Limits.System_POSIX_Ada_Version, since
a meaningful value cannot be returned.1

An application strictly conforming to PSE53 shall not call the subprograms con-
tained in the package Posix_Unsafe_Process_Primitives, but shall instead
rely upon either Posix_Process_Primitives.Start_Process or
Posix_Process_Primitives.Start_Process_Search to create new process-
es.

An application strictly conforming to PSE53 shall not call the form of
POSIX_Signals.Send_Signal that takes a process group ID as an argument be-
cause this profile does not require process group functionality.

An application strictly conforming to PSE53 shall not attempt to bind a signal to a
task entry.

Implementations of PSE53 need not support the File_Structure field of the
form parameter (See POSIX.5c, clause 8.1.1.2), but may instead raise Use_Error.
All files shall default to regular files.

8.4 Shell and Utility Requirements

An implementation of the Dedicated Realtime System Profile is not required to
support any of the services described in the Shell and Utilities Volume of POSIX.1.

8.5 Development Platform Requirements

One or more of the development options in 8.5.1 and 8.5.2 shall be implemented.

8.5.1 C Language Development Option

If this option is provided, the implementor shall define a Development Platform
and an environment capable of preparing for execution an application conformant
with this standard profile. This platform shall include the POSIX2_C_BIND,
POSIX2_C_DEV, and POSIX2_SW_DEV options from the Shell and Utilities Volume
of POSIX.1.

1. Conformance to this profile can be checked with the subtypes defined in 8.1.3.

82 Dedicated Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

8.5.1.1 Option Indicator

The presence of the C Language Development Option shall be indicated by the
symbol _POSIX_AEP_REALTIME_LANG_C99 being defined in the required header
<unistd.h>. In addition, the presence of the C Language Development Option
may be indicated by the subtype POSIX_Profiles.Realtime_Lang_C99 having
the range True..True.

8.5.2 Ada Language Development Option

If this option is provided, the implementor shall define a Development Platform
and an environment capable of preparing for execution an application conformant
with this profile including applicable portions of the following:

— The Ada95 RM {1}

— POSIX.5c {6}

— The POSIX2_SW_DEV option from the Shell and Utilities Volume of
POSIX.1.

8.5.2.1 Option Indicator

The presence of the Ada Language Development Option shall be indicated by the
subtype POSIX_Profiles.Realtime_Lang_Ada95 having the range
True..True. In addition, the presence of the Ada Language Development Option
may be indicated by the symbol _POSIX_AEP_REALTIME_LANG_Ada95 being de-
fined in the header <unistd.h>.

8.6 Rationale for Operating System Requirements (informative)

(This subclause is not a normative part of IEEE Std P1003.13)

8.6.1 Operating System Interface Requirements

This profile is based on existing practice in large embedded systems (a single user
is assumed). Traditionally, these applications are designed to run with either a
home-grown or standard operating system providing process, I/O, time, memory,

Rationale for Operating System Requirements (informative) 83

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

and event management services. These applications require support for a simpli-
fied file system.

Where convenient, the AEP profile working group has chosen system options that
allow an application to be upwardly portable without modifying application source
code.

8.6.1.1 Process Primitives

Applications that correspond to the Dedicated Realtime System Environment are
usually large embedded systems that require multiple processes for handling mul-
tiple, concurrent activities with independent address spaces. The process control
functions (which include process creation and execution) are the basic operating
system services required to support multiple processes, and are therefore required
in these systems.

8.6.1.2 Signals

Signal services are a basic mechanism within POSIX-based systems and are re-
quired for error and event handling. Realtime systems typically have several logi-
cally concurrent software elements executing. Each such entity must respond to
several cyclic and/or acyclic stimuli, often in a time-critical manner. Although
purely synchronous models can supply such functionality via the use of additional
processes or threads, the current realtime practice for asynchronous notification
for events such as timeout, message arrival, and hardware interrupt can generally
be expected to offer higher performance and lower latency. Realtime Signals pro-
vide the reliable high-performance mechanism to support such notification.

The minimum number of realtime signals that the implementation is required to
support has been increased from the number specified in the POSIX.1 standard, 8,
up to 16. The rationale for this increase is that there are many applications that
have more than 8 different kinds of events. Doubling the number of required real-
time signals should have a minimum impact on the signal management overhead,
while significantly increases the number of event kinds that can be used by a
strictly conforming application.

8.6.1.3 Process Environment

The functions from the POSIX.1 Process Environment group are deemed necessary
to allow an application to determine and configure its system environment. This
allows a single version of an application to be run on similar but differing
platforms.

84 Dedicated Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Since these systems require multiple processes, but not users or groups, the func-
tions defined by the POSIX_MULTI_PROCESS unit of functionality are required.

8.6.1.4 Files and Directories

Since this profile has a file system, all POSIX.1 functions that manage a basic file
systems are required. However, the file system in a PSE53 platform is a simplified
version of a full POSIX.1 file system, and for this reason the POSIX_FIFO,
POSIX_FILE_ATTRIBUTES, and POSIX_FILE_SYSTEM_EXT, units of functionality
and the _POSIX_ADVISORY_INFO option are not required.

The File Locking option is required in the C-language option to maintain a consis-
tent and safe way of accessing stdio (FILE *) objects from threads, across the four
realtime profiles.

The File Descriptor Management unit of functionality is included to aid the han-
dling of file descriptors across the process creation and program execution opera-
tions.

8.6.1.5 Input and Output Primitives

The functions contained in the Device I/O unit of functionality are required to do
basic I/O and device cleanup.

Although asynchronous I/O can be easily implemented using threads dedicated to
I/O, it is required in the PSE53 profile to support portability of applications that
may have been developed before POSIX threads implementations were widely
available.

8.6.1.6 Synchronized Input and Output

The Synchronized (unbuffered) I/O interface (including the File Synchronization
option) is typical for basic device I/O and is required for upward portability.

Those realtime systems that use file management systems will frequently require
synchronized I/O to provide data integrity and/or relinquish resources to other us-
ers. Synchronized I/O as defined in POSIX.1 provides these mechanisms.

Rationale for Operating System Requirements (informative) 85

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

8.6.1.7 Device- and Class-Specific Functions

POSIX.1 Device- or Class-Specific functions are not required, because embedded
systems usually don’t require general-purpose terminal interfaces.

8.6.1.8 System Databases, Users and Groups

Implementations are not required to support more than one user and group id
since there are not multiple users and groups. No POSIX.1 System Database func-
tions are required.

8.6.1.9 Synchronization

Mutexes and Condition Variables are required as part of threads model of concur-
rency.

Semaphores are required to support portability of applications that might be using
this mechanism instead of the preferred mutexes and condition variables. It must
be noted, however, that POSIX semaphores do not have the mechanisms built in
to avoid unbounded priority inversion when using them for mutually exclusive ac-
cess to shared resources. Mutexes with the appropriate priority inheritance or pri-
ority ceiling (also called priority protection) protocols can be used to avoid this
unbounded priority inversion. The Process Shared option is required to support ap-
plications requiring this mechanism for synchronization across different process-
es.

Barriers are not required because they can easily be implemented using mutexes
and condition variables. Although a direct implementation of barriers can have a
significant efficiency benefit in some multiprocessor architectures, a mutex-and-
condition-variable implementation will not be significantly slower in most archi-
tectures, and thus requiring barriers for all implementations is not justified.

Spin locks are not required because, although they are an efficient synchronization
mechanism, they cannot be portably used with the current POSIX.1 interfaces in
realtime applications. If a realtime scheduling policy such as SCHED_FIFO or
SCHED_RR is used, spin locks may cause deadlock on a single processor. On mul-
tiprocessors, to avoid deadlock, it would be necessary for threads using a given lock
to be allocated to different processors. There are no standard APIs in the current
POSIX.1 to allocate threads to specific processors.

Reader/Writer Locks are not required because they are not designed to avoid un-
bounded priority inversion, and thus very long delays could occur in realtime ap-
plications, with a low but nevertheless non-zero probability. It is expected that a
future revision of the POSIX.1 standard will add the priority inheritance and/or

86 Dedicated Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

priority ceiling options to reader/writer locks, which would eliminate the unbound-
ed priority inversion.

8.6.1.10 Priority Scheduling

Thread and process priority scheduling are required for realtime applications. The
Sporadic Server Scheduling option is also required for processes and threads, to
enhance support of applications with aperiodic timing requirements. The
POSIX_PRIORITY_RANGES unit of functionality is not required because its func-
tions are already included in the required _POSIX_PRIORITY_SCHEDULING op-
tion.

A common requirement of realtime systems is that they be able to run threads or
processes with real-time requirements together with threads with no real-time re-
quirements. One common way of doing this is by having the real-time threads run
under the SCHED_FIFO scheduling policy, while the non real-time threads run at
a lower priority under the round-robin policy (SCHED_RR) to fairly share the avail-
able portion of the processor among them. POSIX requires each policy to have a
range of priorities of at least 32 distinct values, but does not impose any require-
ments on how these priority ranges relate to each other. It could happen that most
or all of the SCHED_RR priorities were larger than the SCHED_FIFO priorities,
thus making it impossible to mix realtime and non-realtime threads as required
above. To solve this problem in a portable way, this profile requires that there are
at least 31 SCHED_RR priority levels below the maximum priority of SCHED_FIFO.
In this way, a strictly conforming application can use the inclusive priority range
[max_FIFO_prio, max_FIFO_prio-30] with SCHED_FIFO for real-time threads
(with a total of 31 priority levels), and then use the priority value
min(max_FIFO_prio-31,max_RR_prio) with the SCHED_RR policy, for the non
real-time threads, with guarantee that the latter priority value is valid for the
round-robin policy.

The implementation is required to support the PTHREAD_SYSTEM_SCOPE thread-
scheduling contention scope. The contention scope of a thread defines the set of
threads with which the thread competes for use of the processing resources. A
thread created with PTHREAD_SCOPE_SYSTEM scheduling contention scope con-
tends for resources with all other threads in the system that have the same sched-
uling allocation domain. This allows a consistent scheduling of threads across the
system and therefore a predictable timing behavior. As a consequence, this is the
preferred method for realtime systems.

The current POSIX.1 specification allows implementations to support either sys-
tem-wide or process-wide contention scope, or both. This represents a compromise
that tries to address the requirements of both realtime and non-realtime applica-
tions, but introduces a potential source for non portability. Because the realtime
profiles are specifically targeted at realtime systems, the system-wide contention
scope option is required in the profiles that support multiple processes. Process-

Rationale for Operating System Requirements (informative) 87

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

wide contention scope may also be provided, perhaps for the non realtime threads
of the application.

Support for a scheduling allocation domain of size one and static binding of threads
to allocation domains is required in all the realtime profiles to achieve predictable
scheduling behavior. The allocation domain of a thread is the set of processors on
which that thread can be scheduled at any given time. The POSIX.1 standard spec-
ifies that the scheduling rules have predictable effects only if the allocation domain
is of size one; hence the need for this requirement. For single-processor systems the
allocation domain is generally of size one and thus the application can meet the re-
quirement just by specifying in the conformance document that the scheduling al-
location domain is of size one and that static binding of threads to allocation
domains is the default behavior.

8.6.1.11 Process Memory Locking

Realtime processes must be able to guarantee memory residency to reduce the la-
tency for instruction fetches, data access, I/O operations, etc. The mechanism de-
scribed in the POSIX.1 Process Memory Locking extension will satisfy this
requirement.

8.6.1.12 Shared Memory

The Shared Memory Objects option provides the capability for more than one exe-
cution entity to share memory, without incurring the overhead of the shared mem-
ory object on permanent media. Memory Mapped I/O may be implemented using
the Shared Memory facility. An implementation must provide facilities for creat-
ing a block of physical memory in which the application may place devices and fa-
cilities for binding to a user-provided pathname through which a device may
subsequently be opened as a Shared Memory special file, and mapped into the pro-
cess address space for the purpose of performing I/O or other functions from appli-
cations programs.

Typed Memory objects are not required because they are useful only to systems
with special hardware architectures that have various often specialized kinds of
memory. Implementors providing support for such special architectures always
have the option to provide typed memory objects as an extension.

8.6.1.13 Clocks and Timers

High-resolution timer functions are required in most realtime systems for imple-
menting time management operations such as periodic activations, short duration

88 Dedicated Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

time-outs, etc. The normal POSIX.1 time management functions sleep() and
alarm() only provide a time resolution of one second, but many realtime systems
require finer resolution for specifying time.

The Monotonic Clock is required for realtime applications to ensure that deadlines
and timing requirements are not affected by clock jumps.

The Clock Selection option is required to enable choosing the clock on which sleep
operations are performed, and to have access to an absolute sleep operation, which
is a common requirement in realtime applications with periodic timing require-
ments.

CPU-Time clocks and timers are required as a means to detect and handle situa-
tions in which a thread overruns its assigned maximum execution time. Delimiting
the execution times of the different threads in the application provides temporal
partitioning in realtime applications, and thus increases predictability and reli-
ability.

The Timeouts option is a general requirement for realtime applications and thus
is required in this profile.

The minimum number of per-process timers that the implementation is required
to support has been increased from the number specified in the POSIX.1 standard,
32, up to 64, which is the required minimum number of threads per process. The
reason for this increase is that there are many applications that require one timer
per thread (either realtime or CPU-time based).

8.6.1.14 Message Passing

These realtime systems typically include some form of message queuing mecha-
nism for communication among processes or threads. The POSIX.1 message pass-
ing offers an appropriate level of performance to provide this functionality.

8.6.1.15 Threads

The basic assumption in this profile is that the system will consist of one or more
processes with multiple threads. Therefore, all thread services are required. The
POSIX_THREADS_BASE unit of functionality was specified in this document in-
stead of the _POSIX_THREADS option, because this option requires reader/writer
locks, but this profile does not.

Rationale for Operating System Requirements (informative) 89

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

8.6.1.16 Tracing

Tracing is required for the PSE53 environment because most of these systems
work in an unattended mode for long periods of time, and tracing provides an ex-
cellent mechanism to support post-failure analysis, particularly for failures having
a low probability of occurrence.

The Trace Event Filtering option is required for the system to be able to filter out
those trace events that are not meaningful for the application, thus making better
use of system resources by capturing only the interesting events.

Because the PSE53 profile does not require general file system capabilities, the
Trace Log option is not required for this profile.

8.6.1.17 Networking

Today, most of the platforms and applications belonging to the PSE53 environ-
ment require network communications, and thus the networking unit of function-
ality is required in this profile. The Raw Sockets option is required to aid
reconfiguration of networked applications, and to implement special protocols di-
rectly, without the weight of a full protocol stack. The Internet Protocol Version 6
option is not required because most applications are not using this version of the
protocol yet.

8.6.1.18 Event Management

The select() function is usually associated with networking facilities, which are re-
quired for PSE53, and thus the Event Management unit of functionality is re-
quired in the PSE53 environment.

8.6.1.19 Interfaces Related to the Shell and Utilities

Interfaces defined in the POSIX_REGEXP and POSIX_SHELL_FUNC units of func-
tionality are related to shells and utilities, which are not required in this profile;
therefore, these units of functionality are not required either.

90 Dedicated Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

8.6.1.20 X/Open Units of Functionality and Options

Some XSI Units of Functionality (XSI_C_LANG_SUPPORT, XSI_DEVICE_IO,
XSI_DEVICE_SPECIFIC, XSI_FD_MGMT, XSI_FILE_SYSTEM, XSI_IPC,
XSI_JOB_CONTROL, XSI_JUMP, XSI_MATH, XSI_MULTI_PROCESS, XSI_SIGNALS,
XSI_SINGLE_PROCESS, XSI_SYSTEM_DATABASE, XSI_TIMERS,
XSI_USER_GROUPS, XSI_WIDE_CHAR) have interfaces that represent extensions
or alternatives to interfaces in other Units of Functionality or POSIX.1 options,
and therefore are not necessary for PSE53 environments.

The XSI_DBM unit of functionality includes interfaces for database management
that are not required in the PSE53 application environment.

The XSI_DYNAMIC_LINKING unit of functionality is not required for embedded
systems, which usually operate in a static context.

The XSI_I18N unit of functionality provides facilities for natural language messag-
es to the user, which are not required in embedded systems, which typically do not
have general-purpose human interfaces.

The XSI_SYSTEM_LOGGING unit of functionality provides facilities for logging sys-
tem activities, which are not required in PSE53 environments.

The XSI_THREAD_MUTEX_EXT unit of functionality is required because it has op-
tions for controlling the behavior of mutexes under erroneous application use. This
capability is interesting for any realtime application, including those targeted at
small embedded systems.

The XSI_THREADS_EXT unit of functionality is required because it provides func-
tions to better control a thread’s stack. This is considered useful for any realtime
application.

The _XOPEN_CRYPT option provides cryptography facilities that are not required
in most PSE53 environments.

The _XOPEN_LEGACY option provides facilities for backwards compatibility that
are not required in PSE53 environments.

The _XOPEN_STREAMS option provides facilities that are not required in most
PSE53 environments.

8.6.1.21 Language-Specific Services for the C Programming Language

Support for the C Language is required in the C language option, with the excep-
tion of the POSIX_C_LANG_WIDE_CHAR unit of functionality. The reason for this
exception is that this is a very large library that is not necessary for many of the
PSE53 applications.

Rationale for Operating System Requirements (informative) 91

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

8.6.1.22 Language-Specific Services for the Ada Programming Language

Support for the Ada language-specific services defined in POSIX.5c is required in
the Ada language option.

8.6.2 Shell and Utility Requirements

Because the Dedicated Realtime System Profile is intended for embedded systems
which usually have no terminal or general-purpose graphical user interface, such
a platform would be incapable of executing a shell. In such an environment the
utilities described in the Shell and Utilities Volume of POSIX.1 are not usually re-
quired.

8.6.3 Development Platform Requirements

The embedded nature of the PSE53 execution platform makes it difficult to use as
a development platform. Therefore, the implementation is required to define a de-
velopment environment in which a PSE53 application can be prepared for execu-
tion on the target platform. The development platform depends on the language
option chosen by the implementation.

92 Dedicated Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Introduction 93

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Section 9: Multi-Purpose Realtime System Profile (PSE54)

9.1 Introduction

This section specifies those standards required for conformance to the Multi-Pur-
pose Realtime System Profile option and, where applicable, the state of any options
contained in those standards.

When a referenced standard specifies services beyond those required by the Multi-
Purpose Realtime System Profile, only those services included in the specified
Units of Functionality referenced by this profile shall be required (See Table 1-1
through Table 1-18). All the applicable definitions in POSIX.1 and/or POSIX.5c
still apply.

9.1.1 Identification

For the C-Language implementation, symbolic names shall be used to specify the
presence or absence of each option in this profile. Names reserved for use in this
profile begin with the string _POSIX_AEP_REALTIME_. For the Ada Language im-
plementation a set of Boolean subtypes contained in package POSIX_Options
(defined in POSIX.5c, section 2.5) shall be used to specify the presence or absence
of each option in this profile.

9.1.2 Conformance

Conformance to the Multi-Purpose Realtime System Profile option shall be indicat-
ed as follows:

— For the C-Language implementation the symbol
_POSIX_AEP_REALTIME_MULTI being defined in the header <unistd.h>.

— For the Ada Language implementation the Boolean subtype
POSIX_Profiles.Realtime_Multi subtype having the range
True..True.

94 Multi-Purpose Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

9.1.3 Options

The presence or absence of optional features shall be indicated as follows:

— For the C-language implementation, if any of the following symbols are de-
fined in the header <unistd.h>:

_POSIX_AEP_REALTIME_LANG_C99

_POSIX_AEP_REALTIME_LANG_Ada95

— For the Ada language implementation, if any of the following Boolean sub-
types has the range True..True, then the corresponding option is support-
ed:

POSIX_Profiles.Realtime_Lang_C99

POSIX_Profiles.Realtime_Lang_Ada95

9.2 Operating System Interface Requirements

9.2.1 POSIX.1 Requirements (C Language Option)

The Multi-Purpose Realtime System Profile implementation shall include inter-
faces as defined in POSIX.1 for the following Units of Functionality (see Table 1-1)

Table 9-1: POSIX.1 Units of Functionality Requirements

Unit of Functionality
POSIX_C_LANG_JUMP
POSIX_C_LANG_MATH
POSIX_C_LANG_SUPPORT
POSIX_C_LANG_WIDE_CHAR
POSIX_DEVICE_IO
POSIX_DEVICE_SPECIFIC
POSIX_EVENT_MGMT
POSIX_FD_MGMT
POSIX_FIFO
POSIX_FILE_ATTRIBUTES
POSIX_FILE_LOCKING
POSIX_FILE_SYSTEM
POSIX_FILE_SYSTEM_EXT
POSIX_JOB_CONTROL
POSIX_MULTI_PROCESS
POSIX_NETWORKING

Operating System Interface Requirements 95

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The Multi-Purpose Realtime System Profile implementation shall support the fol-
lowing options defined in POSIX.1, by defining the associated symbol with a value
greater than zero:

POSIX_PIPE
POSIX_REGEXP
POSIX_SHELL_FUNC
POSIX_SIGNALS
POSIX_SIGNAL_JUMP
POSIX_SINGLE_PROCESS
POSIX_STRING_MATCHING
POSIX_SYMBOLIC_LINKS
POSIX_SYSTEM_DATABASE
POSIX_THREADS_BASE
POSIX_USER_GROUPS
POSIX_WIDE_CHAR_IO
XSI_DYNAMIC_LINKING
XSI_SYSTEM_LOGGING
XSI_THREAD_MUTEX_EXT
XSI_THREADS_EXT

Table 9-2: POSIX.1 Option Requirements

Option
_POSIX_ADVISORY_INFO
_POSIX_ASYNCHRONOUS_IO
_POSIX_CHOWN_RESTRICTED
_POSIX_CLOCK_SELECTION
_POSIX_CPUTIME
_POSIX_FSYNC
_POSIX_JOB_CONTROL
_POSIX_MAPPED_FILES
_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MEMORY_PROTECTION
_POSIX_MESSAGE_PASSING
_POSIX_MONOTONIC_CLOCK
_POSIX_NO_TRUNC
_POSIX_PRIORITIZED_IO
_POSIX_PRIORITY_SCHEDULING
_POSIX_RAW_SOCKETS
_POSIX_REALTIME_SIGNALS
_POSIX_REGEXP
_POSIX_SAVED_IDS
_POSIX_SEMAPHORES
_POSIX_SHARED_MEMORY_OBJECTS

Table 9-1: POSIX.1 Units of Functionality Requirements (Continued)

Unit of Functionality

96 Multi-Purpose Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The type off_t shall be capable of storing any value contained in type long.

The minimum value of _POSIX_NGROUPS_MAX shall be at least 8.

The minimum value of CHILD_MAX shall be at least 25.

The value of _POSIX_TIMER_MAX shall be at least 64.

The value of _POSIX_RTSIG_MAX shall be at least 16.

The range of priorities associated with the SCHED_RR scheduling policy shall have
at least 31 distinct values that are less than the maximum priority of the
SCHED_FIFO policy.

An implementation conforming to PSE54 shall support the
PTHREAD_SCOPE_SYSTEM scheduling contention scope. In addition, it may sup-
port PTHREAD_SCOPE_PROCESS. For a description of the scheduling contention
scope see the System Interfaces volume of POSIX.1, Section 2.9.2, “Thread Sched-
uling”.

An implementation conforming to PSE54 shall provide a mechanism to configure
the system so that the scheduling allocation domain has size one, and so that the
binding of threads to scheduling allocation domains remains static. The mecha-
nism by which this requirement is achieved shall be implementation defined. In
addition, a PSE54 implementation may provide other configurations or facilities to
change the size of the allocation domain and the bindings of threads to allocation
domains. For a description of the scheduling allocation domain see the System In-
terfaces volume of POSIX.1, Section 2.9.2, “Thread Scheduling”.

