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ABSTRACT
Studying metabolic fluxes is a crucial aspect of understand-
ing biological phenotypes. However, it is often not possible
to measure these fluxes directly. As an alternative, flux-
ome profiling provides indirect information about fluxes in
a high-throughput setting. In this paper, we consider a sce-
nario where fluxome profiling is used to investigate charac-
teristic differences between a number of bacterial mutant
strains. The goal is to identify groups of mutants that
show maximally different fluxome profiles. We propose an
evolutionary algorithm for this optimization problem and
demonstrate that it outperforms alternative methods based
on principle component analysis and independent compo-
nent analysis on both real and synthetic data sets.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous

General Terms
Algorithms

Keywords
Evolutionary Algorithm, Biological Application, Fluxome
Analysis

1. MOTIVATION
For a given organism the metabolic network describes the

set of biochemical reactions and their connections. Often,
information about the structure of the metabolic network is
available but in order to understand biological phenotypes
knowledge about the activities in the metabolic network is
important [9]. These activities are typically characterized
by the molecular fluxes through the network. No suitable
method exists for measuring the fluxes directly but fluxome
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profiling provides an indirect measurement. This is achieved
by measuring the accumulation of labeled inputs at differ-
ent nodes in the network. Abstracting from the underlying
biology, the resulting data can be described as a real valued
vector representing the metabolic fingerprint of the respec-
tive organism, see Section 2.1 for more details.

Recent advances in measurement technology enable meta-
bolism-wide determination of fluxome profiles in relatively
short time [4]. Often, such experiments are used to study the
effects of mutations in bacteria. In such a scenario, a large
number (several ten to several hundred) of different mutants
are subjected to fluxome profiling. The corresponding goal
for the analysis of the measurements is to identify distinct
groups of mutants and determine the characteristic differ-
ences in their flux profiles. Or, from an opposite point of
view, to identify characteristic features in the fingerprints
that exhibit a good separation of groups of mutants.

The approach followed in [12] and [10] is to search for
features in the flux profiles which can be directly related
the biological differences between the mutants. To this end,
principal component analysis (PCA) and independent com-
ponent analysis (ICA) have been used and it was found that
in some cases these components could be related to under-
lying biological properties such as flux ratios or biological
replicas. However, such strong relations cannot be reliably
inferred in general. In this study, we take a different ap-
proach which consists of identifying groups of mutants that
have distinct fingerprints. More specifically, we are search-
ing for various pairs of mutant groups that are well separated
with respect to their flux profiles. In contrast to the meth-
ods proposed in [12, 10], here the goal is not identify specific
features in the flux profiles but we try to discriminate the
mutants based on their flux profiles directly. The result-
ing mutant groups can then direct the further investigations
of the biologist experimenter towards potentially interesting
biological differences.

Several EA-based methods have been proposed for group-
ing data points, e. g.,[3, 5]. All these methods are targeted
to a cluster analysis, i. e., they generate a partition by as-
signing each data point to one group. However, in the con-
text of the fluxome analysis we are interested in identifying
pairs of groups that are well separated. To this end, we
propose i) a general problem formulation for this separa-
tion which is independent of the distance measure used and
ii) an optimization framework specifically adapted to this
problem. The method is a combination of an evolutionary
algorithm used for global search and a greedy heuristic used
for locally optimizing solutions. We verify the ability of the
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method to find diverse sets of well separated mutant groups
and show that these groups are better separated than those
found by heuristics based on PCA or ICA. Additionally, we
demonstrate the validity of the approach by showing that
well separated mutants also have distinct flux ratios on a
set of simulated fluxome measurements.

The next section provides a short overview of fluxome pro-
filing and of methods that have been previously used for the
analysis of fluxome data. Following on that, we propose a
problem formulation for the discrimination of fluxome pro-
files in Section 3 and a corresponding optimization method
in Section 4. The aforementioned analysis on real and syn-
thetic data is presented in Section 5.

2. BACKGROUND

2.1 Fluxome Profiling
A metabolic flux describes the number of molecules that

are going through a biochemical reaction per time unit.
Fluxome profiling is a method used to characterize the en-
tirety of molecular fluxes through the metabolic network
[9]. For an improved understanding of many biological pro-
cesses, knowledge of these fluxes is crucial because, unlike
gene or protein expression, they directly determine the cel-
lular phenotype. No suitable method exists for measuring
the fluxes directly but fluxome profiling provides an indirect
measurement.

Several methods exist for determining flux profiles. The
only one which is suitable for high-throughput experiments