_POSIX_SHELL
_POSIX_SPAWN
_POSIX_SPORADIC_SERVER
_POSIX_SYNCHRONIZED_IO
_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_CPUTIME
_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_PROCESS_SHARED
_POSIX_THREAD_SAFE_FUNCTIONS
_POSIX_THREAD_SPORADIC_SERVER
_POSIX_TIMEOUTS
_POSIX_TIMERS
_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_LOG
_POSIX_VDISABLE

Table 9-2: POSIX.1 Option Requirements (Continued)

Option

Operating System Interface Requirements 97

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

9.2.2 POSIX.5c Requirements (Ada Language Option)

The Multi-Purpose Realtime System Profile implementation shall include inter-
faces as defined in POSIX.5c for the following units of functionality (see Table 1-2
through Table 1-18):

The Multi-Purpose Realtime System Profile implementation shall support the fol-
lowing options defined in POSIX.5c, by defining the associated option subtypes to
have the range True..True, with the exception of the Filename Truncation option
for which the associated subtype shall have the range False..False:

Table 9-3: POSIX.1 Units of Functionality Requirements

Unit of Functionality
POSIX_ADA_LANG_SUPPORT
POSIX_DEVICE_IO
POSIX_DEVICE_SPECIFIC
POSIX_EVENT_MGMT
POSIX_FD_MGMT
POSIX_FIFO
POSIX_FILE_ATTRIBUTES
POSIX_FILE_SYSTEM
POSIX_JOB_CONTROL
POSIX_MULTI_PROCESS
POSIX_NETWORKING
POSIX_PIPE
POSIX_SIGNALS
POSIX_SINGLE_PROCESS
POSIX_SYSTEM_DATABASE
POSIX_USER_GROUPS

Table 9-4: POSIX.5c Option Requirements

POSIX.5c Option

Asynchronous I/O
Change Owner Restriction
File Synchronization
Memory Mapped Files
Memory Locking
Memory Range Locking
Memory Protection
Message Queues
Filename Truncation
Prioritized I/O
Priority Process Scheduling
Realtime Signals
Saved IDs Support
Semaphores

98 Multi-Purpose Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The service POSIX_Terminal_Functions.Disable_Control_Character
shall not raise POSIX_Error with an error code of
Operation_Not_Implemented.

POSIX_Limits.Child_Processes_Maxima’First shall be at least 25.

POSIX_Limits.Groups_Maxima’First shall be at least 8.

POSIX_Limits.Timers_Maxima’First shall be at least 64.

POSIX_Limits.Realtime_Signals_Maxima’First shall be at least 16.

Regarding task priority scheduling, the implementation shall support the follow-
ing requirements from POSIX.5c and the Ada95 RM:

— The implementation shall support the priority model defined in the Ada95
RM, clause D.1, and the pragmas and package interfaces defined in the
Ada95 RM, clauses D.2-D.5.

— The implementation shall meet the requirements of POSIX.5c, section
13.3.1.

Implementations of the PSE54 profile shall support the POSIX_Profiles pack-
age defined in Annex A of this standard.

Subprograms not supported by a given profile shall raise POSIX_Error, returning
an error code of Operation_Not_Supported, except as noted otherwise.

All Image and Value functions that appear in the packages supported by a profile
must be implemented.

Where an overloaded subprogram is required by a unit of functionality, all forms
of the subprogram appearing in the referenced clause must be supported, except
as otherwise noted.

Shared Memory Objects
Synchronized I/O
Mutexes Supported
Mutex Priority Inheritance
Mutex Priority Ceiling
Process Shared
Timers

Table 9-4: POSIX.5c Option Requirements (Continued)

POSIX.5c Option

Application Constraints 99

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

9.3 Application Constraints

The Multi-Purpose Realtime System profile defined in this standard requires only
specific units of functionality of the required standards. The absence of particular
elements of these standards introduces constraints on the use of some of the fea-
tures of particular operations. This clause defines the constraints that an applica-
tion strictly conforming to one of the profiles shall observe when using each of the
operations required by that profile.

9.3.1 Constraints related to POSIX.1 Interfaces (C Language Option)

This profile has no constraints on the application related to POSIX.1 interfaces, be-
cause it requires the implementation to be POSIX.1 conforming.

9.3.2 Constraints related to POSIX.5c Interfaces (Ada Language Option)

An application strictly conforming to PSE54 shall not attempt to bind a signal to a
task entry.

9.4 Shell and Utility Requirements

An implementation of the Multi-Purpose Realtime System Profile shall provide all
the mandatory utilities in the Shell and Utilities volume of POSIX.1 with all the
functional behavior described therein. The system shall support the Large File ca-
pabilities described in the Shell and Utilities volume of POSIX.1.

If the C Language Option is supported, the following options of the Shell and Util-
ities volume of POSIX.1 shall be supported:

Table 9-5: Shell and Utilities Option Requirements
(C Language Option)

Option
POSIX2_C_BIND
POSIX2_CDEV
POSIX2_CHAR_TERM
POSIX2_FORT_RUN
POSIX2_SW_DEV
POSIX2_UPE

100 Multi-Purpose Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

If the Ada Language Option is supported, the following options of the Shell and
Utilities volume of POSIX.1 shall be supported:

9.5 Development Platform Requirements

One or more of the development options in 9.5.1 and 9.5.2 shall be implemented.

9.5.1 C Language Development Option

If this option is provided, the implementor shall define a Development Platform
and an environment capable of preparing for execution an application conformant
with this standard profile. This platform shall include the POSIX2_C_BIND,
POSIX2_C_DEV, and POSIX2_SW_DEV options from the Shell and Utilities Volume
of POSIX.1.

9.5.1.1 Option Indicator

The presence of the C Language Development Option shall be indicated by the
symbol _POSIX_AEP_REALTIME_LANG_C99 being defined in the required header
<unistd.h>. In addition, the presence of the C Language Development Option
may be indicated by the subtype POSIX_Profiles.Realtime_Lang_C99 having
the range True..True.

9.5.2 Ada Language Development Option

If this option is provided, the implementor shall define a Development Platform
and an environment capable of preparing for execution an application conformant
with this profile including applicable portions of the following:

Table 9-6: Shell and Utilities Option Requirements
(Ada Language Option)

Option
POSIX2_CHAR_TERM
POSIX2_FORT_RUN
POSIX2_SW_DEV
POSIX2_UPE

Rationale for Operating System Requirements (informative) 101

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

— The Ada95 RM {1}

— POSIX.5c {6}

— The POSIX2_SW_DEV option from the Shell and Utilities Volume of
POSIX.1.

9.5.2.1 Option Indicator

The presence of the Ada Language Development Option shall be indicated by the
subtype POSIX_Profiles.Realtime_Lang_Ada95 having the range
True..True. In addition, the presence of the Ada Language Development Option
may be indicated by the symbol _POSIX_AEP_REALTIME_LANG_Ada95 being de-
fined in the header <unistd.h>.

9.6 Rationale for Operating System Requirements (informative)

(This subclause is not a normative part of IEEE Std P1003.13)

9.6.1 Operating System Interface Requirements

This profile is based on existing practice in real-time systems that are built using
general-purpose computers, such as workstations. These systems have general-
purpose computing requirements such as a full featured file system, networking,
virtual memory management, graphical user interfaces, multi-user access control,
etc. In addition, they have real-time requirements, and thus the need for a real-
time operating system that provides a full POSIX.1 implementation and also the
realtime extensions described in this profile.

9.6.1.1 Process Primitives

The process control functions (which include process creation and execution) are
the basic operating system services required to support multiple processes, and are
therefore required by both realtime and non-realtime applications in these real-
time systems.

102 Multi-Purpose Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

9.6.1.2 Signals

Signal services are a basic mechanism within POSIX-based systems and are re-
quired for error and event handling. Realtime systems typically have several logi-
cally concurrent software elements executing. Each such entity must respond to
several cyclic and/or acyclic stimuli, often in a time-critical manner. Although
purely synchronous models can supply such functionality via the use of additional
processes or threads, the current realtime practice for asynchronous notification
for events such as timeout, message arrival, and hardware interrupt can generally
be expected to offer higher performance and lower latency. Realtime Signals pro-
vide the reliable high-performance mechanism to support such notification.

The minimum number of realtime signals that the implementation is required to
support has been increased from the number specified in the POSIX.1 standard, 8,
up to 16. The rationale for this increase is that there are many applications that
have more than 8 different kinds of events. Doubling the number of required real-
time signals should have a minimum impact on the signal management overhead,
while significantly increases the number of event kinds that can be used by a
strictly conforming application.

9.6.1.3 Process Environment

The functions from the POSIX.1 Process Environment group are deemed necessary
to allow an application to determine and configure its system environment. This
allows a single version of an application to be run on similar but differing
platforms.

Since the systems will require multiple processes and multiple users, and because
they must support both commercial-off-the-shelf (COTS) and realtime applica-
tions, the entire set of ID functions is needed.

9.6.1.4 Files and Directories

All file and directory operations are required to support system applications and
their filesystems. Although only a few of the path operation functions are required
to support realtime activities, the whole set is required for systems that support
COTS applications.

The Advisory Information option is required to allow the application to provide
hints about the way in which is going to perform file operations, so that implemen-
tations can provide a better degree of timing predictability for those operations.

The File Locking option is required in the C-language option to maintain a consis-
tent and safe way of accessing stdio (FILE *) objects from threads, across the four
realtime profiles.

Rationale for Operating System Requirements (informative) 103

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The File Descriptor Management unit of functionality is included to aid the han-
dling of file descriptors across the process creation and program execution opera-
tions.

9.6.1.5 Input and Output Primitives

The functions contained in the Device I/O unit of functionality are required to sup-
port I/O on devices, files, and special files.

Although asynchronous I/O can be easily implemented using threads dedicated to
I/O, it is required in the PSE54 profile to support portability of applications that
may have been developed before POSIX threads implementations were widely
available.

9.6.1.6 Synchronized Input and Output

These realtime systems that use file management systems will frequently require
synchronized I/O to provide data integrity and/or relinquish resources to other pro-
cesses. Synchronized I/O as defined in POSIX.1 provides these mechanisms.

9.6.1.7 Device- and Class-Specific Functions

The terminal control functions are required for systems to support COTS applica-
tions and for the standard terminal devices that may be attached to the computer
system. To support non-standard terminal devices, additional functions may be
necessary.

9.6.1.8 System Databases, Users and Groups

The group and user database access functions are required for COTS database ap-
plications that may require them.

9.6.1.9 Synchronization

Mutexes and Condition Variables are required as part of threads model of concur-
rency.

104 Multi-Purpose Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Semaphores are required to synchronize a signal handler with some other process
or thread. Semaphores are also required to support portability of applications that
might be using this mechanism instead of the preferred mutexes and condition
variables. It must be noted, however, that POSIX semaphores do not have the
mechanisms built in to avoid unbounded priority inversion when using them for
mutually exclusive access to shared resources. Mutexes with the appropriate pri-
ority inheritance or priority ceiling (also called priority protection) protocols can be
used to avoid this unbounded priority inversion. The Process Shared option is re-
quired to support applications requiring this mechanism for synchronization
across different processes.

Barriers are not required because they can easily be implemented using mutexes
and condition variables. Although a direct implementation of barriers can have a
significant efficiency benefit in some multiprocessor architectures, a mutex-and-
condition-variable implementation will not be significantly slower in most archi-
tectures, and thus requiring barriers for all implementations is not justified.

Spin locks are not required because, although they are an efficient synchronization
mechanism, they cannot be portably used with the current POSIX.1 interfaces in
realtime applications. If a realtime scheduling policy such as SCHED_FIFO or
SCHED_RR is used, spin locks may cause deadlock on a single processor. On mul-
tiprocessors, to avoid deadlock, it would be necessary for threads using a given lock
to be allocated to different processors. There are no standard APIs in the current
POSIX.1 to allocate threads to specific processors.

Reader/Writer Locks are not required because they are not designed to avoid un-
bounded priority inversion, and thus very long delays could occur in realtime ap-
plications, with a low but nevertheless non-zero probability. It is expected that a
future revision of the POSIX.1 standard will add the priority inheritance and/or
priority ceiling options to reader/writer locks, which would eliminate the unbound-
ed priority inversion.

9.6.1.10 Priority Scheduling

This realtime environment requires the ability to do scheduling of concurrent pro-
cesses and threads with a preemptive priority-based scheduler to ensure that hard
deadlines are met. Thread and process priority scheduling are required for real-
time applications. The Sporadic Server Scheduling option is also required for pro-
cesses and threads, to enhance support of applications with aperiodic timing
requirements. The POSIX_PRIORITY_RANGES unit of functionality is not re-
quired because its functions are already included in the required
_POSIX_PRIORITY_SCHEDULING option.

A common requirement of realtime systems is that they be able to run threads or
processes with real-time requirements together with threads with no real-time re-
quirements. One common way of doing this is by having the real-time threads run
under the SCHED_FIFO scheduling policy, while the non real-time threads run at
a lower priority under the round-robin policy (SCHED_RR) to fairly share the avail-

Rationale for Operating System Requirements (informative) 105

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

able portion of the processor among them. POSIX requires each policy to have a
range of priorities of at least 32 distinct values, but does not impose any require-
ments on how these priority ranges relate to each other. It could happen that most
or all of the SCHED_RR priorities were larger than the SCHED_FIFO priorities,
thus making it impossible to mix realtime and non-realtime threads as required
above. To solve this problem in a portable way, this profile requires that there are
at least 31 SCHED_RR priority levels below the maximum priority of SCHED_FIFO.
In this way, a strictly conforming application can use the inclusive priority range
[max_FIFO_prio, max_FIFO_prio-30] with SCHED_FIFO for real-time threads
(with a total of 31 priority levels), and then use the priority value
min(max_FIFO_prio-31,max_RR_prio) with the SCHED_RR policy, for the non
real-time threads, with guarantee that the latter priority value is valid for the
round-robin policy.

The implementation is required to support the PTHREAD_SCOPE_SYSTEM thread-
scheduling contention scope. The contention scope of a thread defines the set of
threads with which the thread competes for use of the processing resources. A
thread created with PTHREAD_SCOPE_SYSTEM scheduling contention scope con-
tends for resources with all other threads in the system that have the same sched-
uling allocation domain. This allows a consistent scheduling of threads across the
system and therefore a predictable timing behavior. As a consequence, this is the
preferred method for realtime systems.

The current POSIX.1 specification allows implementations to support either sys-
tem-wide or process-wide contention scope, or both. This represents a compromise
that tries to address the requirements of both realtime and non-realtime applica-
tions, but introduces a potential source for non portability. Because the realtime
profiles are specifically targeted at realtime systems, the system-wide contention
scope option is required in the profiles that support multiple processes. Process-
wide contention scope may also be provided, perhaps for the non realtime threads
of the application.

Support for a scheduling allocation domain of size one and static binding of threads
to allocation domains is required in all the realtime profiles to achieve predictable
scheduling behavior. The allocation domain of a thread is the set of processors on
which that thread can be scheduled at any given time. The POSIX.1 standard spec-
ifies that the scheduling rules have predictable effects only if the allocation domain
is of size one; hence the need for this requirement. For single-processor systems the
allocation domain is generally of size one and thus the application can meet the re-
quirement just by specifying in the conformance document that the scheduling al-
location domain is of size one and that static binding of threads to allocation
domains is the default behavior.

9.6.1.11 Process Memory Locking

Realtime processes must be able to guarantee memory residency to reduce the la-
tency for instruction fetches, data access, I/O operations, etc. The mechanism de-

106 Multi-Purpose Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

scribed in the POSIX.1 Process Memory Locking extension will satisfy this
requirement.

9.6.1.12 Shared Memory

The ability to share large volumes of data among many cooperating execution
streams is required. The POSIX.1 Shared Memory extension provides this capabil-
ity. Memory Mapped I/O may be implemented using the Shared Memory facility.
An implementation must provide facilities for creating a block of physical memory
in which the application may place devices and facilities for binding to a user-pro-
vided pathname through which a device may subsequently be opened as a Shared
Memory special file, and mapped into the process address space for the purpose of
performing I/O or other functions from applications programs.

The Memory Mapped Files is required because the implementation has file-system
capabilities, and memory-mapped files are a convenient paradigm for reading and
writing information in applications following this profile. In memory-mapped files,
data can be manipulated as memory, and I/O data movement can be significantly
reduced. The implementation of memory-mapped files does not require a signifi-
cant amount of additional memory or execution overhead to achieve the additional
capability.

System vendors are expected to implement the chosen interface in a manner that
meets the needs of the applications. In particular, a rotating media-based imple-
mentation is not required by the interface definition.

Typed Memory objects are not required because they are useful only to systems
with special hardware architectures that have various often specialized kinds of
memory. Implementors providing support for such special architectures always
have the option to provide typed memory objects as an extension.

9.6.1.13 Clocks and Timers

High-resolution timer functions are required in most realtime systems for imple-
menting time management operations such as periodic activations, short duration
time-outs, etc. The normal POSIX.1 time management functions sleep() and
alarm() only provide a time resolution of one second, but many realtime systems
require finer resolution for specifying time.

The Monotonic Clock is required for realtime applications to ensure that deadlines
and timing requirements are not affected by clock jumps.

The Clock Selection option is required to enable choosing the clock on which sleep
operations are performed, and to have access to an absolute sleep operation, which
is a common requirement in realtime applications with periodic timing require-
ments.

Rationale for Operating System Requirements (informative) 107

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

CPU-Time clocks and timers are required as a means to detect and handle situa-
tions in which a thread overruns its assigned maximum execution time. Delimiting
the execution times of the different threads in the application provides temporal
partitioning in realtime applications, and thus increases predictability and reli-
ability.

The Timeouts option is a general requirement for realtime applications and thus
is required in this profile.

The minimum number of per-process timers that the implementation is required
to support has been increased from the number specified in the POSIX.1 standard,
32, up to 64, which is the required minimum number of threads per process. The
reason for this increase is that there are many applications that require one timer
per thread (either realtime or CPU-time based).

9.6.1.14 Message Passing

These realtime systems typically include some form of message queuing mecha-
nism for communication among processes or threads. The POSIX.1 message pass-
ing offers an appropriate level of performance to provide this functionality.

9.6.1.15 Threads

The basic assumption in this profile is that the system will consist of one or more
processes with multiple threads. Therefore, all thread services are required. The
POSIX_THREADS_BASE unit of functionality was specified in this document in-
stead of the _POSIX_THREADS option, because this option requires reader/writer
locks, but this profile does not.

9.6.1.16 Tracing

Tracing is required for the PSE54 environment because it provides an excellent
mechanism to support post-failure analysis, particularly for failures having a low
probability of occurrence.

The Trace Event Filtering option is required for the system to be able to filter out
those trace events that are not meaningful for the application, thus making better
use of system resources by capturing only the interesting events.

Because the PSE54 profile requires general file system capabilities, the Trace Log
option is required for this profile.

108 Multi-Purpose Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

9.6.1.17 Networking

Today, virtually all of the platforms and applications belonging to the PSE54 envi-
ronment require network communications, and thus the networking unit of func-
tionality is required in this profile. The Raw Sockets option is required to aid
reconfiguration of networked applications, and to implement special protocols di-
rectly, without the weight of a full protocol stack. The Internet Protocol Version 6
option is not required because most applications are not using this version of the
protocol yet.

9.6.1.18 Event Management

The select() function is usually associated with networking facilities, which are re-
quired for PSE54, and thus the Event Management unit of functionality is re-
quired in the PSE54 environment.

9.6.1.19 Interfaces Related to the Shell and Utilities

The interfaces defined in the POSIX_REGEXP and POSIX_SHELL_FUNC are re-
quired in PSE54 environments, because of their general-purpose computing re-
quirements.

9.6.1.20 X/Open Units of Functionality and Options

Some XSI Units of Functionality (XSI_C_LANG_SUPPORT, XSI_DEVICE_IO,
XSI_DEVICE_SPECIFIC, XSI_FD_MGMT, XSI_FILE_SYSTEM, XSI_IPC,
XSI_JOB_CONTROL, XSI_JUMP, XSI_MATH, XSI_MULTI_PROCESS, XSI_SIGNALS,
XSI_SINGLE_PROCESS, XSI_SYSTEM_DATABASE, XSI_TIMERS,
XSI_USER_GROUPS, XSI_WIDE_CHAR) have interfaces that represent extensions
or alternatives to interfaces in other Units of Functionality or POSIX.1 options,
and therefore are not necessary for PSE54 environments.

The XSI_DBM unit of functionality includes interfaces for database management
that are not required in the PSE54 application environment.

The XSI_DYNAMIC_LINKING unit of functionality is required for PSE54 systems,
which usually execute a mixture of realtime and non realtime activities in a typi-
cally dynamic context.

The XSI_I18N unit of functionality provides facilities for natural language messag-
es to the user, which are not required all PSE54 systems. It remains as an optional
feature.

Rationale for Operating System Requirements (informative) 109

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The XSI_SYSTEM_LOGGING unit of functionality provides facilities for logging sys-
tem activities, which are usually required in PSE54 environments. Therefore, this
unit of functionality is required.

The XSI_THREAD_MUTEX_EXT unit of functionality is required because it has op-
tions for controlling the behavior of mutexes under erroneous application use. This
capability is interesting for any realtime application, including those targeted at
small embedded systems.

The XSI_THREADS_EXT unit of functionality is required because it provides func-
tions to better control a thread’s stack. This is considered useful for any realtime
application.

The _XOPEN_CRYPT option provides cryptography facilities that are not required
in all PSE54 environments. It remains as an optional feature.

The _XOPEN_LEGACY option provides facilities for backwards compatibility that
are not required in most PSE54 environments.

The _XOPEN_STREAMS option provides facilities that are not required in most
PSE54 environments.

9.6.1.21 Language-Specific Services for the C Programming Language

Full support for the C Language standard is required in the C language option.

9.6.1.22 Language-Specific Services for the Ada Programming Language

Support for the Ada language-specific services defined in POSIX.5c is required in
the Ada language option.

9.6.2 Shell and Utility Requirements

The utilities and facilities described in the Shell and Utilities Volume of POSIX.1
are required in PSE54 environments.

9.6.3 Development Platform Requirements

The implementation is required to define a development environment in which a
PSE54 application can be prepared for execution on the target platform. For this

110 Multi-Purpose Realtime System Profile

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

profile, in most cases the development and the target platform roles will be com-
bined in the same system.

111

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Annex A: POSIX Profiles Package (Ada Language)

(Normative)

The package POSIX_Profiles shall be supported by all profiles. The Boolean
subtypes contained in this package shall indicate the profiles and options support-
ed by the implementation. Supported profiles and options shall be indicated by the
appropriate identifier having the range True..True; unsupported profiles and op-
tions shall have the range False..False.

package POSIX_Profiles is

 -- Profile options
 subtype Realtime_Minimal is Boolean range <Implementation Defined>;
 subtype Realtime_Controller is Boolean range <Implementation Defined>;
 subtype Realtime_Dedicated is Boolean range <Implementation Defined>;
 subtype Realtime_Multi is Boolean range <Implementation Defined>;

 -- Language development options
 subtype Realtime_Lang_C99 is Boolean range <Implementation Defined>;
 subtype Realtime_Lang_Ada95 is Boolean range <Implementation Defined>;

end POSIX_Profiles;

112

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

113

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Annex B: Description of Optional Interfaces

(Informative)

B.1 POSIX.1 Options

The following table shows the functions included under each of the options speci-
fied in the System Interfaces volume of POSIX.1. Each row of this table contains
all the functions included under the first named option, and also under combina-
tions of that option with other options.

Table B-1: Functions under each POSIX.1
System Interface Option

_POSIX_ADVISORY_INFO
posix_fadvise(), posix_fallocate(), posix_memalign()

_POSIX_ADVISORY_INFO and either _POSIX_MAPPED_FILES or
_POSIX_SHARED_MEMORY_OBJECTS

posix_madvise()

_POSIX_ASYNCHRONOUS_IO
aio_cancel(), aio_error(), aio_fsync(), aio_read(), aio_return(), aio_suspend(),
aio_write(), lio_listio()

_POSIX_BARRIERS and _POSIX_THREADS
pthread_barrier_destroy(), pthread_barrier_init(), pthread_barrier_wait(),
pthread_barrierattr_destroy(), pthread_barrierattr_init(),

POSIX_BARRIERS, _POSIX_THREADS and _POSIX_THREAD_PROCESS_SHARED
pthread_barrierattr_getpshared(), pthread_barrierattr_setpshared()

_POSIX_CHOWN_RESTRICTED
No functions under this option

_POSIX_CLOCK_SELECTION
clock_nanosleep()

_POSIX_CLOCK_SELECTION and _POSIX_THREADS
pthread_condattr_getclock(), pthread_condattr_setclock()

_POSIX_CPUTIME
clock_getcpuclokid()

114

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

_POSIX_FSYNC
fsync()

_POSIX_IPV6
No functions under this option

_POSIX_JOB_CONTROL
See the POSIX_JOB_CONTROL unit of functionality

_POSIX_MAPPED_FILES or _POSIX_SHARED_MEMORY_OBJECTS
mmap(), munmap()

_POSIX_MAPPED_FILES and _POSIX_SYNCHRONIZED_IO
msync()

_POSIX_MAPPED_FILES and _POSIX_ADVISORY_INFO
posix_madvise()

_POSIX_MEMLOCK
mlockall(), munlockall()

_POSIX_MEMLOCK_RANGE
mlock(), munlock()

_POSIX_MEMORY_PROTECTION
mprotect()

_POSIX_MESSAGE_PASSING
mq_close(), mq_getattr(), mq_notify(), mq_open(), mq_receive(), mq_send(),
mq_setattr(), mq_unlink(),

_POSIX_MESSAGE_PASSING and _POSIX_TIMEOUTS
mq_timedreceive(), mq_timedsend()

_POSIX_MONOTONIC_CLOCK
No functions under this option

_POSIX_NO_TRUNC
No functions under this option

_POSIX_PRIORITIZED_IO
No functions under this option

_POSIX_PRIORITY_SCHEDULING
sched_get_priority_max(), sched_get_priority_min(), sched_getparam(),
sched_getscheduler(), sched_rr_get_interval(), sched_setparam(),
sched_setscheduler()

_POSIX_PRIORITY_SCHEDULING or _POSIX_THREADS
sched_yield(),

_POSIX_PRIORITY_SCHEDULING and _POSIX_SPAWN
posix_spawnattr_getschedparam(), posix_spawnattr_setschedparam(),
posix_spawnattr_getschedpolicy(), posix_spawnattr_setschedpolicy()

Table B-1: Functions under each POSIX.1
System Interface Option (Continued)

115

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

_POSIX_RAW_SOCKETS
No functions under this option

_POSIX_READER_WRITER_LOCKS
See the POSIX_RW_LOCKS unit of functionality

_POSIX_REALTIME_SIGNALS
sigqueue(), sigtimedwait(), sigwaitinfo()

_POSIX_REGEXP
See POSIX_REGEXP unit of functionality.

_POSIX_SAVED_IDS
No functions under this option

_POSIX_SEMAPHORES
sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(),
sem_trywait(), sem_wait(), sem_unlink()

_POSIX_SEMAPHORES and _POSIX_TIMEOUTS
sem_timedwait()

_POSIX_SHARED_MEMORY_OBJECTS
shm_open(), shm_unlink()

_POSIX_SHARED_MEMORY_OBJECTS and _POSIX_ADVISORY_INFO
posix_madvise()

_POSIX_SHARED_MEMORY_OBJECTS or _POSIX_MAPPED_FILES
mmap(), munmap()

_POSIX_SPAWN
posix_spawn(), posix_spawn_file_actions_addclose(),
posix_spawn_file_actions_adddup2(), posix_spawn_file_actions_addopen(),
posix_spawn_file_actions_destroy(), posix_spawn_file_actions_init(),
posix_spawnattr_destroy(), posix_spawnattr_getflags(),
posix_spawnattr_getpgroup(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getsigmask(), posix_spawnattr_init(),
posix_spawnattr_setflags(), posix_spawnattr_setpgroup(),
posix_spawnattr_setsigdefault(), posix_spawnattr_setsigmask(), posix_spawnp()

_POSIX_SPAWN and _POSIX_PRIORITY_SCHEDULING
posix_spawnattr_getschedparam(), posix_spawnattr_setschedparam(),
posix_spawnattr_getschedpolicy(), posix_spawnattr_setschedpolicy()

_POSIX_SPIN_LOCKS and _POSIX_THREADS
pthread_spin_destroy(), pthread_spin_init(), pthread_spin_lock(),
pthread_spin_trylock(), pthread_spin_unlock()

_POSIX_SPORADIC_SERVER
No functions under this option

Table B-1: Functions under each POSIX.1
System Interface Option (Continued)

116

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

_POSIX_SYNCHRONIZED_IO
fdatasync()

_POSIX_SYNCHRONIZED_IO and _POSIX_MAPPED_FILES
msync()

_POSIX_THREAD_ATTR_STACKADDR and _POSIX_THREADS
pthread_attr_getstackaddr(), pthread_attr_setstackaddr()

_POSIX_THREAD_ATTR_STACKADDR, _POSIX_THREADS and
_POSIX_THREAD_ATTR_STACKSIZE

pthread_attr_getstack(), pthread_attr_setstack()

_POSIX_THREAD_ATTR_STACKSIZE and _POSIX_THREADS

pthread_attr_getstacksize(), pthread_attr_setstacksize()a

_POSIX_THREAD_ATTR_STACKSIZE, _POSIX_THREADS and
_POSIX_THREAD_ATTR_STACKADDR

pthread_attr_getstack(), pthread_attr_setstack()

_POSIX_THREAD_CPUTIME and _POSIX_THREADS
pthread_getcpuclockid()

_POSIX_THREAD_PRIO_INHERIT and _POSIX_THREADS
pthread_mutexattr_getprotocol(), pthread_mutexattr_setprotocol()

_POSIX_THREAD_PRIO_PROTECT and _POSIX_THREADS
pthread_mutex_getprioceiling(), pthread_mutex_setprioceiling(),
pthread_mutexattr_getprioceiling(), pthread_mutexattr_getprotocol(),
pthread_mutexattr_setprioceiling(), pthread_mutexattr_setprotocol()

_POSIX_THREAD_PRIORITY_SCHEDULING and _POSIX_THREADS
pthread_attr_getinheritsched(), pthread_attr_getschedpolicy(),
pthread_attr_getscope(), pthread_attr_setinheritsched(),
pthread_attr_setschedpolicy(), pthread_attr_setscope(),
pthread_getschedparam(), pthread_setschedparam(), pthread_setschedprio()

_POSIX_THREAD_PROCESS_SHARED and _POSIX_THREADS
pthread_condattr_getpshared(), pthread_condattr_setpshared(),
pthread_mutexattr_getpshared(), pthread_mutexattr_setpshared()

_POSIX_THREAD_PROCESS_SHARED, _POSIX_BARRIERS and _POSIX_THREADS
pthread_barrierattr_getpshared(), pthread_barrierattr_setpshared()

_POSIX_THREAD_PROCESS_SHARED, _POSIX_READER_WRITER_LOCKS and
_POSIX_THREADS

pthread_rwlockattr_getpshared(), pthread_rwlockattr_setpshared()

_POSIX_THREAD_SAFE_FUNCTIONS
asctime_r(), ctime_r(), flockfile(), ftrylockfile(), funlockfile(), getc_unlocked(),
getchar_unlocked(), getgrgid_r(), getgrnam_r(), getlogin_r(), getpwnam_r(),
getpwuid_r(), gmtime_r(), localtime_r(), putc_unlocked(), putchar_unlocked(),
rand_r(), readdir_r(), strerror_r(), strtok_r(), ttyname_r()

Table B-1: Functions under each POSIX.1
System Interface Option (Continued)

117

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

_POSIX_THREAD_SPORADIC_SERVER
No functions under this option

_POSIX_THREADS
pthread_atfork(), pthread_attr_destroy(), pthread_attr_getdetachstate(),
pthread_attr_getschedparam(), pthread_attr_init(),
pthread_attr_setdetachstate(), pthread_attr_setschedparam(), pthread_cancel(),
pthread_cleanup_pop(), pthread_cleanup_push(), pthread_cond_broadcast(),
pthread_cond_destroy(), pthread_cond_init(), pthread_cond_signal(),
pthread_cond_timedwait(), pthread_cond_wait(), pthread_condattr_destroy(),
pthread_condattr_init(), pthread_create(), pthread_detach(), pthread_equal(),
pthread_exit(), pthread_getspecific(), pthread_join(), pthread_key_create(),
pthread_key_delete(), pthread_kill(), pthread_mutex_destroy(),
pthread_mutex_init(), pthread_mutex_lock(), pthread_mutex_trylock(),
pthread_mutex_unlock(), pthread_mutexattr_destroy(),
pthread_mutexattr_init(), pthread_once(), pthread_self(),
pthread_setcalcelstate(), pthread_setcanceltype(), pthread_setspecific(),
pthread_sigmask(), pthread_testcancel()

_POSIX_THREADS and _POSIX_CLOCK_SELECTION
pthread_condattr_getclock(), pthread_condattr_setclock()

_POSIX_THREADS and _POSIX_BARRIERS
pthread_barrier_destroy(), pthread_barrier_init(), pthread_barrier_wait(),
pthread_barrierattr_destroy(), pthread_barrierattr_init(),

_POSIX_THREADS, POSIX_BARRIERS and _POSIX_THREAD_PROCESS_SHARED
pthread_barrierattr_getpshared(), pthread_barrierattr_setpshared()

_POSIX_THREADS and _POSIX_SPIN_LOCKS
pthread_spin_destroy(), pthread_spin_init(), pthread_spin_lock(),
pthread_spin_trylock(), pthread_spin_unlock()

_POSIX_THREADS and _POSIX_THREAD_ATTR_STACKADDR
pthread_attr_getstackaddr(), pthread_attr_setstackaddr()

_POSIX_THREADS, _POSIX_THREAD_ATTR_STACKADDR and
_POSIX_THREAD_ATTR_STACKSIZE

pthread_attr_getstack(), pthread_attr_setstack()

_POSIX_THREADS and _POSIX_THREAD_ATTR_STACKSIZE

pthread_attr_getstacksize(), pthread_attr_setstacksize()a

_POSIX_THREADS and _POSIX_THREAD_CPUTIME
pthread_getcpuclockid()

_POSIX_THREADS and either _POSIX_THREAD_PRIO_INHERIT or
_POSIX_THREAD_PRIO_PROTECT

pthread_mutexattr_getprotocol(), pthread_mutexattr_setprotocol()

This table row continued on next page...

Table B-1: Functions under each POSIX.1
System Interface Option (Continued)

118

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

...table row continued from previous page

_POSIX_THREAD_PRIO_PROTECT and _POSIX_THREADS
pthread_mutex_getprioceiling(), pthread_mutex_setprioceiling(),
pthread_mutexattr_getprioceiling(), pthread_mutexattr_setprioceiling()

_POSIX_THREADS and _POSIX_THREAD_PRIORITY_SCHEDULING
pthread_attr_getinheritsched(), pthread_attr_getschedpolicy(),
pthread_attr_getscope(), pthread_attr_setinheritsched(),
pthread_attr_setschedpolicy(), pthread_attr_setscope(),
pthread_getschedparam(), pthread_setschedparam(), pthread_setschedprio()

_POSIX_THREADS and _POSIX_THREAD_PROCESS_SHARED
pthread_condattr_getpshared(), pthread_condattr_setpshared(),
pthread_mutexattr_getpshared(), pthread_mutexattr_setpshared(),

_POSIX_THREADS, _POSIX_THREAD_PROCESS_SHARED and
_POSIX_READER_WRITER_LOCKS

pthread_rwlockattr_getpshared(), pthread_rwlockattr_setpshared()

_POSIX_THREADS and POSIX_TIMEOUTS
pthread_mutex_timedlock()

_POSIX_THREADS, _POSIX_TIMEOUTS and _POSIX_READER_WRITER_LOCKS
pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock()

_POSIX_THREADS and _POSIX_READER_WRITER_LOCKS
pthread_rwlock_destroy(), pthread_rwlock_init(), pthread_rwlock_rdlock(),
pthread_rwlock_tryrdlock(), pthread_rwlock_trywrlock(),
pthread_rwlock_unlock(), pthread_rwlock_wrlock(),
pthread_rwlockattr_destroy(), pthread_rwlockattr_init()

_POSIX_THREADS or _POSIX_PRIORITY_SCHEDULING
sched_yield()

_POSIX_TIMEOUTS and _POSIX_MESSAGE_PASSING
mq_timedreceive(), mq_timedsend()

_POSIX_TIMEOUTS, _POSIX_THREADS, and _POSIX_READER_WRITER_LOCKS
pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock()

_POSIX_TIMEOUTS and _POSIX_SEMAPHORES
sem_timedwait()

_POSIX_TIMEOUTS and _POSIX_THREADS
pthread_mutex_timedlock()

_POSIX_TIMEOUTS and _POSIX_TRACE
posix_trace_timedgetnext_event()

_POSIX_TIMERS
clock_getres(), clock_gettime(), clock_settime(), nanosleep(), timer_create(),
timer_detele(), timer_getoverrun(), timer_gettime(), timer_settime()

Table B-1: Functions under each POSIX.1
System Interface Option (Continued)

119

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

_POSIX_TRACE
posix_trace_attr_destroy(), posix_trace_attr_getclockres(),
posix_trace_attr_getcreatetime(), posix_trace_attr_getgenversion(),
posix_trace_attr_getname(), posix_trace_attr_getstreamfullpolicy(),
posix_trace_attr_getmaxdatasize(), posix_trace_attr_getmaxsystemeventsize(),
posix_trace_attr_getmaxusereventsize(), posix_trace_attr_getstreamsize(),
posix_trace_attr_init(), posix_trace_attr_setname(),
posix_trace_attr_setstreamfullpolicy(), posix_trace_attr_setmaxdatasize(),
posix_trace_attr_setstreamsize(), posix_trace_clear(), posix_trace_create(),
posix_trace_event(), posix_trace_eventid_open(), posix_trace_eventid_equal(),
posix_trace_eventid_get_name(), posix_trace_eventtypelist_getnext_id(),
posix_trace_eventtypelist_rewind(), posix_trace_get_attr(),
posix_trace_get_status(), posix_trace_getnext_event(), posix_trace_shutdown(),
posix_trace_start(), posix_trace_stop(), posix_trace_trygetnext_event()

_POSIX_TRACE and _POSIX_TIMEOUTS
posix_trace_timedgetnext_event()

_POSIX_TRACE and _POSIX_TRACE_INHERIT
posix_trace_attr_getinherited(), posix_trace_attr_setinherited()

_POSIX_TRACE and _POSIX_TRACE_LOG
posix_trace_attr_getlogfullpolicy(), posix_trace_attr_getlogsize(),
posix_trace_attr_setlogfullpolicy(), posix_trace_attr_setlogsize(),
posix_trace_close(), posix_trace_open(), posix_trace_rewind(),
posix_trace_create_withlog(), posix_trace_flush()

_POSIX_TRACE and _POSIX_TRACE_EVENT_FILTER
posix_trace_eventset_add(), posix_trace_eventset_del(),
posix_trace_eventset_empty(), posix_trace_eventset_fill(),
posix_trace_eventset_ismember(), posix_trace_get_filter(),
posix_trace_set_filter(), posix_trace_trid_eventid_open()

_POSIX_TRACE_EVENT_FILTER and _POSIX_TRACE
posix_trace_eventset_add(), posix_trace_eventset_del(),
posix_trace_eventset_empty(), posix_trace_eventset_fill(),
posix_trace_eventset_ismember(), posix_trace_get_filter(),
posix_trace_set_filter(), posix_trace_trid_eventid_open()

_POSIX_TRACE_INHERIT and _POSIX_TRACE
posix_trace_attr_getinherited(), posix_trace_attr_setinherited()

_POSIX_TRACE_LOG and _POSIX_TRACE
posix_trace_attr_getlogfullpolicy(), posix_trace_attr_getlogsize(),
posix_trace_attr_setlogfullpolicy(), posix_trace_attr_setlogsize(),
posix_trace_close(), posix_trace_open(), posix_trace_rewind(),
posix_trace_create_withlog(), posix_trace_flush()

_POSIX_TYPED_MEMORY_OBJECTS
posix_mem_offset(), posix_typed_mem_get_info(), posix_typed_mem_open()

_POSIX_VDISABLE
No functions under this option

Table B-1: Functions under each POSIX.1
System Interface Option (Continued)

120

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

_XOPEN_CRYPT
crypt(), encrypt(), setkey()

_XOPEN_ENH_I18N
No functions under this option

_XOPEN_LEGACY
bcmp(), bcopy(), bzero(), ecvt(), fcvt(), ftime(), gcvt(), getwd(), index(), mktemp(),
rindex(), utimes(), wcswcs()

_XOPEN_REALTIME
This Option Group consists of the set of the following options from within POSIX.1:

_POSIX_ASYNCHRONOUS_IO
_POSIX_FSYNC
_POSIX_MAPPED_FILES
_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MEMORY_PROTECTION
_POSIX_MESSAGE_PASSING
_POSIX_PRIORITIZED_IO
_POSIX_PRIORITY_SCHEDULING
_POSIX_REALTIME_SIGNALS
_POSIX_SEMAPHORES
_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SYNCHRONIZED_IO
_POSIX_TIMERS

_XOPEN_REALTIME_THREADS
This Option Group consists of the set of the following options from within POSIX.1:

_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING

_XOPEN_SHM
This option is included in the XSI_IPC unit of functionality

_XOPEN_STREAMS
fattach(), fdetach(), getmsg(), getpmsg(), ioctl(), isastream(), putmsg(),
putpmsg(),

Table B-1: Functions under each POSIX.1
System Interface Option (Continued)

121

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

The following table shows the utilities included under each of the options specified
in the Shell and Utilities volume of POSIX.1:

_XOPEN_UNIX
This Option Group consists of the functions included in the following units of
functionality:

XSI_C_LANG_SUPPORT
XSI_DBM
XSI_DEVICE_IO
XSI_DEVICE_SPECIFIC
XSI_DYNAMIC_LINKING
XSI_FD_MGMT
XSI_FILE_SYSTEM
XSI_I18N
XSI_IPC
XSI_JOB_CONTROL
XSI_JUMP
XSI_MATH
XSI_MULTI_PROCESS
XSI_SIGNALS
XSI_SINGLE_PROCESS
XSI_SYSTEM_DATABASE
XSI_SYSTEM_LOGGING
XSI_THREAD_MUTEX_EXT
XSI_THREADS_EXT
XSI_TIMERS
XSI_USER_GROUPS
XSI_WIDE_CHAR

a. The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions are
wrongly listed under the _POSIX_THREAD_STACK_ADDRESS option in POSIX.1,
but should be under the _POSIX_THREAD_STACK_SIZE option.

Table B-2: Utilities under each POSIX.1 Shell and Utilities Option

_POSIX_SHELL

sh

_POSIX_C_BIND
No utilities under this option

_POSIX2_C_DEV

c99, lex, yacc

_POSIX2_CHAR_TERM
No utilities under this option

Table B-1: Functions under each POSIX.1
System Interface Option (Continued)

122

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

_POSIX2_FORT_DEV

fort77

_POSIX2_FORT_RUN

asa

_POSIX2_LOCALEDEF
No utilities under this option

_POSIX2_PBS

qalter, qdel, qhold, qmove, qmsg, qrerun, qrls, qselect, qsig,
qstat, qsub

_POSIX2_PBS_ACCOUNTING
No utilities under this option.

_POSIX2_PBS_CHECKPOINT
No utilities under this option.

_POSIX2_PBS_LOCATE
No utilities under this option.

_POSIX2_PBS_MESSAGE
No utilities under this option.

_POSIX2_PBS_TRACK
No utilities under this option.

_POSIX2_SW_DEV

ar, make, strip

_POSIX2_SW_DEV and _POSIX2_UPE

nm

_POSIX2_UPE

alias, at, batch, bg, command, crontab, csplit, ctags, df, du, ex,
expand, fc, fg, file, jobs, mesg, more, newgrp, nice, patch, ps,
renice, split, strings, tabs, talk, time, tput, unalias,
unexpand, uudecode, uuencode, vi, who, write

_POSIX2_UPE and _POSIX2_SW_DEV

nm

Table B-2: Utilities under each POSIX.1 Shell and Utilities Option

123

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.2 POSIX.5c Options

The following table shows the subprograms included under each of the options
specified in POSIX.5c:

Table B-3: Packages and Subprograms under
each POSIX.5c Option

Package Subprogram

Asynchronous I/O
POSIX_Asynchonous_IO

Asynchronous I/O and Synchronized I/O
POSIX_Asynchonous_IO

All except the two subprograms below

Synchronize_File
Synchronize_Data

Change Owner Restriction None

File Synchronization
POSIX_IO Synchronize_File

Filename Truncation None

Memory Mapped Files or Shared Memory
Objects

POSIX_IO

POSIX_Memory_Mapping

Memory Mapped Files and Synchronized I/O
POSIX_Memory_Mapping

Change_Permissions
Truncate_File
Map_Memorya

Unmap_Memory

Synchronize_Memory

Memory Locking
POSIX_Memory_Locking All

Memory Protection
POSIX_Memory_Mapping Change_Protection

Memory Range Locking
POSIX_Memory_Range_Locking All

Message Queues
POSIX_Message_Queues All

124

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Mutexes
POSIX_Mutexes
POSIX_Condition_Variables

Mutexes and Process Shared
POSIX_Mutexes

POSIX_Condition_Variables

Mutexes and MutexPriority Ceiling
POSIX_Mutexes

Mutexes and either Mutex Priority Inherit-
ance or MutexPriority Ceiling

POSIX_Mutexes

All except the subprograms below
All except the subprograms below

Get_Process_Shared
Set_Process_Shared
Get_Process_Shared
Set_Process_Shared

Set_Ceiling_Prioritya

Get_Ceiling_Prioritya

Set_Locking_Policy
Get_Locking_Policy

Mutex Priority Ceiling and Mutexes
POSIX_Mutexes Set_Ceiling_Prioritya

Get_Ceiling_Prioritya

Set_Locking_Policy
Get_Locking_Policy

Mutex Priority Inheritance and Mutexes
POSIX_Mutexes Set_Locking_Policy

Get_Locking_Policy

Network Management and Sockets Detailed
Network Interface

POSIX_Sockets Set_Flags
Get_Flags
Set_Family
Get_Family
Set_Socket_Type
Get_Socket_Type
Set_Protocol_Number
Get_Protocol_Number
Get_Canonical_Name
Get_Socket_Address_Info
Get_Socket_Address_Info
For_Every_Item

Poll
POSIX_Event_Management Get_File

Set_File
Get_Events
Set_Events
Get_Returned_Events
Set_Returned_Events
Poll

Prioritized I/O None

Table B-3: Packages and Subprograms under
each POSIX.5c Option (Continued)

Package Subprogram

125

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Priority Process Scheduling
POSIX_Process_Scheduling All

Process Shared and Mutexes
POSIX_Mutexes

POSIX_Condition_Variables

Get_Process_Shared
Set_Process_Shared
Get_Process_Shared
Set_Process_Shared

Realtime Signals
POSIX_Signals Enable_Queueing

Disable_Queueing
Await_Signalb

Await_Signal_Or_Timeoutb

Queue_Signal

Saved IDs Support None

Select
POSIX_Event_Management Add

Remove
In_Set
Select_Filea

Semaphores
POSIX_Semaphores All

Shared Memory Objects
POSIX_Shared_Memory_Objects
POSIX_Generic_Shared_Memory

Shared Memory Objects and Memory Range
Locking

POSIX_Generic_Shared_Memory

Shared Memory Objects or Memory Mapped
Files

POSIX_IO

All
All

Lock_Shared_Memory
Unlock_Shared_Memory

Truncate_File

Table B-3: Packages and Subprograms under
each POSIX.5c Option (Continued)

Package Subprogram

126

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Sockets Detailed Network Interface
POSIX_Sockets

Sockets Detailed Network Interface and
Network Management

POSIX_Sockets

All except the subprograms below

Set_Flags
Get_Flags
Set_Family
Get_Family
Set_Socket_Type
Get_Socket_Type
Set_Protocol_Number
Get_Protocol_Number
Get_Canonical_Name
Get_Socket_Address_Info
Get_Socket_Address_Info
For_Every_Item

Synchronized I/O
POSIX_IO

Synchronized I/O and Memory Mapped Files
POSIX_Memory_Mapping

Synchronize_Data

Synchronize_Memory

Timers
POSIX_Timers All

XTI Detailed Network Interface
POSIX_XTI All

a. All versions
b. Return type Signal_Info

Table B-3: Packages and Subprograms under
each POSIX.5c Option (Continued)

Package Subprogram

127

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Annex C: Bibliography

(Informative)

This Annex contains lists of related open systems standards and suggested reading
on historical implementations and application programming.

C.1 Related Open Systems Standards

{B1} ISO 8859-1: 1987, Information Processing—8-bit single-byte coded graphic
character sets—Part 1: Latin alphabet No. 1.

{B2} ISO/IEC 10646:..., Information processing—Multiple octet coded character
set.

{B3} IEEE Std 100-1988, IEEE Standard Dictionary of Electrical and Electronics
Terms.

{B4} ISO/IEC TR 10000-2:1998 Information technology -- Framework and taxon-
omy of International Standardized Profiles -- Part 2: Principles and Taxono-
my for OSI Profiles.

C.2 Other Documents

{B5} The Single UNIX Specification: The Authorized Guide to Version 3. The Open
Group, March 2002. UK ISBN: 1-85912-277-9. US ISBN 1-931624-13-5.

128

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

129

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Alphabetic Topical Index

Symbols

<limits.h> header... 36
<unistd.h> header... 36, 39, 40, 47, 57, 58,

63, 64, 75, 76, 82, 93, 94, 100, 101
_Exit() function... 7
_exit() function... 7
_longjmp() function... 9
_POSIX_ADVISORY_INFO option... 18, 20,

49, 66, 84, 95
_POSIX_AEP_REALTIME_ format... 31
_POSIX_AEP_REALTIME_ option... 39, 57,

75, 93
_POSIX_AEP_REALTIME_CONTROLLER

option... 57
_POSIX_AEP_REALTIME_DEDICATED

option... 75
_POSIX_AEP_REALTIME_LANG_Ada95

option... 40, 47, 58, 64, 76, 82, 94, 101
_POSIX_AEP_REALTIME_LANG_C99

option... 40, 47, 58, 63, 76, 82, 94, 100
_POSIX_AEP_REALTIME_MINIMAL

option... 39
_POSIX_AEP_REALTIME_MULTI option...

93
_POSIX_ASYNCHRONOUS_IO option... 18,

20, 77, 95, 120
_POSIX_BARRIERS option... 18, 20
_POSIX_CHOWN_RESTRICTED option... 18,

20, 95
_POSIX_CLOCK_SELECTION option... 18,

20, 41, 59, 77, 95
_POSIX_CPUTIME option... 18, 20, 77, 95
_POSIX_FSYNC option... 18, 20, 41, 59, 77, 95,

120
_POSIX_IPV6 option... 18, 20
_POSIX_JOB_CONTROL option... 10
_POSIX_JOB_CONTROL option... 18, 95
_POSIX_MAPPED_FILES option... 18, 20, 49,

59, 77, 95, 120
_POSIX_MEMLOCK option... 18, 20, 41, 48, 59,

77, 95, 120
_POSIX_MEMLOCK_RANGE option... 18, 20,

41, 59, 77, 95, 120

_POSIX_MEMORY_PROTECTION option... 18,
20, 77, 95, 120

_POSIX_MESSAGE_PASSING option... 18,
20, 59, 77, 95, 120

_POSIX_MONOTONIC_CLOCK option... 19,
20, 41, 59, 77, 95

_POSIX_NGROUPS_MAX limit... 96
_POSIX_NO_TRUNC option... 19, 20, 22, 41,

49, 59, 77, 95
_POSIX_PRIORITIZED_IO option... 19, 20,

77, 95, 120
_POSIX_PRIORITY_SCHEDULING option...

19, 20, 77, 86, 95, 104, 120
_POSIX_RAW_SOCKETS option... 19, 20, 77,

95
_POSIX_READER_WRITER_LOCKS

option... 10
_POSIX_READER_WRITER_LOCKS option...

19, 20
_POSIX_REALTIME_SIGNALS option... 19,

20, 41, 59, 77, 95, 120
_POSIX_REGEXP option... 10
_POSIX_REGEXP option... 19, 21, 95
_POSIX_RTSIG_MAX limit... 41, 59, 77, 96
_POSIX_SAVED_IDS option... 19, 21, 95
_POSIX_SEMAPHORES option... 19, 21, 41, 59,

77, 95, 120
_POSIX_SHARED_MEMORY_OBJECTS

option... 19, 21, 41, 59, 77, 95, 120
_POSIX_SHELL option... 19, 21, 96
_POSIX_SPAWN option... 19, 21, 77, 96
_POSIX_SPIN_LOCKS option... 19, 21
_POSIX_SPORADIC_SERVER option... 19,

21, 77, 96
_POSIX_SYNCHRONIZED_IO option... 19,

21, 41, 59, 77, 96, 120
_POSIX_THREAD_ATTR_STACKADDR

option... 19, 21, 41, 59, 77, 96
_POSIX_THREAD_ATTR_STACKSIZE

option... 19, 21, 41, 59, 77, 96
_POSIX_THREAD_CPUTIME option... 19, 21,

41, 59, 77, 96
_POSIX_THREAD_PRIO_INHERIT option...

19, 21, 41, 59, 77, 96, 120
_POSIX_THREAD_PRIO_PROTECT option...

130

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

19, 21, 41, 59, 77, 96, 120
_POSIX_THREAD_PRIORITY_SCHEDULIN

G option... 19, 21, 41, 59, 77, 96, 120
_POSIX_THREAD_PROCESS_SHARED

option... 10
_POSIX_THREAD_PROCESS_SHARED

option... 19, 21, 77, 96
_POSIX_THREAD_SAFE_FUNCTIONS

option... 19, 21, 96
_POSIX_THREAD_SPORADIC_SERVER

option... 19, 21, 41, 59, 77, 96
_POSIX_THREAD_STACK_ADDRESS

option... 121
_POSIX_THREAD_STACK_SIZE option...

121
_POSIX_THREADS option... 10, 19, 21, 53, 70,

88, 107
_POSIX_TIMEOUTS option... 10
_POSIX_TIMEOUTS option... 19, 21, 41, 59,

77, 96
_POSIX_TIMER_MAX limit... 41, 59, 77, 96
_POSIX_TIMERS option... 19, 21, 41, 59, 77,

96, 120
_POSIX_TRACE option... 19, 21, 59, 77, 96
_POSIX_TRACE_EVENT_FILTER option...

19, 21, 59, 77, 96
_POSIX_TRACE_INHERIT option... 19, 21
_POSIX_TRACE_LOG option... 19, 21, 59, 77,

96
_POSIX_TYPED_MEMORY_OBJECTS

option... 19, 21
_POSIX_VDISABLE option... 19, 21, 22, 96
_POSIX_VERSION option... 44, 62, 80
_POSIX2_C_BIND option... 19, 21
_POSIX2_C_DEV option... 19, 21
_POSIX2_CHAR_TERM option... 19, 21
_POSIX2_FORT_DEV option... 19, 21
_POSIX2_FORT_RUN option... 19, 21
_POSIX2_LOCALEDEF option... 19, 21
_POSIX2_PBS option... 19, 21
_POSIX2_PBS_ACCOUNTING option... 19, 21
_POSIX2_PBS_CHECKPOINT option... 20, 21
_POSIX2_PBS_LOCATE option... 20, 21
_POSIX2_PBS_MESSAGE option... 20, 21
_POSIX2_PBS_TRACK option... 20, 21
_POSIX2_SW_DEV option... 20, 21
_POSIX2_UPE option... 20, 21
_setjmp() function... 9
_tolower() function... 9
_toupper() function... 9
_XOPEN_CRYPT option... 20, 21, 55, 72, 90,

109

_XOPEN_ENH_I18N option... 20, 21
_XOPEN_LEGACY option... 20, 22, 55, 72, 90,

109
_XOPEN_REALTIME option... 20, 22
_XOPEN_REALTIME_THREADS option... 20,

22
_XOPEN_SHM option... 20, 22
_XOPEN_STREAMS option... 20, 22, 55, 72, 90,

109
_XOPEN_UNIX option... 20, 22

A

a64l() function... 9
Abbreviations... 32
abort() function... 8
abs() function... 6
accept() function... 7
access() function... 7
Accessibility subprogram... 13
acos() function... 5
acosf() function... 5
acosh() function... 5
acoshf() function... 5
acoshl() function... 5
acosl() function... 5
Ada Language Option... 42, 45, 60, 62, 78, 80,

97, 99, 100
Ada Language option... 72
Ada language option... 91, 109
Ada_Streams package... 10
Ada_Task_Identification package... 10
Ada95 RM... 32
Ada-Language option... 18, 36
Add subprogram... 11, 125
Add_All_Signals subprogram... 15
Add_Signal subprogram... 15
Advisory Information option... 102
AEP... 26, 33
aio_cancel() function... 113
aio_error() function... 113
aio_fsync() function... 113
aio_read() function... 113
aio_return() function... 113
aio_suspend() function... 113
aio_write() function... 113
alarm() function... 8, 44, 52, 62, 69, 88, 106
alias utility... 122
Application Conformance... 36
Application Environment Profile... 26
application environment profile... 26, 27, 33

131

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Application Platform... 26
ar utility... 122
Argument_List subprogram... 16
asa utility... 122
asctime() function... 6
asctime_r() function... 6, 116
asin() function... 5
asinf() function... 5
asinh() function... 5
asinhf() function... 5
asinhl() function... 5
asinl() function... 5
assert() function... 7
Asynchronous I/O option... 20, 79, 97, 123
at utility... 122
atan() function... 5
atan2() function... 5
atan2f() function... 5
atan2l() function... 5
atanf() function... 5
atanh() function... 5
atanhf() function... 5
atanhl() function... 5
atanl() function... 5
atexit() function... 7
atof() function... 6
atoi() function... 6
atol() function... 6
atoll() function... 6
Await_Signal subprogram... 15, 125
Await_Signal_Or_Timeout

subprogram... 15, 125

B

Base Standard... 26
base standard... 26
basename() function... 9
batch utility... 122
bcmp() function... 120
bcopy() function... 120
bg utility... 122
Bibliography... 127
bind() function... 7
Bits_Per_Character_Of subprogram...

11
Block_Signals subprogram... 15
Blocked_Signals subprogram... 15
Blocking_Behavior constant... 22
Boolean type... 39, 40, 57, 58, 75, 76, 93, 94,

111

bsd_signal() function... 9
bsearch() function... 6
btowc() function... 6
bzero() function... 120

C

C Language Option... 40, 43, 61, 76, 80, 94, 99
C Language option... 72
C language Option... 58
C language option... 90, 109
C99 Standard... 32
c99 utility... 121
cabs() function... 5
cabsf() function... 5
cabsl() function... 5
cacos() function... 5
cacosf() function... 5
cacosh() function... 5
cacoshf() function... 5
cacoshl() function... 5
cacosl() function... 5
calloc() function... 6
carg() function... 5
cargf() function... 5
cargl() function... 5
casin() function... 5
casinf() function... 5
casinh() function... 5
casinhf() function... 5
casinhl() function... 5
casinl() function... 5
catan() function... 5
catanf() function... 5
catanh() function... 5
catanhf() function... 5
catanhl() function... 5
catanl() function... 5
catclose() function... 9
catgets() function... 9
catopen() function... 9
cbrt() function... 5
cbrtf() function... 5
cbrtl() function... 5
ccos() function... 5
ccosf() function... 5
ccosh() function... 5
ccoshf() function... 5
ccoshl() function... 5
ccosl() function... 5
ceil() function... 5

132

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

ceilf() function... 5
ceill() function... 5
cexp() function... 5
cexpf() function... 5
cexpl() function... 5
cfgetispeed() function... 7
cfgetospeed() function... 7
cfsetispeed() function... 7
cfsetospeed() function... 7
Change Owner Restriction option... 20, 97,

123
Change_Owner_And_Group subprogram...

12
Change_Permissions subprogram... 12,

123
Change_Protection subprogram... 123
Change_Working_Directory

subprogram... 13
chdir() function... 7
CHILD_MAX limit... 96
CHILD_MAX option... 44, 62
chmod() function... 7
chown() function... 7
cimag() function... 5
cimagf() function... 5
cimagl() function... 5
C-Language option... 18, 36
C-language option... 20
Clear_Environment subprogram... 16
clearerr() function... 6
Clock Selection option... 52, 69, 88, 106
clock() function... 7
clock_getcpuclokid() function... 113
clock_getres() function... 118
clock_gettime() function... 44, 62, 118
clock_nanosleep() function... 113
clock_settime() function... 118
clog() function... 5
clogf() function... 5
clogl() function... 5
Close subprogram... 11
close() function... xv, 6
closedir() function... 7
closelog() function... 9
command utility... 122
Component Profile... 26
component profile... 26
Conformance... 35
Conformance Document... 27
conformance document... 27, 28, 35
Conformant Application... 37
Conformant Application Using Extensions... 37

conforming application
strictly... 35

conforming implementation... 35
confstr() function... 8
conj() function... 5
conjf() function... 5
conjl() function... 5
connect() function... 7
constant

Blocking_Behavior... 22
False... 22
False..False... 42, 60, 79, 97, 111
File_Structure... 45, 63, 81
Group... 45
Operation_Not_Implemented... 22,

98
Operation_Not_Supported... 43, 61,

80, 98
Other... 45
Owner... 45
POSIX_Limits.Child_Processes_

Maxima'Last... 45, 62
POSIX_Limits.Groups_Maxima'Fi

rst... 22
POSIX_Limits.Groups_Maxima’Fi

rst... 43, 61, 79
PTHREAD_SCOPE_PROCESS... 78, 96
PTHREAD_SCOPE_SYSTEM... 78, 86, 96,

105
Read_Write_Execute... 45
SCHED_FIFO... 41, 51, 59, 68, 78, 86, 96,

104, 105
SCHED_RR... 41, 51, 59, 68, 78, 86, 96, 104,

105
True..True... 39, 40, 42, 47, 57, 58, 60,

63, 64, 75, 76, 79, 82, 93, 94, 97,
100, 101, 111

constant-width format... 31
Conventions... 31
Copy_Environment subprogram... 16
Copy_From_Current_Environment

subprogram... 16
Copy_To_Current_Environment

subprogram... 16
copysign() function... 5
copysignf() function... 5
copysignl() function... 5
cos() function... 5
cosf() function... 5
cosh() function... 5
coshf() function... 5
coshl() function... 5

133

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

cosl() function... 5
cpow() function... 5
cpowf() function... 5
cpowl() function... 5
cproj() function... 5
cprojf() function... 5
cprojl() function... 5
creal() function... 5
crealf() function... 5
creall() function... 5
creat() function... xvii, 7
Create subprogram... 46
Create_Directory subprogram... 13
Create_FIFO subprogram... 12
Create_Pipe subprogram... 14
Create_Process_Group subprogram... 13
Create_Session subprogram... 16
crontab utility... 122
crypt() function... 120
csin() function... 5
csinf() function... 5
csinh() function... 5
csinhf() function... 5
csinhl() function... 5
csinl() function... 5
csplit utility... 122
csqrt() function... 5
csqrtf() function... 5
csqrtl() function... 5
ctags utility... 122
ctan() function... 5
ctanf() function... 5
ctanh() function... 5
ctanhf() function... 5
ctanhl() function... 5
ctanl() function... 5
ctermid() function... 7
ctime() function... 6
ctime_r() function... 6, 116

D

daylight() function... 9
dbm_clearerr() function... 9
dbm_close() function... 9
dbm_delete() function... 9
dbm_error() function... 9
dbm_fetch() function... 9
dbm_firstkey() function... 9
dbm_nextkey() function... 9
dbm_open() function... 9

dbm_store() function... 9
Dedicated Realtime System Profile... 3, 75
Define_Bits_Per_Character

subprogram... 11
Define_Input_Baud_Rate subprogram...

11
Define_Input_Time subprogram... 11
Define_Minimum_Input_Count

subprogram... 11
Define_Output_Baud_Rate

subprogram... 11
Define_Special_Control_Character

subprogram... 11
Define_Terminal_Modes subprogram...

11
Definitions... 26
Delete subprogram... 46
Delete_All_Signals subprogram... 15
Delete_Environment_Variable

subprogram... 16
Delete_Signal subprogram... 15
Development Environment... 16
Development Platform... 27
development platform... 27
df utility... 122
difftime() function... 6
dirname() function... 9
Disable_Control_Character

subprogram... 11
Disable_Queueing subprogram... 125
Discard_Data subprogram... 11
div() function... 6
dlclose() function... 9
dlerror() function... 9
dlopen() function... 9
dlsym() function... 9
document

conformance... 27
Documentation... 35
documentation

system... 28
Drain subprogram... 11
drand48() function... 9
du utility... 122
dup() function... 7
dup2() function... 7
Duplicate subprogram... 12
Duplicate_And_Close subprogram... 12

134

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

E

ecvt() function... 120
Embedded Computer System... 27
Enable_Queueing subprogram... 125
encrypt() function... 120
endgrent() function... 10
endhostent() function... 7
endnetent() function... 7
endprotoent() function... 7
endpwent() function... 9
endservent() function... 7
endutxent() function... 10
environment

open system... 28
environment, open system... 33
Environment_Value_Of subprogram... 16
erand48() function... 9
erf() function... 5
erfc() function... 5
erfcf() function... 5
erfcl() function... 5
erff() function... 5
erfl() function... 5
ERRNO format... 31
ex utility... 122
exception

POSIX_Error... 22, 43, 61, 80, 98
Use_Error... 45, 63, 81

execl() function... 7
execle() function... 7
execlp() function... 7
execv() function... 7
execve() function... 7
execvp() function... 7
Existence subprogram... 13
exit() function... 7
exp() function... 5
exp2() function... 5
exp2f() function... 5
exp2l() function... 5
expand utility... 122
expf() function... 5
expl() function... 5
expm1() function... 5
expm1f() function... 5
expm1l() function... 5

F

fabs() function... 5

fabsf() function... 5
fabsl() function... 5
False constant... 22
False..False constant... 42, 60, 79, 97, 111
fattach() function... 120
fc utility... 122
fchdir() function... 9
fchmod() function... 7
fchown() function... 7
fclose() function... 6, 44
fcntl() function... 7
fcvt() function... 120
FD_CLR() function... 7
FD_ISSET() function... 7
FD_SET() function... 7
FD_ZERO() function... 7
fdatasync() function... 116
fdetach() function... 120
fdim() function... 5
fdimf() function... 5
fdiml() function... 5
fdopen() function... 6
feclearexcept() function... 6
fegetenv() function... 6
fegetexceptflag() function... 6
fegetround() function... 6
feholdexcept() function... 6
feof() function... 6
feraiseexcept() function... 6
ferror() function... 6
fesetenv() function... 6
fesetexceptflag() function... 6
fesetround() function... 6
fetestexcept() function... 6
feupdateenv() function... 6
fflush() function... 6, 44
ffs() function... 9
fg utility... 122
fgetc() function... 6, 44
fgetpos() function... 7
fgets() function... 6, 44
fgetwc() function... 9
fgetws() function... 9
FILE * type... 49, 66, 84, 102
File Locking... 84
File Locking option... 49, 66, 84, 102
File Synchronization option... 49, 66, 84
File Synchronization option... 20, 42, 60, 79,

97, 123
file utility... 122
File_Position subprogram... 12
File_Size subprogram... 12

135

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

File_Structure constant... 45, 63, 81
Filename Truncation option... 42, 60, 79, 97
Filename Truncation option... 20, 22, 42, 60,

79, 97, 123
Filename_Of subprogram... 13
fileno() function... 6
flockfile() function... 7, 116
floor() function... 5
floorf() function... 5
floorl() function... 5
Flow subprogram... 11
fma() function... 5
fmaf() function... 5
fmal() function... 5
fmax() function... 5
fmaxf() function... 5
fmaxl() function... 5
fmin() function... 5
fminf() function... 5
fminl() function... 5
fmod() function... 5
fmodf() function... 5
fmodl() function... 5
fmtmsg() function... 9
fnmatch() function... 8
fopen() function... 6, 44
For_Every_Current_Environment_Va

riable subprogram... 16
For_Every_Directory_Entry

subprogram... 13
For_Every_Environment_Variable

subprogram... 16
For_Every_File_In subprogram... 11
For_Every_Item subprogram... 124, 126
fork() function... 7
format

_POSIX_AEP_REALTIME_... 31
constant-width... 31
ERRNO... 31

format function family... 31
fort77 utility... 122
fpathconf() function... 7
fpclassify() function... 5
fprintf() function... 6, 44
fputc() function... 6, 44
fputs() function... 6, 44
fputwc() function... 9
fputws() function... 9
fread() function... 6, 44
free() function... 6
freeaddrinfo() function... 7
freopen() function... 6, 44

frexp() function... 5
frexpf() function... 5
frexpl() function... 5
fscanf() function... 6, 44
fsck utility... xvii
fseek() function... 7
fseeko() function... 7
fsetpos() function... 7
fstat() function... 7
fstatvfs() function... 9
fsync() function... 114
ftell() function... 7
ftello() function... 7
ftime() function... 120
ftok() function... 9
ftruncate() function... 7
ftrylockfile() function... 7, 116
ftw() function... 9
function

_Exit()... 7
_exit()... 7
_longjmp()... 9
_setjmp()... 9
_tolower()... 9
_toupper()... 9
a64l()... 9
abort()... 8
abs()... 6
accept()... 7
access()... 7
acos()... 5
acosf()... 5
acosh()... 5
acoshf()... 5
acoshl()... 5
acosl()... 5
aio_cancel()... 113
aio_error()... 113
aio_fsync()... 113
aio_read()... 113
aio_return()... 113
aio_suspend()... 113
aio_write()... 113
alarm()... 8, 44, 52, 62, 69, 88, 106
asctime()... 6
asctime_r()... 6, 116
asin()... 5
asinf()... 5
asinh()... 5
asinhf()... 5
asinhl()... 5
asinl()... 5

136

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

assert()... 7
atan()... 5
atan2()... 5
atan2f()... 5
atan2l()... 5
atanf()... 5
atanh()... 5
atanhf()... 5
atanhl()... 5
atanl()... 5
atexit()... 7
atof()... 6
atoi()... 6
atol()... 6
atoll()... 6
basename()... 9
bcmp()... 120
bcopy()... 120
bind()... 7
bsd_signal()... 9
bsearch()... 6
btowc()... 6
bzero()... 120
cabs()... 5
cabsf()... 5
cabsl()... 5
cacos()... 5
cacosf()... 5
cacosh()... 5
cacoshf()... 5
cacoshl()... 5
cacosl()... 5
calloc()... 6
carg()... 5
cargf()... 5
cargl()... 5
casin()... 5
casinf()... 5
casinh()... 5
casinhf()... 5
casinhl()... 5
casinl()... 5
catan()... 5
catanf()... 5
catanh()... 5
catanhf()... 5
catanhl()... 5
catanl()... 5
catclose()... 9
catgets()... 9
catopen()... 9
cbrt()... 5

cbrtf()... 5
cbrtl()... 5
ccos()... 5
ccosf()... 5
ccosh()... 5
ccoshf()... 5
ccoshl()... 5
ccosl()... 5
ceil()... 5
ceilf()... 5
ceill()... 5
cexp()... 5
cexpf()... 5
cexpl()... 5
cfgetispeed()... 7
cfgetospeed()... 7
cfsetispeed()... 7
cfsetospeed()... 7
chdir()... 7
chmod()... 7
chown()... 7
cimag()... 5
cimagf()... 5
cimagl()... 5
clearerr()... 6
clock()... 7
clock_getcpuclokid()... 113
clock_getres()... 118
clock_gettime()... 44, 62, 118
clock_nanosleep()... 113
clock_settime()... 118
clog()... 5
clogf()... 5
clogl()... 5
close()... xv, 6
closedir()... 7
closelog()... 9
confstr()... 8
conj()... 5
conjf()... 5
conjl()... 5
connect()... 7
copysign()... 5
copysignf()... 5
copysignl()... 5
cos()... 5
cosf()... 5
cosh()... 5
coshf()... 5
coshl()... 5
cosl()... 5
cpow()... 5

137

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

cpowf()... 5
cpowl()... 5
cproj()... 5
cprojf()... 5
cprojl()... 5
creal()... 5
crealf()... 5
creall()... 5
creat()... xvii, 7
crypt()... 120
csin()... 5
csinf()... 5
csinh()... 5
csinhf()... 5
csinhl()... 5
csinl()... 5
csqrt()... 5
csqrtf()... 5
csqrtl()... 5
ctan()... 5
ctanf()... 5
ctanh()... 5
ctanhf()... 5
ctanhl()... 5
ctanl()... 5
ctermid()... 7
ctime()... 6
ctime_r()... 6, 116
daylight()... 9
dbm_clearerr()... 9
dbm_close()... 9
dbm_delete()... 9
dbm_error()... 9
dbm_fetch()... 9
dbm_firstkey()... 9
dbm_nextkey()... 9
dbm_open()... 9
dbm_store()... 9
difftime()... 6
dirname()... 9
div()... 6
dlclose()... 9
dlerror()... 9
dlopen()... 9
dlsym()... 9
drand48()... 9
dup()... 7
dup2()... 7
ecvt()... 120
encrypt()... 120
endgrent()... 10
endhostent()... 7

endnetent()... 7
endprotoent()... 7
endpwent()... 9
endservent()... 7
endutxent()... 10
erand48()... 9
erf()... 5
erfc()... 5
erfcf()... 5
erfcl()... 5
erff()... 5
erfl()... 5
execl()... 7
execle()... 7
execlp()... 7
execv()... 7
execve()... 7
execvp()... 7
exit()... 7
exp()... 5
exp2()... 5
exp2f()... 5
exp2l()... 5
expf()... 5
expl()... 5
expm1()... 5
expm1f()... 5
expm1l()... 5
fabs()... 5
fabsf()... 5
fabsl()... 5
fattach()... 120
fchdir()... 9
fchmod()... 7
fchown()... 7
fclose()... 6, 44
fcntl()... 7
fcvt()... 120
FD_CLR()... 7
FD_ISSET()... 7
FD_SET()... 7
FD_ZERO()... 7
fdatasync()... 116
fdetach()... 120
fdim()... 5
fdimf()... 5
fdiml()... 5
fdopen()... 6
feclearexcept()... 6
fegetenv()... 6
fegetexceptflag()... 6
fegetround()... 6

138

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

feholdexcept()... 6
feof()... 6
feraiseexcept()... 6
ferror()... 6
fesetenv()... 6
fesetexceptflag()... 6
fesetround()... 6
fetestexcept()... 6
feupdateenv()... 6
fflush()... 6, 44
ffs()... 9
fgetc()... 6, 44
fgetpos()... 7
fgets()... 6, 44
fgetwc()... 9
fgetws()... 9
fileno()... 6
flockfile()... 7, 116
floor()... 5
floorf()... 5
floorl()... 5
fma()... 5
fmaf()... 5
fmal()... 5
fmax()... 5
fmaxf()... 5
fmaxl()... 5
fmin()... 5
fminf()... 5
fminl()... 5
fmod()... 5
fmodf()... 5
fmodl()... 5
fmtmsg()... 9
fnmatch()... 8
fopen()... 6, 44
fork()... 7
fpathconf()... 7
fpclassify()... 5
fprintf()... 6, 44
fputc()... 6, 44
fputs()... 6, 44
fputwc()... 9
fputws()... 9
fread()... 6, 44
free()... 6
freeaddrinfo()... 7
freopen()... 6, 44
frexp()... 5
frexpf()... 5
frexpl()... 5
fscanf()... 6, 44

fseek()... 7
fseeko()... 7
fsetpos()... 7
fstat()... 7
fstatvfs()... 9
fsync()... 114
ftell()... 7
ftello()... 7
ftime()... 120
ftok()... 9
ftruncate()... 7
ftrylockfile()... 7, 116
ftw()... 9
funlockfile()... 7, 116
fwide()... 9
fwprintf()... 9
fwrite()... 6, 44
fwscanf()... 9
gai_strerror()... 7
gcvt()... 120
getaddrinfo()... 7
getc()... 6, 44
getc_unlocked()... 7, 116
getchar()... 6, 44
getchar_unlocked()... 7, 116
getcontext()... 9
getcwd()... 7
getdate()... 9
getegid()... 9
getenv()... 8
geteuid()... 9
getgid()... 9
getgrent()... 10
getgrgid()... 8
getgrgid_r()... 8, 116
getgrnam()... 8
getgrnam_r()... 8, 116
getgroups()... 9
gethostbyaddr()... 7
gethostbyname()... 7
gethostent()... 7
gethostid()... 9
gethostname()... 7
getitimer()... 10
getlogin()... 9
getlogin_r()... 9, 116
getmsg()... 120
getnameinfo()... 7
getnetbyaddr()... 7
getnetbyname()... 7
getnetent()... 7
getopt()... 8

139

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

getpeername()... 7
getpgid()... 9
getpgrp()... 7
getpid()... 7
getpmsg()... 120
getppid()... 7
getpriority()... 9
getprotobyname()... 7
getprotobynumber()... 7
getprotoent()... 7
getpwent()... 9
getpwnam()... 8
getpwnam_r()... 8, 116
getpwuid()... 8
getpwuid_r()... 8, 116
getrlimit()... 9
getrusage()... 9
gets()... 6, 44
getservbyname()... 7
getservbyport()... 7
getservent()... 7
getsid()... 9
getsockname()... 7
getsockopt()... 7
getsubopt()... 9
gettimeofday()... 9
getuid()... 9
getutxent()... 10
getutxid()... 10
getutxline()... 10
getwc()... 9
getwchar()... 9
getwd()... 120
glob()... 7
globfree()... 7
gmtime()... 6
gmtime_r()... 6, 116
grantpt()... 9
hcreate()... 9
hdestroy()... 9
hsearch()... 9
htonl()... 7
htons()... 7
hypot()... 5
hypotf()... 5
hypotl()... 5
iconv()... 9
iconv_close()... 9
iconv_open()... 9
if_freenameindex()... 7
if_indextoname()... 7
if_nameindex()... 7

if_nametoindex()... 7
ilogb()... 5
ilogbf()... 5
ilogbl()... 5
imaxabs()... 6
imaxdiv()... 6
index()... 120
inet_addr()... 7
inet_ntoa()... 7
inet_ntop()... 7
inet_pton()... 7
initstate()... 9
insque()... 9
ioctl()... xv, 120
isalnum()... 6
isalpha()... 6
isascii()... 9
isastream()... 120
isatty()... 7
isblank()... 6
iscntrl()... 6
isdigit()... 6
isfinite()... 5
isgraph()... 6
isgreater()... 5
isgreaterequal()... 5
isinf()... 5
isless()... 5
islessequal()... 5
islessgreater()... 5
islower()... 6
isnan()... 5
isnormal()... 5
isprint()... 6
ispunct()... 6
isspace()... 6
isunordered()... 5
isupper()... 6
iswalnum()... 6
iswalpha()... 6
iswblank()... 6
iswcntrl()... 6
iswctype()... 6
iswdigit()... 6
iswgraph()... 6
iswlower()... 6
iswprint()... 6
iswpunct()... 6
iswspace()... 6
iswupper()... 6
iswxdigit()... 6
isxdigit()... 6

140

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

j0()... 9
j1()... 9
jn()... 9
jrand48()... 9
kill()... 8, 44, 62, 80
killpg()... 9
l64a()... 9
labs()... 6
lchown()... 9
lcong48()... 9
ldexp()... 5
ldexpf()... 5
ldexpl()... 5
ldiv()... 6
lfind()... 9
lgamma()... 5
lgammaf()... 5
lgammal()... 5
link()... xvii, 7
lio_listio()... 113
listen()... 7
llabs()... 6
lldiv()... 6
llrint()... 5
llrintf()... 5
llrintl()... 5
llround()... 5
llroundf()... 5
llroundl()... 5
localeconv()... 6
localtime()... 6
localtime_r()... 6, 116
lockf()... 9
log()... 5
log10()... 5
log10f()... 5
log10l()... 5
log1p()... 5
log1pf()... 5
log1pl()... 5
log2()... 5
log2f()... 5
log2l()... 5
logb()... 5
logbf()... 5
logbl()... 5
logf()... 5
logl()... 5
longjmp()... 4
lrand48()... 9
lrint()... 5
lrintf()... 5

lrintl()... 5
lround()... 5
lroundf()... 5
lroundl()... 5
lsearch()... 9
lseek()... 7
lstat()... 8
main()... 48, 65
makecontext()... 9
malloc()... 6
mblen()... 6
mbrlen()... 6
mbrtowc()... 6
mbsinit()... 6
mbsrtowcs()... 6
mbstowcs()... 6
mbtowc()... 6
memccpy()... 9
memchr()... 6
memcmp()... 6
memcpy()... 6
memmove()... 6
memset()... 6
mkdir()... xvii, 7
mkfifo()... 7
mknod()... 9
mkstemp()... 9
mktemp()... 120
mktime()... 6
mlock()... 114
mlockall()... 114
mmap()... 114, 115
modf()... 5
modff()... 5
modfl()... 5
mprotect()... 114
mq_close()... 114
mq_getattr()... 114
mq_notify()... 114
mq_open()... 114
mq_receive()... 114
mq_send()... 114
mq_setattr()... 114
mq_timedreceive()... 114, 118
mq_timedsend()... 114, 118
mq_unlink()... 114
mrand48()... 9
msgctl()... 9
msgget()... 9
msgrcv()... 9
msgsnd()... 9
msync()... 114, 116

141

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

munlock()... 114
munlockall()... 114
munmap()... 114, 115
nan()... 5
nanf()... 5
nanl()... 5
nanosleep()... 118
nearbyint()... 5
nearbyintf()... 5
nearbyintl()... 5
nextafter()... 5
nextafterf()... 5
nextafterl()... 5
nexttoward()... 5
nexttowardf()... 5
nexttowardl()... 5
nftw()... 9
nice()... 9
nl_langinfo()... 9
nrand48()... 9
ntohl()... 7
ntohs()... 7
open()... xv, 6, 44, 49
opendir()... 7
openlog()... 9
pathconf()... 7
pause()... 8
pclose()... 8
perror()... 6, 44
pipe()... 7
poll()... 9
popen()... 8
posix_fadvise()... 113
posix_fallocate()... 113
posix_madvise()... 113, 114, 115
posix_mem_offset()... 119
posix_memalign()... 113
posix_openpt()... 9
posix_spawn()... 115
posix_spawn_file_actions_addclose()...

115
posix_spawn_file_actions_adddup2()...

115
posix_spawn_file_actions_addopen()...

115
posix_spawn_file_actions_destroy()...

115
posix_spawn_file_actions_init()... 115
posix_spawnattr_destroy()... 115
posix_spawnattr_getflags()... 115
posix_spawnattr_getpgroup()... 115
posix_spawnattr_getschedparam()...

114, 115
posix_spawnattr_getschedpolicy()...

114, 115
posix_spawnattr_getsigdefault()... 115
posix_spawnattr_getsigmask()... 115
posix_spawnattr_init()... 115
posix_spawnattr_setflags()... 115
posix_spawnattr_setpgroup()... 115
posix_spawnattr_setschedparam()...

114, 115
posix_spawnattr_setschedpolicy()...

114, 115
posix_spawnattr_setsigdefault()... 115
posix_spawnattr_setsigmask()... 115
posix_spawnp()... 115
posix_trace_attr_destroy()... 119
posix_trace_attr_getclockres()... 119
posix_trace_attr_getcreatetime()... 119
posix_trace_attr_getgenversion()... 119
posix_trace_attr_getinherited()... 119
posix_trace_attr_getlogfullpolicy()...

119
posix_trace_attr_getlogsize()... 119
posix_trace_attr_getmaxdatasize()...

119
posix_trace_attr_getmaxsystemeventsi

ze()... 119
posix_trace_attr_getmaxusereventsize(

)... 119
posix_trace_attr_getname()... 119
posix_trace_attr_getstreamfullpolicy().

.. 119
posix_trace_attr_getstreamsize()... 119
posix_trace_attr_init()... 119
posix_trace_attr_setinherited()... 119
posix_trace_attr_setlogfullpolicy()...

119
posix_trace_attr_setlogsize()... 119
posix_trace_attr_setmaxdatasize()...

119
posix_trace_attr_setname()... 119
posix_trace_attr_setstreamfullpolicy().

.. 119
posix_trace_attr_setstreamsize()... 119
posix_trace_clear()... 119
posix_trace_close()... 119
posix_trace_create()... 119
posix_trace_create_withlog()... 119
posix_trace_event()... 119
posix_trace_eventid_equal()... 119
posix_trace_eventid_get_name()... 119
posix_trace_eventid_open()... 119

142

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

posix_trace_eventset_add()... 119
posix_trace_eventset_del()... 119
posix_trace_eventset_empty()... 119
posix_trace_eventset_fill()... 119
posix_trace_eventset_ismember()... 119
posix_trace_eventtypelist_getnext_id().

.. 119
posix_trace_eventtypelist_rewind()...

119
posix_trace_flush()... 119
posix_trace_get_attr()... 119
posix_trace_get_filter()... 119
posix_trace_get_status()... 119
posix_trace_getnext_event()... 119
posix_trace_open()... 119
posix_trace_rewind()... 119
posix_trace_set_filter()... 119
posix_trace_shutdown()... 119
posix_trace_start()... 119
posix_trace_stop()... 119
posix_trace_timedgetnext_event()...

118, 119
posix_trace_trid_eventid_open()... 119
posix_trace_trygetnext_event()... 119
posix_typed_mem_get_info()... 119
posix_typed_mem_open()... 119
pow()... 5
powf()... 5
powl()... 5
pread()... 9
printf()... 6, 44
pselect()... 7
pthread_atfork()... 8, 117
pthread_attr_destroy()... 8, 117
pthread_attr_getdetachstate()... 8, 117
pthread_attr_getguardsize()... 10
pthread_attr_getinheritsched()... 116,

118
pthread_attr_getschedparam()... 8, 117
pthread_attr_getschedpolicy()... 116,

118
pthread_attr_getscope()... 116, 118
pthread_attr_getstack()... 10, 116, 117
pthread_attr_getstackaddr()... 116, 117
pthread_attr_getstacksize()... 116, 117,

121
pthread_attr_init()... 8, 117
pthread_attr_setdetachstate()... 8, 117
pthread_attr_setguardsize()... 10
pthread_attr_setinheritsched()... 116,

118
pthread_attr_setschedparam()... 8, 117

pthread_attr_setschedpolicy()... 116,
118

pthread_attr_setscope()... 116, 118
pthread_attr_setstack()... 10, 116, 117
pthread_attr_setstackaddr()... 116, 117
pthread_attr_setstacksize()... 116, 117,

121
pthread_barrier_destroy()... 113, 117
pthread_barrier_init()... 113, 117
pthread_barrier_wait()... 113, 117
pthread_barrierattr_destroy()... 113,

117
pthread_barrierattr_getpshared()...

113, 116, 117
pthread_barrierattr_init()... 113, 117
pthread_barrierattr_setpshared()...

113, 116, 117
pthread_cancel()... 8, 117
pthread_cleanup_pop()... 8, 117
pthread_cleanup_push()... 8, 117
pthread_cond_broadcast()... 8, 117
pthread_cond_destroy()... 8, 117
pthread_cond_init()... 8, 117
pthread_cond_signal()... 8, 117
pthread_cond_timedwait()... 8, 117
pthread_cond_wait()... 8, 117
pthread_condattr_destroy()... 8, 117
pthread_condattr_getclock()... 113, 117
pthread_condattr_getpshared()... 116,

118
pthread_condattr_init()... 8, 117
pthread_condattr_setclock()... 113, 117
pthread_condattr_setpshared()... 116,

118
pthread_create()... 8, 117
pthread_detach()... 8, 117
pthread_equal()... 8, 117
pthread_exit()... 8, 117
pthread_getconcurrency()... 10
pthread_getcpuclockid()... 116, 117
pthread_getschedparam()... 116, 118
pthread_getspecific()... 8, 117
pthread_join()... 8, 117
pthread_key_create()... 8, 117
pthread_key_delete()... 8, 117
pthread_kill()... 8, 117
pthread_mutex_destroy()... 8, 117
pthread_mutex_getprioceiling()... 116,

118
pthread_mutex_init()... 8, 117
pthread_mutex_lock()... 8, 117
pthread_mutex_setprioceiling()... 116,

143

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

118
pthread_mutex_timedlock()... 118
pthread_mutex_trylock()... 8, 117
pthread_mutex_unlock()... 8, 117
pthread_mutexattr_destroy()... 8, 117
pthread_mutexattr_getprioceiling()...

116, 118
pthread_mutexattr_getprotocol()... 116,

117
pthread_mutexattr_getpshared()... 116,

118
pthread_mutexattr_gettype()... 10
pthread_mutexattr_init()... 8, 117
pthread_mutexattr_setprioceiling()...

116, 118
pthread_mutexattr_setprotocol()... 116,

117
pthread_mutexattr_setpshared()... 116,

118
pthread_mutexattr_settype()... 10
pthread_once()... 8, 117
pthread_rwlock_destroy()... 8, 118
pthread_rwlock_init()... 8, 118
pthread_rwlock_rdlock()... 8, 118
pthread_rwlock_timedrdlock()... 8, 118
pthread_rwlock_timedwrlock()... 8, 118
pthread_rwlock_tryrdlock()... 8, 118
pthread_rwlock_trywrlock()... 8, 118
pthread_rwlock_unlock()... 8, 118
pthread_rwlock_wrlock()... 8, 118
pthread_rwlockattr_destroy()... 8, 118
pthread_rwlockattr_getpshared()... 8,

116, 118
pthread_rwlockattr_init()... 8, 118
pthread_rwlockattr_setpshared()... 8,

116, 118
pthread_self()... 8, 117
pthread_setcalcelstate()... 8, 117
pthread_setcanceltype()... 8, 117
pthread_setconcurrency()... 10
pthread_setschedparam()... 116, 118
pthread_setschedprio()... 116, 118
pthread_setspecific()... 8, 117
pthread_sigmask()... 8, 117
pthread_spin_destroy()... 115, 117
pthread_spin_init()... 115, 117
pthread_spin_lock()... 115, 117
pthread_spin_trylock()... 115, 117
pthread_spin_unlock()... 115, 117
pthread_testcancel()... 8, 117
ptsname()... 9
putc()... 6, 44

putc_unlocked()... 7, 116
putchar()... 6, 44
putchar_unlocked()... 7, 116
putenv()... 9
putmsg()... 120
putpmsg()... 120
puts()... 6, 44
pututxline()... 10
putwc()... 9
putwchar()... 9
pwrite()... 9
qsort()... 6
raise()... 8, 44, 62
rand()... 6
rand_r()... 6, 116
random()... 9
read()... xv, xvii, 6, 44
readdir()... 7
readdir_r()... 7, 116
readlink()... 8
readv()... 9
realloc()... 6
realpath()... 9
recv()... 7
recvfrom()... 7
recvmsg()... 7
regcomp()... 7
regerror()... 7
regexec()... 7
regfree()... 7
remainder()... 5
remainderf()... 5
remainderl()... 5
remove()... 7
remque()... 9
remquo()... 5
remquof()... 5
remquol()... 5
rename()... xvii, 7
rewind()... 7
rewinddir()... 7
rindex()... 120
rint()... 5
rintf()... 5
rintl()... 5
rmdir()... xvii, 7
round()... 5
roundf()... 5
roundl()... 5
scalb()... 9
scalbln()... 5
scalblnf()... 5

144

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

scalblnl()... 5
scalbn()... 5
scalbnf()... 5
scalbnl()... 5
scanf()... 6, 44
sched_get_priority_max()... 7, 114
sched_get_priority_min()... 7, 114
sched_getparam()... 114
sched_getscheduler()... 114
sched_rr_get_interval()... 7, 114
sched_setparam()... 114
sched_setscheduler()... 114
sched_yield()... 114, 118
seed48()... 9
seekdir()... 9
select()... 7, 54, 71, 89, 108
sem_close()... 115
sem_destroy()... 115
sem_getvalue()... 115
sem_init()... 115
sem_open()... 115
sem_post()... 44, 62, 115
sem_timedwait()... 115, 118
sem_trywait()... 115
sem_unlink()... 115
sem_wait()... 115
semctl()... 9
semget()... 9
semop()... 9
send()... 7
sendmsg()... 7
sendto()... 7
setbuf()... 6
setcontext()... 9
setegid()... 9
setenv()... 8
seteuid()... 9
setgid()... 9
setgrent()... 10
sethostent()... 7
setitimer()... 10
setjmp()... 4
setkey()... 120
setlocale()... 6
setlogmask()... 9
setnetent()... 7
setpgid()... 7
setpgrp()... 9
setpriority()... 9
setprotoent()... 7
setpwent()... 9
setregid()... 10

setreuid()... 10
setrlimit()... 9
setservent()... 7
setsid()... 7
setsockopt()... 7
setstate()... 9
setuid()... 9
setutxent()... 10
setvbuf()... 6
shm_open()... 115
shm_unlink()... 115
shmat()... 9
shmctl()... 9
shmdt()... 9
shmget()... 9
shutdown()... 7
sigaction()... 8, 44, 62
sigaddset()... 8, 44, 62
sigaltstack()... 9
sigdelset()... 8, 62
sigemptyset()... 8, 44, 62
sigfillset()... 8, 44, 62
sighold()... 9
sigignore()... 9
siginterrupt()... 9
sigismember()... 8, 44, 62
siglongjmp()... 8
signal()... 8, 44, 62
signbit()... 5
sigpause()... 9
sigpending()... 8, 44, 62
sigprocmask()... 8, 44, 62
sigqueue()... 44, 62, 115
sigrelse()... 9
sigset()... 44, 62
sigsetjmp()... 8
sigsuspend()... 8
sigtimedwait()... 115
sigwait()... 8
sigwaitinfo()... 115
sin()... 5
sinf()... 5
sinh()... 5
sinhf()... 5
sinhl()... 5
sinl()... 5
sleep()... 7, 52, 69, 88, 106
snprintf()... 6
sockatmark()... 7
socket()... 7
socketpair()... 7
sprintf()... 6

145

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

sqrt()... 5
sqrtf()... 5
sqrtl()... 5
srand()... 6
srand48()... 9
srandom()... 9
sscanf()... 6
stat()... 7
statvfs()... 9
strcasecmp()... 9
strcat()... 6
strchr()... 6
strcmp()... 6
strcoll()... 6
strcpy()... 6
strcspn()... 6
strdup()... 9
strerror()... 6
strerror_r()... 6, 116
strfmon()... 9
strftime()... 6
strlen()... 6
strncasecmp()... 9
strncat()... 6
strncmp()... 6
strncpy()... 6
strpbrk()... 6
strptime()... 9
strrchr()... 6
strspn()... 6
strstr()... 6
strtod()... 6
strtof()... 6
strtoimax()... 6
strtok()... 6
strtok_r()... 6, 116
strtol()... 6
strtold()... 6
strtoll()... 6
strtoul()... 6
strtoull()... 6
strtoumax()... 6
strxfrm()... 6
swab()... 9
swapcontext()... 9
swprintf()... 6
swscanf()... 6
symlink()... 8
sync()... 9
sysconf()... 8, 44, 62, 80
syslog()... 9
system()... 8

tan()... 5
tanf()... 5
tanh()... 5
tanhf()... 5
tanhl()... 5
tanl()... 5
tcdrain()... 7
tcflow()... 7
tcflush()... 7
tcgetattr()... 7
tcgetpgrp()... 7
tcgetsid()... 9
tcsendbreak()... 7
tcsetattr()... 7
tcsetpgrp()... 7
tdelete()... 9
telldir()... 9
tempnam()... 9
tfind()... 9
tgamma()... 5
tgammaf()... 5
tgammal()... 5
time()... 6, 44, 62
timer_create()... 118
timer_detele()... 118
timer_getoverrun()... 44, 62, 118
timer_gettime()... 44, 62, 118
timer_settime()... 44, 62, 118
times()... 7, 44, 62
timezone()... 9
tmpfile()... 7
tmpnam()... 7
toascii()... 9
tolower()... 6
toupper()... 6
towctrans()... 6
towlower()... 6
towupper()... 6
trunc()... 5
truncate()... 9
truncf()... 5
truncl()... 5
tsearch()... 9
ttyname()... 7
ttyname_r()... 7, 116
twalk()... 9
tzname()... 6
tzset()... 6
ualarm()... 9
ulimit()... 9
umask()... 7
uname()... 8, 44, 62

146

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

ungetc()... 6
ungetwc()... 9
unlink()... xvii, 7
unlockpt()... 9
unsetenv()... 8
usleep()... 9
utime()... 7
utimes()... 120
va_arg()... 6
va_copy()... 6
va_end()... 6
va_start()... 6
vfork()... 9
vfprintf()... 6, 44
vfscanf()... 6, 44
vfwprintf()... 9
vfwscanf()... 9
vprintf()... 6, 44
vscanf()... 6, 44
vsnprintf()... 6
vsprintf()... 6
vsscanf()... 6
vswprintf()... 6
vswscanf()... 6
vwprintf()... 9
vwscanf()... 9
wait()... 7
waitid()... 9
waitpid()... 7
wcrtomb()... 6
wcscat()... 6
wcschr()... 6
wcscmp()... 6
wcscoll()... 6
wcscpy()... 6
wcscspn()... 6
wcsftime()... 6
wcslen()... 6
wcsncat()... 6
wcsncmp()... 6
wcsncpy()... 6
wcspbrk()... 6
wcsrchr()... 6
wcsrtombs()... 6
wcsspn()... 6
wcsstr()... 6
wcstod()... 6
wcstof()... 6
wcstoimax()... 6
wcstok()... 6
wcstol()... 6
wcstold()... 6

wcstoll()... 6
wcstombs()... 6
wcstoul()... 6
wcstoull()... 6
wcstoumax()... 6
wcswcs()... 120
wcswidth()... 10
wcsxfrm()... 6
wctob()... 6
wctomb()... 6
wctrans()... 6
wctype()... 6
wcwidth()... 10
wmemchr()... 6
wmemcmp()... 6
wmemcpy()... 6
wmemmove()... 6
wmemset()... 6
wordexp()... 8
wordfree()... 8
wprintf()... 9
write()... xv, xvii, 6, 44
writev()... 9
wscanf()... 9
y0()... 9
y1()... 9
yn()... 9

function family
format... 31

functionality
unit of... 29

funlockfile() function... 7, 116
fwide() function... 9
fwprintf() function... 9
fwrite() function... 6, 44
fwscanf() function... 9

G

gai_strerror() function... 7
gcvt() function... 120
Generic Application Environment Profile... 27
generic application environment profile... 27
generic environment profile... 33
generic interface profile... 27
Generic_Read subprogram... 11
Generic_Write subprogram... 11
Get subprogram... 46
Get_Allowed_Process_Permissions

subprogram... 12
Get_Buffer subprogram... 14

147

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Get_Canonical_Name subprogram... 124,
126

Get_Ceiling_Priority subprogram... 124
Get_Close_On_Exec subprogram... 12
Get_Controlling_Terminal_Name

subprogram... 11
Get_Data subprogram... 15
Get_Effective_Group_ID subprogram...

16
Get_Effective_User_ID subprogram...

16
Get_Events subprogram... 124
Get_Family subprogram... 124, 126
Get_File subprogram... 124
Get_File_Control subprogram... 12
Get_Flags subprogram... 124, 126
Get_Groups subprogram... 16
Get_Locking_Policy subprogram... 124
Get_Login_Name subprogram... 16
Get_Maximum_Priority subprogram... 14
Get_Minimum_Priority subprogram... 14
Get_Notification subprogram... 15
Get_Owner subprogram... 14
Get_Parent_Process_Id subprogram...

13
Get_Process_Group_ID subprogram... 16
Get_Process_Group_Id subprogram... 13
Get_Process_Id subprogram... 13
Get_Process_Shared subprogram... 124,

125
Get_Protocol_Number subprogram... 124,

126
Get_Real_Group_ID subprogram... 16
Get_Real_User_ID subprogram... 16
Get_Returned_Events subprogram... 124
Get_Round_Robin_Interval

subprogram... 14
Get_Signal subprogram... 15
Get_Socket_Address_Info

subprogram... 124, 126
Get_Socket_Type subprogram... 124, 126
Get_Terminal_Characteristics

subprogram... 11
Get_Terminal_Name subprogram... 11
Get_Working_Directory subprogram...

13
getaddrinfo() function... 7
getc() function... 6, 44
getc_unlocked() function... 7, 116
getchar() function... 6, 44
getchar_unlocked() function... 7, 116
getcontext() function... 9

getcwd() function... 7
getdate() function... 9
getegid() function... 9
getenv() function... 8
geteuid() function... 9
getgid() function... 9
getgrent() function... 10
getgrgid() function... 8
getgrgid_r() function... 8, 116
getgrnam() function... 8
getgrnam_r() function... 8, 116
getgroups() function... 9
gethostbyaddr() function... 7
gethostbyname() function... 7
gethostent() function... 7
gethostid() function... 9
gethostname() function... 7
getitimer() function... 10
getlogin() function... 9
getlogin_r() function... 9, 116
getmsg() function... 120
getnameinfo() function... 7
getnetbyaddr() function... 7
getnetbyname() function... 7
getnetent() function... 7
getopt() function... 8
getpeername() function... 7
getpgid() function... 9
getpgrp() function... 7
getpid() function... 7
getpmsg() function... 120
getppid() function... 7
getpriority() function... 9
getprotobyname() function... 7
getprotobynumber() function... 7
getprotoent() function... 7
getpwent() function... 9
getpwnam() function... 8
getpwnam_r() function... 8, 116
getpwuid() function... 8
getpwuid_r() function... 8, 116
getrlimit() function... 9
getrusage() function... 9
gets() function... 6, 44
getservbyname() function... 7
getservbyport() function... 7
getservent() function... 7
getsid() function... 9
getsockname() function... 7
getsockopt() function... 7
getsubopt() function... 9
gettimeofday() function... 9

148

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

getuid() function... 9
getutxent() function... 10
getutxid() function... 10
getutxline() function... 10
getwc() function... 9
getwchar() function... 9
getwd() function... 120
glob() function... 7
globfree() function... 7
gmtime() function... 6
gmtime_r() function... 6, 116
grantpt() function... 9
Group constant... 45

H

hcreate() function... 9
hdestroy() function... 9
header

<limits.h>... 36
<unistd.h>... 36, 39, 40, 47, 57, 58, 63,

64, 75, 76, 82, 93, 94, 100, 101
hsearch() function... 9
htonl() function... 7
htons() function... 7
hypot() function... 5
hypotf() function... 5
hypotl() function... 5

I

iconv() function... 9
iconv_close() function... 9
iconv_open() function... 9
if_freenameindex() function... 7
if_indextoname() function... 7
if_nameindex() function... 7
if_nametoindex() function... 7
Ignore_Signal subprogram... 15
ilogb() function... 5
ilogbf() function... 5
ilogbl() function... 5
Image subprogram... 10, 43, 61, 80, 98
imaxabs() function... 6
imaxdiv() function... 6
Implementation Conformance... 35
implementation defined... 36, 37, 41, 59, 78, 96

terminology... 25
In_Set subprogram... 11, 125
index() function... 120

industry specific interface profile... 27
industry specific profile... 27
inet_addr() function... 7
inet_ntoa() function... 7
inet_ntop() function... 7
inet_pton() function... 7
initstate() function... 9
Input_Baud_Rate_Of subprogram... 11
Input_Time_Of subprogram... 11
insque() function... 9
Install_Empty_Handler subprogram...

15
interface profile... 27
international standardized profile... 27, 33
Internet Datagram option... 14
Internet Protocol option... 14
Internet Protocol Version 6 option... 89, 108
Internet Stream option... 14
Interrupt_Task subprogram... 15
ioctl() function... xv, 120
Is... 15
Is_A_Terminal subprogram... 11
Is_Accessible subprogram... 13
Is_Block_Special_File subprogram...

13
Is_Character_Special_File

subprogram... 13
Is_Directory subprogram... 13
Is_Environment_Variable

subprogram... 16
Is_FIFO subprogram... 13
Is_File subprogram... 13
Is_File_Present subprogram... 13
Is_Ignored subprogram... 15
Is_Member subprogram... 15
Is_Open subprogram... 11
Is_Socket subprogram... 13
isalnum() function... 6
isalpha() function... 6
isascii() function... 9
isastream() function... 120
isatty() function... 7
isblank() function... 6
iscntrl() function... 6
isdigit() function... 6
isfinite() function... 5
isgraph() function... 6
isgreater() function... 5
isgreaterequal() function... 5
isinf() function... 5
isless() function... 5
islessequal() function... 5

149

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

islessgreater() function... 5
islower() function... 6
isnan() function... 5
isnormal() function... 5
ISO/IEC Conformant Application... 37
ISP... 27, 33
isprint() function... 6
ispunct() function... 6
isspace() function... 6
isunordered() function... 5
isupper() function... 6
iswalnum() function... 6
iswalpha() function... 6
iswblank() function... 6
iswcntrl() function... 6
iswctype() function... 6
iswdigit() function... 6
iswgraph() function... 6
iswlower() function... 6
iswprint() function... 6
iswpunct() function... 6
iswspace() function... 6
iswupper() function... 6
iswxdigit() function... 6
isxdigit() function... 6

J

j0() function... 9
j1() function... 9
jn() function... 9
Job Control option... 13
jobs utility... 122
jrand48() function... 9

K

kill() function... 8, 44, 62, 80
killpg() function... 9

L

l64a() function... 9
labs() function... 6
lchown() function... 9
lcong48() function... 9
ldexp() function... 5
ldexpf() function... 5
ldexpl() function... 5

ldiv() function... 6
Length subprogram... 16
lex utility... 121
lfind() function... 9
lgamma() function... 5
lgammaf() function... 5
lgammal() function... 5
limit

_POSIX_NGROUPS_MAX... 96
_POSIX_RTSIG_MAX... 41, 59, 77, 96
_POSIX_TIMER_MAX... 41, 59, 77, 96
CHILD_MAX... 96

Link subprogram... 13
link() function... xvii, 7
lio_listio() function... 113
listen() function... 7
llabs() function... 6
lldiv() function... 6
llrint() function... 5
llrintf() function... 5
llrintl() function... 5
llround() function... 5
llroundf() function... 5
llroundl() function... 5
localeconv() function... 6
localtime() function... 6
localtime_r() function... 6, 116
Lock_Shared_Memory subprogram... 125
lockf() function... 9
log() function... 5
log10() function... 5
log10f() function... 5
log10l() function... 5
log1p() function... 5
log1pf() function... 5
log1pl() function... 5
log2() function... 5
log2f() function... 5
log2l() function... 5
logb() function... 5
logbf() function... 5
logbl() function... 5
logf() function... 5
logl() function... 5
long type... 96
longjmp() function... 4
lrand48() function... 9
lrint() function... 5
lrintf() function... 5
lrintl() function... 5
lround() function... 5
lroundf() function... 5

150

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

lroundl() function... 5
lsearch() function... 9
lseek() function... 7
lstat() function... 8

M

macro
S-IRWXU... 44, 62, 80

main() function... 48, 65
make utility... 122
Make_Empty subprogram... 11
makecontext() function... 9
malloc() function... 6
Map_Memory subprogram... 123
may

terminology... 25
mblen() function... 6
mbrlen() function... 6
mbrtowc() function... 6
mbsinit() function... 6
mbsrtowcs() function... 6
mbstowcs() function... 6
mbtowc() function... 6
memccpy() function... 9
memchr() function... 6
memcmp() function... 6
memcpy() function... 6
memmove() function... 6
Memory Locking option... 20, 42, 60, 79, 97,

123
Memory Mapped option... 125
Memory Mapped Files option... 20, 60, 79,

97, 123, 126
Memory Protection option... 20, 79, 97, 123
Memory Range option... 125
Memory Range Locking option... 20, 42, 60,

79, 97, 123
Memory-Mapped Files option... 69
memset() function... 6
mesg utility... 122
Message Queues option... 20, 60, 79, 97, 123
Minimal Realtime System Profile... 2, 39
Minimum_Input_Count_Of subprogram...

11
mkdir() function... xvii, 7
mkfifo() function... 7
mknod() function... 9
mkstemp() function... 9
mktemp() function... 120
mktime() function... 6

mlock() function... 114
mlockall() function... 114
mmap() function... 114, 115
MMU... 32
modf() function... 5
modff() function... 5
modfl() function... 5
Monotonic Clock option... 52, 69, 88, 106
more utility... 122
mprotect() function... 114
mq_close() function... 114
mq_getattr() function... 114
mq_notify() function... 114
mq_open() function... 114
mq_receive() function... 114
mq_send() function... 114
mq_setattr() function... 114
mq_timedreceive() function... 114, 118
mq_timedsend() function... 114, 118
mq_unlink() function... 114
mrand48() function... 9
msgctl() function... 9
msgget() function... 9
msgrcv() function... 9
msgsnd() function... 9
msync() function... 114, 116
Multi-Purpose Realtime System Profile... 3, 93
munlock() function... 114
munlockall() function... 114
munmap() function... 114, 115
Mutex Priority Ceiling option... 21, 42, 60,

79, 98, 124
Mutex Priority Inherit option... 124
Mutex Priority Inheritance option... 21, 42,

60, 79, 98, 124
Mutexes option... 124
Mutexes Support option... 42, 60, 79
Mutexes Supported option... 98
MutexPriority Ceiling option... 124

N

nan() function... 5
nanf() function... 5
nanl() function... 5
nanosleep() function... 118
National Body Conformant POSIX.13

Application... 37
nearbyint() function... 5
nearbyintf() function... 5
nearbyintl() function... 5

151

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Network Management option... 124, 126
newgrp utility... 122
nextafter() function... 5
nextafterf() function... 5
nextafterl() function... 5
nexttoward() function... 5
nexttowardf() function... 5
nexttowardl() function... 5
nftw() function... 9
nice utility... 122
nice() function... 9
nl_langinfo() function... 9
nm utility... 122
Normative References... 23
nrand48() function... 9
ntohl() function... 7
ntohs() function... 7

O

off_t type... 96
Open subprogram... 11, 46
open system environment... 28, 33
open() function... xv, 6, 44, 49
Open_Or_Create subprogram... 13
opendir() function... 7
openlog() function... 9
Operation_Not_Implemented constant...

22, 98
Operation_Not_Supported constant...

43, 61, 80, 98
option

_POSIX_ADVISORY_INFO... 18, 20, 49,
66, 84, 95

_POSIX_AEP_REALTIME_... 39, 57, 75,
93

_POSIX_AEP_REALTIME_CONTROLLE
R... 57

_POSIX_AEP_REALTIME_DEDICATED
... 75

_POSIX_AEP_REALTIME_LANG_Ada9
5... 40, 47, 58, 64, 76, 82, 94, 101

_POSIX_AEP_REALTIME_LANG_C99...
40, 47, 58, 63, 76, 82, 94, 100

_POSIX_AEP_REALTIME_MINIMAL...
39

_POSIX_AEP_REALTIME_MULTI... 93
_POSIX_ASYNCHRONOUS_IO... 18, 20,

77, 95, 120
_POSIX_BARRIERS... 18, 20
_POSIX_CHOWN_RESTRICTED... 18, 20,

95
_POSIX_CLOCK_SELECTION... 18, 20,

41, 59, 77, 95
_POSIX_CPUTIME... 18, 20, 77, 95
_POSIX_FSYNC... 18, 20, 41, 59, 77, 95,

120
_POSIX_IPV6... 18, 20
_POSIX_JOB_CONTROL... 10
_POSIX_JOB_CONTROL... 18, 95
_POSIX_MAPPED_FILES... 18, 20, 49,

59, 77, 95, 120
_POSIX_MEMLOCK... 18, 20, 41, 48, 59,

77, 95, 120
_POSIX_MEMLOCK_RANGE... 18, 20, 41,

59, 77, 95, 120
_POSIX_MEMORY_PROTECTION... 18,

20, 77, 95, 120
_POSIX_MESSAGE_PASSING... 18, 20,

59, 77, 95, 120
_POSIX_MONOTONIC_CLOCK... 19, 20,

41, 59, 77, 95
_POSIX_NO_TRUNC... 19, 20, 22, 41, 49,

59, 77, 95
_POSIX_PRIORITIZED_IO... 19, 20,

77, 95, 120
_POSIX_PRIORITY_SCHEDULING...

19, 20, 77, 86, 95, 104, 120
_POSIX_RAW_SOCKETS... 19, 20, 77, 95
_POSIX_READER_WRITER_LOCKS...

10
_POSIX_READER_WRITER_LOCKS...

19, 20
_POSIX_REALTIME_SIGNALS... 19, 20,

41, 59, 77, 95, 120
_POSIX_REGEXP... 10
_POSIX_REGEXP... 19, 21, 95
_POSIX_SAVED_IDS... 19, 21, 95
_POSIX_SEMAPHORES... 19, 21, 41, 59,

77, 95, 120
_POSIX_SHARED_MEMORY_OBJECTS...

19, 21, 41, 59, 77, 95, 120
_POSIX_SHELL... 19, 21, 96
_POSIX_SPAWN... 19, 21, 77, 96
_POSIX_SPIN_LOCKS... 19, 21
_POSIX_SPORADIC_SERVER... 19, 21,

77, 96
_POSIX_SYNCHRONIZED_IO... 19, 21,

41, 59, 77, 96, 120
_POSIX_THREAD_ATTR_STACKADDR...

19, 21, 41, 59, 77, 96
_POSIX_THREAD_ATTR_STACKSIZE...

19, 21, 41, 59, 77, 96

152

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

_POSIX_THREAD_CPUTIME... 19, 21,
41, 59, 77, 96

_POSIX_THREAD_PRIO_INHERIT...
19, 21, 41, 59, 77, 96, 120

_POSIX_THREAD_PRIO_PROTECT...
19, 21, 41, 59, 77, 96, 120

_POSIX_THREAD_PRIORITY_SCHEDU
LING... 19, 21, 41, 59, 77, 96, 120

_POSIX_THREAD_PROCESS_SHARED.
.. 10

_POSIX_THREAD_PROCESS_SHARED...
19, 21, 77, 96

_POSIX_THREAD_SAFE_FUNCTIONS...
19, 21, 96

_POSIX_THREAD_SPORADIC_SERVER
... 19, 21, 41, 59, 77, 96

_POSIX_THREAD_STACK_ADDRESS...
121

_POSIX_THREAD_STACK_SIZE... 121
_POSIX_THREADS... 10, 19, 21, 53, 70,

88, 107
_POSIX_TIMEOUTS... 10
_POSIX_TIMEOUTS... 19, 21, 41, 59, 77,

96
_POSIX_TIMERS... 19, 21, 41, 59, 77, 96,

120
_POSIX_TRACE... 19, 21, 59, 77, 96
_POSIX_TRACE_EVENT_FILTER... 19,

21, 59, 77, 96
_POSIX_TRACE_INHERIT... 19, 21
_POSIX_TRACE_LOG... 19, 21, 59, 77, 96
_POSIX_TYPED_MEMORY_OBJECTS...

19, 21
_POSIX_VDISABLE... 19, 21, 22, 96
_POSIX_VERSION... 44, 62, 80
_POSIX2_C_BIND... 19, 21
_POSIX2_C_DEV... 19, 21
_POSIX2_CHAR_TERM... 19, 21
_POSIX2_FORT_DEV... 19, 21
_POSIX2_FORT_RUN... 19, 21
_POSIX2_LOCALEDEF... 19, 21
_POSIX2_PBS... 19, 21
_POSIX2_PBS_ACCOUNTING... 19, 21
_POSIX2_PBS_CHECKPOINT... 20, 21
_POSIX2_PBS_LOCATE... 20, 21
_POSIX2_PBS_MESSAGE... 20, 21
_POSIX2_PBS_TRACK... 20, 21
_POSIX2_SW_DEV... 20, 21
_POSIX2_UPE... 20, 21
_XOPEN_CRYPT... 20, 21, 55, 72, 90, 109
_XOPEN_ENH_I18N... 20, 21
_XOPEN_LEGACY... 20, 22, 55, 72, 90, 109

_XOPEN_REALTIME... 20, 22
_XOPEN_REALTIME_THREADS... 20, 22
_XOPEN_SHM... 20, 22
_XOPEN_STREAMS... 20, 22, 55, 72, 90,

109
_XOPEN_UNIX... 20, 22
Ada Language... 42, 45, 60, 62, 72, 78, 80,

97, 99, 100
Ada language... 91, 109
Ada-Language... 18, 36
Advisory Information... 102
Asynchronous I/O... 20, 79, 97, 123
C Language... 40, 43, 61, 72, 76, 80, 94, 99
C language... 58, 90, 109
Change Owner Restriction... 20, 97, 123
CHILD_MAX... 44, 62
C-Language... 18, 36
C-language... 20
Clock Selection... 52, 69, 88, 106
File Locking... 49, 66, 102
File Synchronization... 49, 66, 84
File Synchronization... 20, 42, 60, 79, 97,

123
Filename Truncation... 42, 60, 79, 97
Filename Truncation... 20, 22, 42, 60, 79,

97, 123
Internet Datagram... 14
Internet Protocol... 14
Internet Protocol Version 6... 89, 108
Internet Stream... 14
Job Control... 13
Memory Locking... 20, 42, 60, 79, 97, 123
Memory Mapped... 125
Memory Mapped Files... 20, 60, 79, 97,

123, 126
Memory Protection... 20, 79, 97, 123
Memory Range... 125
Memory Range Locking... 20, 42, 60, 79,

97, 123
Memory-Mapped Files... 69
Message Queues... 20, 60, 79, 97, 123
Monotonic Clock... 52, 69, 88, 106
Mutex Priority Ceiling... 21, 42, 60, 79,

98, 124
Mutex Priority Inherit... 124
Mutex Priority Inheritance... 21, 42, 60,

79, 98, 124
Mutexes... 124
Mutexes Support... 42, 60, 79
Mutexes Supported... 98
MutexPriority Ceiling... 124
Network Management... 124, 126

153

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Poll... 124
POSIX2_C_BIND... 16, 46, 63, 81, 99, 100
POSIX2_C_DEV... 16, 46, 63, 81, 100
POSIX2_CDEV... 99
POSIX2_CHAR_TERM... 99, 100
POSIX2_FORT_RUN... 99, 100
POSIX2_SW_DEV... 16, 46, 47, 63, 64, 81,

82, 99, 100, 101
POSIX2_UPE... 99, 100
Prioritized I/O... 20, 79, 97, 124
Priority Process Scheduling... 20, 79,

97, 125
Process Shared... 50, 67, 85, 104
Process Shared... 21, 79, 98, 124
Process Shared and Mutexes... 125
Raw Sockets... 89, 108
Realtime Signals... 20, 42, 60, 79, 97, 125
Required... 18
Saved IDs Support... 21, 97, 125
Select... 12
Select... 125
Semaphores... 21, 42, 60, 79, 97, 125
Server Scheduling... 67
Shared Memory... 123
Shared Memory Objects... 87
Shared Memory Objects... 21, 42, 60, 79,

98, 125
Sockets Detailed... 124
Sockets Detailed Network Interface... 14
Sockets Detailed Network Interface...

126
spawn... 65
Sporadic Server Scheduling... 51, 86, 104
Synchronized I/O... 21, 42, 60, 79, 98,

123, 126
Timeouts... 52, 70, 88, 107
Timers... 21, 42, 60, 79, 98, 126
Trace Event Filtering... 70, 89, 107
Trace Log... 70, 89, 107
XTI Detailed Network Interface... 126

OSE... 28, 33
Other constant... 45
Output_Baud_Rate_Of subprogram... 11
Owner constant... 45

P

package
Ada_Streams... 10
Ada_Task_Identification... 10
POSIX... 15

POSIX_Calendar... 15
POSIX_Condition_Variables...

124, 125
POSIX_Configurable_File_Limit

s... 12
POSIX_Configurable_System_Lim

its... 15
POSIX_Event_Management... 11, 124,

125
POSIX_File_Locking... 12
POSIX_File_Status... 12
POSIX_Files... 12, 13
POSIX_Generic_Shared_Memory...

125
POSIX_Group_Database... 16
POSIX_IO... 11, 12, 13, 14, 125, 126
POSIX_Limits... 15
POSIX_Memory_Mapping... 126
POSIX_Mutexes... 124, 125
POSIX_Options... 15, 39, 57, 75, 93
POSIX_Page_Alignment... 10
POSIX_Permissions... 12
POSIX_Process_Environment... 13,

16
POSIX_Process_Identification...

13, 16
POSIX_Process_Primitives... 13
POSIX_Process_Scheduling... 14,

125
POSIX_Process_Times... 13
POSIX_Profiles... 15, 16, 43, 61, 79,

98, 111
POSIX_Semaphores... 125
POSIX_Shared_Memory_Objects...

125
POSIX_Signals... 13, 15, 125
POSIX_Sockets... 14, 124, 126
POSIX_Sockets_Internet... 14
POSIX_Sockets_Local... 14
POSIX_Supplement_To_Ada_IO... 10
POSIX_Terminal_Functions... 11,

13
POSIX_Timers... 126
POSIX_Unsafe_Process_Primitiv

es... 13, 78
POSIX_User_Database... 16
POSIX_XTI... 126
System... 10
System_Storage_Elements... 10

patch utility... 122
pathconf() function... 7
pause() function... 8

154

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

pclose() function... 8
Pending_Signals subprogram... 15
perror() function... 6, 44
pipe() function... 7
platform

application... 26
development... 27

Poll option... 124
Poll subprogram... 124
poll() function... 9
popen() function... 8
POSIX package... 15
POSIX.1... 32
POSIX.5c... 32
POSIX_ADA_LANG_SUPPORT unit of

functionality... 10, 17, 42, 60, 78, 97
POSIX_C_LANG_JUMP unit of functionality...

4, 17, 40, 58, 76, 94
POSIX_C_LANG_MAT unit of functionality...

58
POSIX_C_LANG_MATH unit of functionality...

5, 17, 55, 76, 94
POSIX_C_LANG_SUPPOR unit of

functionality... 58
POSIX_C_LANG_SUPPORT unit of

functionality... 6, 17, 40, 76, 94
POSIX_C_LANG_WIDE_CHAR unit of

functionality... 6, 17, 55, 72, 90, 94
POSIX_C_LIB_EXT unit of functionality... 40
POSIX_Calendar package... 15
POSIX_Condition_Variables package...

124, 125
POSIX_Configurable_File_Limits

package... 12
POSIX_Configurable_System_Limits

package... 15
POSIX_Configurable_System_Limits

.System_POSIX_Ada_Version
subprogram... 45, 62, 81

POSIX_Configurable_System_Limits
.System_POSIX_Version
subprogram... 45, 62, 80

POSIX_DEVICE_IO unit of functionality... 6,
11, 17, 40, 42, 58, 60, 76, 78, 94, 97

POSIX_DEVICE_SPECIFIC unit of
functionality... 7, 11, 17, 94, 97

POSIX_Error exception... 22, 43, 61, 80, 98
POSIX_Event_Management package... 11,

124, 125
POSIX_EVENT_MGMT unit of functionality... 7,

11, 17, 76, 78, 94, 97
posix_fadvise() function... 113

posix_fallocate() function... 113
POSIX_FD_MGMT unit of functionality... 7, 12,

17, 49, 58, 60, 76, 78, 94, 97
POSIX_FIFO unit of functionality... 7, 12, 17,

49, 66, 84, 94, 97
POSIX_FILE_ATTRIBUTES unit of

functionality... 7, 12, 17, 49, 66, 84, 94, 97
POSIX_File_Locking package... 12
POSIX_FILE_LOCKING unit of

functionality... 7, 17, 40, 42, 58, 76, 94
POSIX_File_Status package... 12
POSIX_FILE_SYSTEM unit of functionality...

7, 12, 17, 49, 58, 60, 76, 78, 94, 97
POSIX_FILE_SYSTEM_EXT unit of

functionality... 7, 17, 49, 66, 84, 94
POSIX_Files package... 12, 13
POSIX_Generic_Shared_Memory

package... 125
POSIX_Group_Database package... 16
POSIX_IO package... 11, 12, 13, 14, 125, 126
POSIX_IO.Generic_Read subprogram...

45
POSIX_IO.Generic_Write subprogram...

45
POSIX_IO.Open subprogram... 45
POSIX_IO.Open_Or_Create

subprogram... 45
POSIX_IO.Read subprogram... 45
POSIX_IO.Write subprogram... 45
POSIX_JOB_CONTROL unit of functionality...

7, 13, 17, 22, 94, 97, 114
POSIX_Limits package... 15
POSIX_Limits.Child_Processes_Max

ima'Last constant... 45, 62
POSIX_Limits.Child_Processes_Max

ima’First type... 98
POSIX_Limits.Groups_Maxima'First

constant... 22
POSIX_Limits.Groups_Maxima’First

constant... 43, 61, 79
POSIX_Limits.Groups_Maxima’First

type... 98
POSIX_Limits.Realtime_Signals_Ma

xima’First type... 42, 60, 79, 98
POSIX_Limits.Timers_Maxima’First

type... 42, 60, 79, 98
posix_madvise() function... 113, 114, 115
posix_mem_offset() function... 119
posix_memalign() function... 113
POSIX_Memory_Mapping package... 126
POSIX_MULTI_PROCESS unit of

functionality... 7, 13, 17, 76, 78, 94, 97

155

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

POSIX_Mutexes package... 124, 125
POSIX_NETWORKING unit of functionality... 7,

14, 17, 76, 78, 94, 97
posix_openpt() function... 9
POSIX_Options package... 15, 39, 57, 75, 93
POSIX_Page_Alignment package... 10
POSIX_Permissions package... 12
POSIX_PIPE unit of functionality... 7, 17, 76,

78, 95, 97
POSIX_PIPES unit of functionality... 14
POSIX_PRIORITY_RANGES unit of

functionality... 7, 14, 17, 40, 51, 58, 67, 86,
104

POSIX_Process_Environment package...
13, 16

POSIX_Process_Identification
package... 13, 16

POSIX_Process_Primitives package...
13

Posix_Process_Primitives.Start_P
rocess subprogram... 81

Posix_Process_Primitives.Start_P
rocess_Search subprogram... 81

POSIX_Process_Scheduling package...
14, 125

POSIX_Process_Times package... 13
POSIX_Profiles package... 15, 16, 43, 61,

79, 98, 111
POSIX_Profiles. type... 40, 47, 58, 63, 76,

82, 94, 100
POSIX_Profiles.Realtime_Controll

er type... 57
POSIX_Profiles.Realtime_Dedicate

d type... 75
POSIX_Profiles.Realtime_Lang_Ada

95 type... 40, 47, 58, 64, 76, 82, 94, 101
POSIX_Profiles.Realtime_Minimal

type... 39
POSIX_Profiles.Realtime_Multi

type... 93
POSIX_REGEXP unit of functionality... 7, 17,

54, 71, 89, 95, 108, 115
POSIX_RW_LOCKS unit of functionality... 8,

10, 17, 115
POSIX_Semaphores package... 125
POSIX_Shared_Memory_Objects

package... 125
POSIX_SHELL_FUNC unit of functionality... 8,

17, 54, 71, 89, 95, 108
POSIX_SIGNAL_JUMP unit of functionality...

8, 17, 76, 95
POSIX_Signals package... 13, 15, 125

POSIX_SIGNALS unit of functionality... 8, 15,
17, 40, 42, 58, 60, 76, 78, 95, 97

POSIX_Signals.Set_Stopped_Child_
Signal subprogram... 22

POSIX_Signals.Set_Stopped_Child_
Signal subprogram... 43, 61, 79

POSIX_Signals.Stopped_Child_Sign
al_Enabled subprogram... 22

POSIX_Signals.Stopped_Child_Sign
al_Enabled subprogram... 43, 61, 79

POSIX_SINGLE_PROCESS unit of
functionality... 8, 15, 17, 40, 42, 58, 60, 76,
78, 95, 97

POSIX_Sockets package... 14, 124, 126
POSIX_Sockets_Internet package... 14
POSIX_Sockets_Local package... 14
posix_spawn() function... 115
posix_spawn_file_actions_addclose()

function... 115
posix_spawn_file_actions_adddup2()

function... 115
posix_spawn_file_actions_addopen()

function... 115
posix_spawn_file_actions_destroy()

function... 115
posix_spawn_file_actions_init() function...

115
posix_spawnattr_destroy() function... 115
posix_spawnattr_getflags() function... 115
posix_spawnattr_getpgroup() function... 115
posix_spawnattr_getschedparam()

function... 114, 115
posix_spawnattr_getschedpolicy()

function... 114, 115
posix_spawnattr_getsigdefault() function...

115
posix_spawnattr_getsigmask() function...

115
posix_spawnattr_init() function... 115
posix_spawnattr_setflags() function... 115
posix_spawnattr_setpgroup() function... 115
posix_spawnattr_setschedparam()

function... 114, 115
posix_spawnattr_setschedpolicy()

function... 114, 115
posix_spawnattr_setsigdefault() function...

115
posix_spawnattr_setsigmask() function...

115
posix_spawnp() function... 115
POSIX_STRING_MATCHING unit of

functionality... 8, 17, 95

156

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

POSIX_Supplement_To_Ada_IO
package... 10

POSIX_SYMBOLIC_LINKS unit of
functionality... 8, 17, 95

POSIX_SYSTEM_DATABASE unit of
functionality... 8, 16, 17, 95, 97

POSIX_Terminal_Functions package...
11, 13

POSIX_Terminal_Functions.Disable
_Control_Character subprogram...
22

POSIX_Terminal_Functions.Disable
_Control_Character subprogram...
22, 98

POSIX_THREADS_BASE unit of
functionality... 8, 10, 17, 40, 53, 58, 70, 76,
88, 95, 107

POSIX_Timers package... 126
posix_trace_attr_destroy() function... 119
posix_trace_attr_getclockres() function... 119
posix_trace_attr_getcreatetime() function...

119
posix_trace_attr_getgenversion() function...

119
posix_trace_attr_getinherited() function...

119
posix_trace_attr_getlogfullpolicy()

function... 119
posix_trace_attr_getlogsize() function... 119
posix_trace_attr_getmaxdatasize()

function... 119
posix_trace_attr_getmaxsystemeventsize()

function... 119
posix_trace_attr_getmaxusereventsize()

function... 119
posix_trace_attr_getname() function... 119
posix_trace_attr_getstreamfullpolicy()

function... 119
posix_trace_attr_getstreamsize() function...

119
posix_trace_attr_init() function... 119
posix_trace_attr_setinherited() function...

119
posix_trace_attr_setlogfullpolicy()

function... 119
posix_trace_attr_setlogsize() function... 119
posix_trace_attr_setmaxdatasize()

function... 119
posix_trace_attr_setname() function... 119
posix_trace_attr_setstreamfullpolicy()

function... 119
posix_trace_attr_setstreamsize() function...

119
posix_trace_clear() function... 119
posix_trace_close() function... 119
posix_trace_create() function... 119
posix_trace_create_withlog() function... 119
posix_trace_event() function... 119
posix_trace_eventid_equal() function... 119
posix_trace_eventid_get_name() function...

119
posix_trace_eventid_open() function... 119
posix_trace_eventset_add() function... 119
posix_trace_eventset_del() function... 119
posix_trace_eventset_empty() function... 119
posix_trace_eventset_fill() function... 119
posix_trace_eventset_ismember() function...

119
posix_trace_eventtypelist_getnext_id()

function... 119
posix_trace_eventtypelist_rewind()

function... 119
posix_trace_flush() function... 119
posix_trace_get_attr() function... 119
posix_trace_get_filter() function... 119
posix_trace_get_status() function... 119
posix_trace_getnext_event() function... 119
posix_trace_open() function... 119
posix_trace_rewind() function... 119
posix_trace_set_filter() function... 119
posix_trace_shutdown() function... 119
posix_trace_start() function... 119
posix_trace_stop() function... 119
posix_trace_timedgetnext_event() function...

118, 119
posix_trace_trid_eventid_open() function...

119
posix_trace_trygetnext_event() function...

119
posix_typed_mem_get_info() function... 119
posix_typed_mem_open() function... 119
POSIX_Unsafe_Process_Primitives

package... 13, 78
Posix_Unsafe_Process_Primitives

subprogram... 81
POSIX_User_Database package... 16
POSIX_USER_GROUPS unit of functionality...

9, 16, 17, 95, 97
POSIX_WIDE_CHAR_IO unit of

functionality... 9, 17, 95
POSIX_XTI package... 126
POSIX2_C_BIND option... 16, 46, 63, 81, 99,

100
POSIX2_C_DEV option... 16, 46, 63, 81, 100

157

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

POSIX2_CDEV option... 99
POSIX2_CHAR_TERM option... 99, 100
POSIX2_FORT_RUN option... 99, 100
POSIX2_SW_DEV option... 16, 46, 47, 63, 64,

81, 82, 99, 100, 101
POSIX2_UPE option... 99, 100
pow() function... 5
powf() function... 5
powl() function... 5
pread() function... 9
printf() function... 6, 44
Prioritized I/O option... 20, 79, 97, 124
priority ceiling protocol... 50, 67, 85, 104
priority inheritance protocol... 50, 67, 85, 104
Priority Inversion... 28
priority inversion... 50, 67, 85, 104
Priority Process Scheduling option... 20, 79,

97, 125
priority protection protocol

see priority ceiling protocol
Process Shared and Mutexes option... 125
Process Shared option... 50, 67, 85, 104
Process Shared option... 21, 79, 98, 124
profile

application environment... 26, 27
component... 26
for ISO standardization... 28
generic application environment... 27
generic interface... 27
industry specific interface... 27
interface... 27
international standardized... 27, 33
realtime environment... 28
system... 28

profile, application environment... 33
profile, generic environment... 33
protocol

priority ceiling... 50, 67, 85, 104
priority inheritance... 50, 67, 85, 104

ps utility... 122
PSE... 33
PSE51... 2, 33, 39
PSE52... 3, 33, 57
PSE53... 3, 33, 75
PSE54... 3, 33, 93
pselect() function... 7
pthread_atfork() function... 8, 117
pthread_attr_destroy() function... 8, 117
pthread_attr_getdetachstate() function... 8,

117
pthread_attr_getguardsize() function... 10
pthread_attr_getinheritsched() function...

116, 118
pthread_attr_getschedparam() function... 8,

117
pthread_attr_getschedpolicy() function...

116, 118
pthread_attr_getscope() function... 116, 118
pthread_attr_getstack() function... 10, 116,

117
pthread_attr_getstackaddr() function... 116,

117
pthread_attr_getstacksize() function... 116,

117, 121
pthread_attr_init() function... 8, 117
pthread_attr_setdetachstate() function... 8,

117
pthread_attr_setguardsize() function... 10
pthread_attr_setinheritsched() function...

116, 118
pthread_attr_setschedparam() function... 8,

117
pthread_attr_setschedpolicy() function...

116, 118
pthread_attr_setscope() function... 116, 118
pthread_attr_setstack() function... 10, 116,

117
pthread_attr_setstackaddr() function... 116,

117
pthread_attr_setstacksize() function... 116,

117, 121
pthread_barrier_destroy() function... 113,

117
pthread_barrier_init() function... 113, 117
pthread_barrier_wait() function... 113, 117
pthread_barrierattr_destroy() function...

113, 117
pthread_barrierattr_getpshared()

function... 113, 116, 117
pthread_barrierattr_init() function... 113,

117
pthread_barrierattr_setpshared() function...

113, 116, 117
pthread_cancel() function... 8, 117
pthread_cleanup_pop() function... 8, 117
pthread_cleanup_push() function... 8, 117
pthread_cond_broadcast() function... 8, 117
pthread_cond_destroy() function... 8, 117
pthread_cond_init() function... 8, 117
pthread_cond_signal() function... 8, 117
pthread_cond_timedwait() function... 8, 117
pthread_cond_wait() function... 8, 117
pthread_condattr_destroy() function... 8, 117
pthread_condattr_getclock() function... 113,

158

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

117
pthread_condattr_getpshared() function...

116, 118
pthread_condattr_init() function... 8, 117
pthread_condattr_setclock() function... 113,

117
pthread_condattr_setpshared() function...

116, 118
pthread_create() function... 8, 117
pthread_detach() function... 8, 117
pthread_equal() function... 8, 117
pthread_exit() function... 8, 117
pthread_getconcurrency() function... 10
pthread_getcpuclockid() function... 116, 117
pthread_getschedparam() function... 116,

118
pthread_getspecific() function... 8, 117
pthread_join() function... 8, 117
pthread_key_create() function... 8, 117
pthread_key_delete() function... 8, 117
pthread_kill() function... 8, 117
pthread_mutex_destroy() function... 8, 117
pthread_mutex_getprioceiling() function...

116, 118
pthread_mutex_init() function... 8, 117
pthread_mutex_lock() function... 8, 117
pthread_mutex_setprioceiling() function...

116, 118
pthread_mutex_timedlock() function... 118
pthread_mutex_trylock() function... 8, 117
pthread_mutex_unlock() function... 8, 117
pthread_mutexattr_destroy() function... 8,

117
pthread_mutexattr_getprioceiling()

function... 116, 118
pthread_mutexattr_getprotocol() function...

116, 117
pthread_mutexattr_getpshared() function...

116, 118
pthread_mutexattr_gettype() function... 10
pthread_mutexattr_init() function... 8, 117
pthread_mutexattr_setprioceiling()

function... 116, 118
pthread_mutexattr_setprotocol() function...

116, 117
pthread_mutexattr_setpshared() function...

116, 118
pthread_mutexattr_settype() function... 10
pthread_once() function... 8, 117
pthread_rwlock_destroy() function... 8, 118
pthread_rwlock_init() function... 8, 118
pthread_rwlock_rdlock() function... 8, 118

pthread_rwlock_timedrdlock() function... 8,
118

pthread_rwlock_timedwrlock() function... 8,
118

pthread_rwlock_tryrdlock() function... 8, 118
pthread_rwlock_trywrlock() function... 8,

118
pthread_rwlock_unlock() function... 8, 118
pthread_rwlock_wrlock() function... 8, 118
pthread_rwlockattr_destroy() function... 8,

118
pthread_rwlockattr_getpshared() function...

8, 116, 118
pthread_rwlockattr_init() function... 8, 118
pthread_rwlockattr_setpshared() function...

8, 116, 118
PTHREAD_SCOPE_PROCESS constant... 78,

96
PTHREAD_SCOPE_SYSTEM constant... 78, 86,

96, 105
pthread_self() function... 8, 117
pthread_setcalcelstate() function... 8, 117
pthread_setcanceltype() function... 8, 117
pthread_setconcurrency() function... 10
pthread_setschedparam() function... 116,

118
pthread_setschedprio() function... 116, 118
pthread_setspecific() function... 8, 117
pthread_sigmask() function... 8, 117
pthread_spin_destroy() function... 115, 117
pthread_spin_init() function... 115, 117
pthread_spin_lock() function... 115, 117
pthread_spin_trylock() function... 115, 117
pthread_spin_unlock() function... 115, 117
pthread_testcancel() function... 8, 117
ptsname() function... 9
Put subprogram... 46
putc() function... 6, 44
putc_unlocked() function... 7, 116
putchar() function... 6, 44
putchar_unlocked() function... 7, 116
putenv() function... 9
putmsg() function... 120
putpmsg() function... 120
puts() function... 6, 44
pututxline() function... 10
putwc() function... 9
putwchar() function... 9
pwrite() function... 9

159

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Q

qalter utility... 122
qdel utility... 122
qhold utility... 122
qmove utility... 122
qmsg utility... 122
qrerun utility... 122
qrls utility... 122
qselect utility... 122
qsig utility... 122
qsort() function... 6
qstat utility... 122
qsub utility... 122
Queue_Signal subprogram... 125

R

raise() function... 8, 44, 62
rand() function... 6
rand_r() function... 6, 116
random() function... 9
Raw Sockets option... 89, 108
Read subprogram... 11, 46
read() function... xv, xvii, 6, 44
Read_Write_Execute constant... 45
readdir() function... 7
readdir_r() function... 7, 116
readlink() function... 8
readv() function... 9
realloc() function... 6
realpath() function... 9
Realtime Controller System Profile... 3, 57
realtime environment profile... 28
Realtime Signals option... 20, 42, 60, 79, 97,

125
Realtime System Profiles... 2
Realtime_Lang_C99 type... 40, 47, 58, 63,

76, 82, 94, 100
recv() function... 7
recvfrom() function... 7
recvmsg() function... 7
regcomp() function... 7
regerror() function... 7
regexec() function... 7
regfree() function... 7
Related Open Systems Standards... 127
remainder() function... 5
remainderf() function... 5
remainderl() function... 5
Remove subprogram... 11, 125

remove() function... 7
Remove_Directory subprogram... 13
remque() function... 9
remquo() function... 5
remquof() function... 5
remquol() function... 5
Rename subprogram... 13
rename() function... xvii, 7
renice utility... 122
Required option... 18
rewind() function... 7
rewinddir() function... 7
rindex() function... 120
rint() function... 5
rintf() function... 5
rintl() function... 5
rmdir() function... xvii, 7
round() function... 5
roundf() function... 5
roundl() function... 5

S

Saved IDs Support option... 21, 97, 125
scalb() function... 9
scalbln() function... 5
scalblnf() function... 5
scalblnl() function... 5
scalbn() function... 5
scalbnf() function... 5
scalbnl() function... 5
scanf() function... 6, 44
SCHED_FIFO constant... 41, 51, 59, 68, 78, 86,

96, 104, 105
sched_get_priority_max() function... 7, 114
sched_get_priority_min() function... 7, 114
sched_getparam() function... 114
sched_getscheduler() function... 114
SCHED_RR constant... 41, 51, 59, 68, 78, 86, 96,

104, 105
sched_rr_get_interval() function... 7, 114
sched_setparam() function... 114
sched_setscheduler() function... 114
sched_yield() function... 114, 118
seed48() function... 9
Seek subprogram... 12
seekdir() function... 9
Select option... 12
Select option... 125
select() function... 7, 54, 71, 89, 108
Select_File subprogram... 11, 125

160

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

sem_close() function... 115
sem_destroy() function... 115
sem_getvalue() function... 115
sem_init() function... 115
sem_open() function... 115
sem_post() function... 44, 62, 115
sem_timedwait() function... 115, 118
sem_trywait() function... 115
sem_unlink() function... 115
sem_wait() function... 115
Semaphores option... 21, 42, 60, 79, 97, 125
semctl() function... 9
semget() function... 9
semop() function... 9
send() function... 7
Send_Break subprogram... 11
Send_Signal subprogram... 15
sendmsg() function... 7
sendto() function... 7
Server Scheduling option... 67
Set_Allowed_Process_Permissions

subprogram... 12
Set_Blocked_Signals subprogram... 15
Set_Buffer subprogram... 14
Set_Ceiling_Priority subprogram... 124
Set_Close_On_Exec subprogram... 12
Set_Data subprogram... 15
Set_Environment_Variable

subprogram... 16
Set_Events subprogram... 124
Set_Family subprogram... 124, 126
Set_File subprogram... 124
Set_File_Control subprogram... 12
Set_File_Times subprogram... 13
Set_Flags subprogram... 124, 126
Set_Group_ID subprogram... 16
Set_Locking_Policy subprogram... 124
Set_Notification subprogram... 15
Set_Process_Group_Id subprogram... 13
Set_Process_Shared subprogram... 124,

125
Set_Protocol_Number subprogram... 124,

126
Set_Returned_Events subprogram... 124
Set_Signal subprogram... 15
Set_Socket_Group_Owner subprogram...

14
Set_Socket_Process_Owner

subprogram... 14
Set_Socket_Type subprogram... 124, 126
Set_Stopped_Child_Signal

subprogram... 13

Set_Terminal_Characteristics
subprogram... 11

Set_User_ID subprogram... 16
setbuf() function... 6
setcontext() function... 9
setegid() function... 9
setenv() function... 8
seteuid() function... 9
setgid() function... 9
setgrent() function... 10
sethostent() function... 7
setitimer() function... 10
setjmp() function... 4
setkey() function... 120
setlocale() function... 6
setlogmask() function... 9
setnetent() function... 7
setpgid() function... 7
setpgrp() function... 9
setpriority() function... 9
setprotoent() function... 7
setpwent() function... 9
setregid() function... 10
setreuid() function... 10
setrlimit() function... 9
setservent() function... 7
setsid() function... 7
setsockopt() function... 7
setstate() function... 9
setuid() function... 9
setutxent() function... 10
setvbuf() function... 6
sh utility... 121
shall

terminology... 25
Shared Memory option... 123
Shared Memory Objects option... 87
Shared Memory Objects option... 21, 42, 60,

79, 98, 125
shm_open() function... 115
shm_unlink() function... 115
shmat() function... 9
shmctl() function... 9
shmdt() function... 9
shmget() function... 9
should

terminology... 25
shutdown() function... 7
sigaction() function... 8, 44, 62
sigaddset() function... 8, 44, 62
sigaltstack() function... 9
sigdelset function... 44

161

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

sigdelset() function... 8, 62
sigemptyset() function... 8, 44, 62
sigfillset() function... 8, 44, 62
sighold() function... 9
sigignore() function... 9
siginterrupt() function... 9
sigismember() function... 8, 44, 62
siglongjmp() function... 8
Signal type... 15
signal() function... 8, 44, 62
Signal_Event type... 15
Signal_Info type... 126
signbit() function... 5
sigpause() function... 9
sigpending() function... 8, 44, 62
sigprocmask() function... 8, 44, 62
sigqueue() function... 44, 62, 115
sigrelse() function... 9
sigset type... 9
sigset() function... 44, 62
sigsetjmp() function... 8
sigsuspend() function... 8
sigtimedwait() function... 115
sigwait() function... 8
sigwaitinfo() function... 115
sin() function... 5
sinf() function... 5
sinh() function... 5
sinhf() function... 5
sinhl() function... 5
sinl() function... 5
S-IRWXU macro... 44, 62, 80
sleep() function... 7, 52, 69, 88, 106
snprintf() function... 6
sockatmark() function... 7
socket() function... 7
socketpair() function... 7
Sockets Detailed option... 124
Sockets Detailed Network Interface option... 14
Sockets Detailed Network Interface

option... 126
spawn option... 65
Special_Control_Character_Of

subprogram... 11
split utility... 122
Sporadic Server Scheduling option... 51, 86, 104
sprintf() function... 6
sqrt() function... 5
sqrtf() function... 5
sqrtl() function... 5
srand() function... 6
srand48() function... 9

srandom() function... 9
sscanf() function... 6
standard

base... 26
stat() function... 7
statvfs() function... 9
Stopped_Child_Signal_Enabled

subprogram... 13
strcasecmp() function... 9
strcat() function... 6
strchr() function... 6
strcmp() function... 6
strcoll() function... 6
strcpy() function... 6
strcspn() function... 6
strdup() function... 9
strerror() function... 6
strerror_r() function... 6, 116
strfmon() function... 9
strftime() function... 6
Strictly Conforming Application... 37
strings utility... 122
strip utility... 122
strlen() function... 6
strncasecmp() function... 9
strncat() function... 6
strncmp() function... 6
strncpy() function... 6
strpbrk() function... 6
strptime() function... 9
strrchr() function... 6
strspn() function... 6
strstr() function... 6
strtod() function... 6
strtof() function... 6
strtoimax() function... 6
strtok() function... 6
strtok_r() function... 6, 116
strtol() function... 6
strtold() function... 6
strtoll() function... 6
strtoul() function... 6
strtoull() function... 6
strtoumax() function... 6
strxfrm() function... 6
Subprofiling Option Group... 28
subprogram

Accessibility... 13
Add... 11, 125
Add_All_Signals... 15
Add_Signal... 15
Argument_List... 16

162

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Await_Signal... 15, 125
Await_Signal_Or_Timeout... 15,

125
Bits_Per_Character_Of... 11
Block_Signals... 15
Blocked_Signals... 15
Change_Owner_And_Group... 12
Change_Permissions... 12, 123
Change_Protection... 123
Change_Working_Directory... 13
Clear_Environment... 16
Close... 11
Copy_Environment... 16
Copy_From_Current_Environment

... 16
Copy_To_Current_Environment...

16
Create... 46
Create_Directory... 13
Create_FIFO... 12
Create_Pipe... 14
Create_Process_Group... 13
Create_Session... 16
Define_Bits_Per_Character... 11
Define_Input_Baud_Rate... 11
Define_Input_Time... 11
Define_Minimum_Input_Count... 11
Define_Output_Baud_Rate... 11
Define_Special_Control_Charac

ter... 11
Define_Terminal_Modes... 11
Delete... 46
Delete_All_Signals... 15
Delete_Environment_Variable...

16
Delete_Signal... 15
Disable_Control_Character... 11
Disable_Queueing... 125
Discard_Data... 11
Drain... 11
Duplicate... 12
Duplicate_And_Close... 12
Enable_Queueing... 125
Environment_Value_Of... 16
Existence... 13
File_Position... 12
File_Size... 12
Filename_Of... 13
Flow... 11
For_Every_Current_Environment

_Variable... 16
For_Every_Directory_Entry... 13

For_Every_Environment_Variabl
e... 16

For_Every_File_In... 11
For_Every_Item... 124, 126
Generic_Read... 11
Generic_Write... 11
Get... 46
Get_Allowed_Process_Permissio

ns... 12
Get_Buffer... 14
Get_Canonical_Name... 124, 126
Get_Ceiling_Priority... 124
Get_Close_On_Exec... 12
Get_Controlling_Terminal_Name

... 11
Get_Data... 15
Get_Effective_Group_ID... 16
Get_Effective_User_ID... 16
Get_Events... 124
Get_Family... 124, 126
Get_File... 124
Get_File_Control... 12
Get_Flags... 124, 126
Get_Groups... 16
Get_Locking_Policy... 124
Get_Login_Name... 16
Get_Maximum_Priority... 14
Get_Minimum_Priority... 14
Get_Notification... 15
Get_Owner... 14
Get_Parent_Process_Id... 13
Get_Process_Group_ID... 16
Get_Process_Group_Id... 13
Get_Process_Id... 13
Get_Process_Shared... 124, 125
Get_Protocol_Number... 124, 126
Get_Real_Group_ID... 16
Get_Real_User_ID... 16
Get_Returned_Events... 124
Get_Round_Robin_Interval... 14
Get_Signal... 15
Get_Socket_Address_Info... 124,

126
Get_Socket_Type... 124, 126
Get_Terminal_Characteristics...

11
Get_Terminal_Name... 11
Get_Working_Directory... 13
Ignore_Signal... 15
Image... 10, 43, 61, 80, 98
In_Set... 11, 125
Input_Baud_Rate_Of... 11

163

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Input_Time_Of... 11
Install_Empty_Handler... 15
Interrupt_Task... 15
Is_A_Terminal... 11
Is_Accessible... 13
Is_Block_Special_File... 13
Is_Character_Special_File... 13
Is_Directory... 13
Is_Environment_Variable... 16
Is_FIFO... 13
Is_File... 13
Is_File_Present... 13
Is_Ignored... 15
Is_Member... 15
Is_Open... 11
Is_Socket... 13
Length... 16
Link... 13
Lock_Shared_Memory... 125
Make_Empty... 11
Map_Memory... 123
Minimum_Input_Count_Of... 11
Open... 11, 46
Open_Or_Create... 13
Output_Baud_Rate_Of... 11
Pending_Signals... 15
Poll... 124
POSIX_Configurable_System_Lim

its.System_POSIX_Ada_Ve
rsion... 45, 62, 81

POSIX_Configurable_System_Lim
its.System_POSIX_Versio
n... 45, 62, 80

POSIX_IO.Generic_Read... 45
POSIX_IO.Generic_Write... 45
POSIX_IO.Open... 45
POSIX_IO.Open_Or_Create... 45
POSIX_IO.Read... 45
POSIX_IO.Write... 45
Posix_Process_Primitives.Star

t_Process... 81
Posix_Process_Primitives.Star

t_Process_Search... 81
POSIX_Signals.Set_Stopped_Chi

ld_Signal... 22, 43, 61, 79
POSIX_Signals.Stopped_Child_S

ignal_Enabled... 22, 43, 61,
79

POSIX_Terminal_Functions.Disa
ble_Control_Character...
22, 98

Posix_Unsafe_Process_Primitiv

es... 81
Put... 46
Queue_Signal... 125
Read... 11, 46
Remove... 11, 125
Remove_Directory... 13
Rename... 13
Seek... 12
Select_File... 11, 125
Send_Break... 11
Send_Signal... 15
Set_Allowed_Process_Permissio

ns... 12
Set_Blocked_Signals... 15
Set_Buffer... 14
Set_Ceiling_Priority... 124
Set_Close_On_Exec... 12
Set_Data... 15
Set_Environment_Variable... 16
Set_Events... 124
Set_Family... 124, 126
Set_File... 124
Set_File_Control... 12
Set_File_Times... 13
Set_Flags... 124, 126
Set_Group_ID... 16
Set_Locking_Policy... 124
Set_Notification... 15
Set_Process_Group_Id... 13
Set_Process_Shared... 124, 125
Set_Protocol_Number... 124, 126
Set_Returned_Events... 124
Set_Signal... 15
Set_Socket_Group_Owner... 14
Set_Socket_Process_Owner... 14
Set_Socket_Type... 124, 126
Set_Stopped_Child_Signal... 13
Set_Terminal_Characteristics...

11
Set_User_ID... 16
Special_Control_Character_Of...

11
Stopped_Child_Signal_Enabled...

13
Synchronize_Data... 123, 126
Synchronize_File... 123
Synchronize_Memory... 123, 126
Terminal_Modes_Of... 11
Truncate_File... 123, 125
Unblock_Signals... 15
Unignore_Signal... 15
Unlink... 13

164

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Unlock_Shared_Memory... 125
Unmap_Memory... 123
Value... 10, 43, 61, 80, 98
Write... 11, 46

Summary of Profile Features... 17
swab() function... 9
swapcontext() function... 9
swprintf() function... 6
swscanf() function... 6
symlink() function... 8
sync() function... 9
Synchronize_Data subprogram... 123, 126
Synchronize_File subprogram... 123
Synchronize_Memory subprogram... 123,

126
Synchronized I/O option... 21, 42, 60, 79, 98,

123, 126
sysconf() function... 8, 44, 62, 80
syslog() function... 9
System package... 10
system profile... 28
system() function... 8
System_Storage_Elements package... 10

T

tabs utility... 122
talk utility... 122
tan() function... 5
tanf() function... 5
tanh() function... 5
tanhf() function... 5
tanhl() function... 5
tanl() function... 5
tcdrain() function... 7
tcflow() function... 7
tcflush() function... 7
tcgetattr() function... 7
tcgetpgrp() function... 7
tcgetsid() function... 9
tcsendbreak() function... 7
tcsetattr() function... 7
tcsetpgrp() function... 7
tdelete() function... 9
telldir() function... 9
tempnam() function... 9
Terminal_Modes_Of subprogram... 11
Terminology... 25
tfind() function... 9
tgamma() function... 5
tgammaf() function... 5

tgammal() function... 5
time utility... 122
time() function... 6, 44, 62
Timeouts option... 52, 70, 88, 107
timer_create() function... 118
timer_detele() function... 118
timer_getoverrun() function... 44, 62, 118
timer_gettime() function... 44, 62, 118
timer_settime() function... 44, 62, 118
Timers option... 21, 42, 60, 79, 98, 126
times() function... 7, 44, 62
timezone() function... 9
tmpfile() function... 7
tmpnam() function... 7
toascii() function... 9
tolower() function... 6
toupper() function... 6
towctrans() function... 6
towlower() function... 6
towupper() function... 6
tput utility... 122
Trace Event Filtering option... 70, 89, 107
Trace Log option... 70, 89, 107
True..True constant... 39, 40, 42, 47, 57, 58,

60, 63, 64, 75, 76, 79, 82, 93, 94, 97, 100,
101, 111

trunc() function... 5
truncate() function... 9
Truncate_File subprogram... 123, 125
truncf() function... 5
truncl() function... 5
tsearch() function... 9
ttyname() function... 7
ttyname_r() function... 7, 116
twalk() function... 9
type

Boolean... 39, 40, 57, 58, 75, 76, 93, 94,
111

FILE *... 49, 66, 84, 102
long... 96
off_t... 96
POSIX_Limits.Child_Processes_

Maxima’First... 98
POSIX_Limits.Groups_Maxima’Fi

rst... 98
POSIX_Limits.Realtime_Signals

_Maxima’First... 42, 60, 79,
98

POSIX_Limits.Timers_Maxima’Fi
rst... 42, 60, 79, 98

POSIX_Profiles.... 40, 47, 58, 63, 76,
82, 94, 100

165

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

POSIX_Profiles.Realtime_Contr
oller... 57

POSIX_Profiles.Realtime_Dedic
ated... 75

POSIX_Profiles.Realtime_Lang_
Ada95... 40, 47, 58, 64, 76, 82, 94,
101

POSIX_Profiles.Realtime_Minim
al... 39

POSIX_Profiles.Realtime_Multi
... 93

Realtime_Lang_C99... 40, 47, 58, 63,
76, 82, 94, 100

Signal... 15
Signal_Event... 15
Signal_Info... 126
sigset... 9

tzname() function... 6
tzset() function... 6

U

ualarm() function... 9
ulimit() function... 9
umask() function... 7
unalias utility... 122
uname() function... 8, 44, 62
Unblock_Signals subprogram... 15
Unbounded Priority Inversion... 28
undefined... 36

terminology... 26
unexpand utility... 122
ungetc() function... 6
ungetwc() function... 9
Unignore_Signal subprogram... 15
unit of functionality... 29

POSIX_ADA_LANG_SUPPORT... 10, 17,
42, 60, 78, 97

POSIX_C_LANG_JUMP... 4, 17, 40, 58, 76,
94

POSIX_C_LANG_MAT... 58
POSIX_C_LANG_MATH... 5, 17, 55, 76, 94
POSIX_C_LANG_SUPPOR... 58
POSIX_C_LANG_SUPPORT... 6, 17, 40,

76, 94
POSIX_C_LANG_WIDE_CHAR... 6, 17,

55, 72, 90, 94
POSIX_C_LIB_EXT... 40
POSIX_DEVICE_IO... 6, 11, 17, 40, 42,

58, 60, 76, 78, 94, 97
POSIX_DEVICE_SPECIFIC... 7, 11, 17,

94, 97
POSIX_EVENT_MGMT... 7, 11, 17, 76, 78,

94, 97
POSIX_FD_MGMT... 7, 12, 17, 49, 58, 60,

76, 78, 94, 97
POSIX_FIFO... 7, 12, 17, 49, 66, 84, 94, 97
POSIX_FILE_ATTRIBUTES... 7, 12, 17,

49, 66, 84, 94, 97
POSIX_FILE_LOCKING... 7, 17, 40, 42,

58, 76, 94
POSIX_FILE_SYSTEM... 7, 12, 17, 49, 58,

60, 76, 78, 94, 97
POSIX_FILE_SYSTEM_EXT... 7, 17, 49,

66, 84, 94
POSIX_JOB_CONTROL... 7, 13, 17, 22, 94,

97, 114
POSIX_MULTI_PROCESS... 7, 13, 17, 76,

78, 94, 97
POSIX_NETWORKING... 7, 14, 17, 76, 78,

94, 97
POSIX_PIPE... 7, 17, 76, 78, 95, 97
POSIX_PIPES... 14
POSIX_PRIORITY_RANGES... 7, 14, 17,

40, 51, 58, 67, 86, 104
POSIX_REGEXP... 7, 17, 54, 71, 89, 95,

108, 115
POSIX_RW_LOCKS... 8, 10, 17, 115
POSIX_SHELL_FUNC... 8, 17, 54, 71, 89,

95, 108
POSIX_SIGNAL_JUMP... 8, 17, 76, 95
POSIX_SIGNALS... 8, 15, 17, 40, 42, 58,

60, 76, 78, 95, 97
POSIX_SINGLE_PROCESS... 8, 15, 17,

40, 42, 58, 60, 76, 78, 95, 97
POSIX_STRING_MATCHING... 8, 17, 95
POSIX_SYMBOLIC_LINKS... 8, 17, 95
POSIX_SYSTEM_DATABASE... 8, 16, 17,

95, 97
POSIX_THREADS_BASE... 8, 10, 17, 40,

53, 58, 70, 76, 88, 95, 107
POSIX_USER_GROUPS... 9, 16, 17, 95, 97
POSIX_WIDE_CHAR_IO... 9, 17, 95
XSI_C_LANG_SUPPORT... 9, 17, 54, 71,

90, 108, 121
XSI_DBM... 9, 17, 54, 71, 90, 108, 121
XSI_DEVICE_IO... 9, 18, 54, 71, 90, 108,

121
XSI_DEVICE_SPECIFIC... 9, 18, 54, 71,

90, 108, 121
XSI_DYNAMIC_LINKING... 9, 18, 54, 71,

90, 95, 108, 121
XSI_FD_MGMT... 9, 18, 54, 71, 90, 108,

166

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

121
XSI_FILE_SYSTEM... 9, 18, 54, 71, 90,

108, 121
XSI_I18N... 9, 18, 54, 71, 90, 108, 121
XSI_IPC... 9, 18, 54, 71, 90, 108, 120, 121
XSI_JOB_CONTROL... 9, 18, 54, 71, 90,

108, 121
XSI_JUMP... 9, 18, 54, 71, 90, 108, 121
XSI_MATH... 9, 18, 54, 71, 90, 108, 121
XSI_MULTI_PROCESS... 9, 18, 54, 71, 90,

108, 121
XSI_SIGNALS... 9, 18, 54, 71, 90, 108,

121
XSI_SINGLE_PROCESS... 9, 18, 54, 71,

90, 108, 121
XSI_SYSTEM_DATABASE... 9, 18, 54, 71,

90, 108, 121
XSI_SYSTEM_LOGGING... 9, 18, 54, 71,

90, 95, 109, 121
XSI_THREAD_MUTEX_EXT... 10, 18, 40,

54, 58, 72, 76, 90, 95, 109, 121
XSI_THREADS_EXT... 10, 18, 40, 54, 58,

72, 77, 90, 95, 109, 121
XSI_TIMERS... 10, 18, 54, 71, 90, 108, 121
XSI_USER_GROUPS... 10, 18, 54, 71, 90,

108, 121
XSI_WIDE_CHAR... 10, 18, 54, 71, 90,

108, 121
Units of Functionality... 4
Unlink subprogram... 13
unlink() function... xvii, 7
Unlock_Shared_Memory subprogram... 125
unlockpt() function... 9
Unmap_Memory subprogram... 123
unsetenv() function... 8
unspecified... 36, 37

terminology... 26
Use_Error exception... 45, 63, 81
usleep() function... 9
utility

alias... 122
ar... 122
asa... 122
at... 122
batch... 122
bg... 122
c99... 121
command... 122
crontab... 122
csplit... 122
ctags... 122
df... 122

du... 122
ex... 122
expand... 122
fc... 122
fg... 122
file... 122
fort77... 122
fsck... xvii
jobs... 122
lex... 121
make... 122
mesg... 122
more... 122
newgrp... 122
nice... 122
nm... 122
patch... 122
ps... 122
qalter... 122
qdel... 122
qhold... 122
qmove... 122
qmsg... 122
qrerun... 122
qrls... 122
qselect... 122
qsig... 122
qstat... 122
qsub... 122
renice... 122
sh... 121
split... 122
strings... 122
strip... 122
tabs... 122
talk... 122
time... 122
tput... 122
unalias... 122
unexpand... 122
uudecode... 122
uuencode... 122
vi... 122
who... 122
write... 122
yacc... 121

utime() function... 7
utimes() function... 120
uudecode utility... 122
uuencode utility... 122

167

POSIX® REALTIME AND EMBEDDED APPLICATION PROFILES IEEE Std P1003.13-Draft 2.1, Feb 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

V

va_arg() function... 6
va_copy() function... 6
va_end() function... 6
va_start() function... 6
Value subprogram... 10, 43, 61, 80, 98
vfork() function... 9
vfprintf() function... 6, 44
vfscanf() function... 6, 44
vfwprintf() function... 9
vfwscanf() function... 9
vi utility... 122
vprintf() function... 6, 44
vscanf() function... 6, 44
vsnprintf() function... 6
vsprintf() function... 6
vsscanf() function... 6
vswprintf() function... 6
vswscanf() function... 6
vwprintf() function... 9
vwscanf() function... 9

W

wait() function... 7
waitid() function... 9
waitpid() function... 7
wcrtomb() function... 6
wcscat() function... 6
wcschr() function... 6
wcscmp() function... 6
wcscoll() function... 6
wcscpy() function... 6
wcscspn() function... 6
wcsftime() function... 6
wcslen() function... 6
wcsncat() function... 6
wcsncmp() function... 6
wcsncpy() function... 6
wcspbrk() function... 6
wcsrchr() function... 6
wcsrtombs() function... 6
wcsspn() function... 6
wcsstr() function... 6
wcstod() function... 6
wcstof() function... 6
wcstoimax() function... 6
wcstok() function... 6
wcstol() function... 6
wcstold() function... 6

wcstoll() function... 6
wcstombs() function... 6
wcstoul() function... 6
wcstoull() function... 6
wcstoumax() function... 6
wcswcs() function... 120
wcswidth() function... 10
wcsxfrm() function... 6
wctob() function... 6
wctomb() function... 6
wctrans() function... 6
wctype() function... 6
wcwidth() function... 10
who utility... 122
wmemchr() function... 6
wmemcmp() function... 6
wmemcpy() function... 6
wmemmove() function... 6
wmemset() function... 6
wordexp() function... 8
wordfree() function... 8
wprintf() function... 9
Write subprogram... 11, 46
write utility... 122
write() function... xv, xvii, 6, 44
writev() function... 9
wscanf() function... 9

X

XSI_C_LANG_SUPPORT unit of
functionality... 9, 17, 54, 71, 90, 108, 121

XSI_DBM unit of functionality... 9, 17, 54, 71,
90, 108, 121

XSI_DEVICE_IO unit of functionality... 9, 18,
54, 71, 90, 108, 121

XSI_DEVICE_SPECIFIC unit of
functionality... 9, 18, 54, 71, 90, 108, 121

XSI_DYNAMIC_LINKING unit of
functionality... 9, 18, 54, 71, 90, 95, 108, 121

XSI_FD_MGMT unit of functionality... 9, 18, 54,
71, 90, 108, 121

XSI_FILE_SYSTEM unit of functionality... 9,
18, 54, 71, 90, 108, 121

XSI_I18N unit of functionality... 9, 18, 54, 71,
90, 108, 121

XSI_IPC unit of functionality... 9, 18, 54, 71,
90, 108, 120, 121

XSI_JOB_CONTROL unit of functionality... 9,
18, 54, 71, 90, 108, 121

XSI_JUMP unit of functionality... 9, 18, 54, 71,

168

IEEE Std P1003.13-Draft 2.1, Feb 2003 STANDARDIZED APPLICATION ENVIRONMENT PROFILE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

90, 108, 121
XSI_MATH unit of functionality... 9, 18, 54, 71,

90, 108, 121
XSI_MULTI_PROCESS unit of functionality...

9, 18, 54, 71, 90, 108, 121
XSI_SIGNALS unit of functionality... 9, 18, 54,

71, 90, 108, 121
XSI_SINGLE_PROCESS unit of

functionality... 9, 18, 54, 71, 90, 108, 121
XSI_SYSTEM_DATABASE unit of

functionality... 9, 18, 54, 71, 90, 108, 121
XSI_SYSTEM_LOGGING unit of

functionality... 9, 18, 54, 71, 90, 95, 109, 121
XSI_THREAD_MUTEX_EXT unit of

functionality... 10, 18, 40, 54, 58, 72, 76, 90,
95, 109, 121

XSI_THREADS_EXT unit of functionality... 10,
18, 40, 54, 58, 72, 77, 90, 95, 109, 121

XSI_TIMERS unit of functionality... 10, 18, 54,
71, 90, 108, 121

XSI_USER_GROUPS unit of functionality... 10,
18, 54, 71, 90, 108, 121

XSI_WIDE_CHAR unit of functionality... 10,
18, 54, 71, 90, 108, 121

XTI Detailed Network Interface option...
126

Y

y0() function... 9
y1() function... 9
yacc utility... 121
yn() function... 9

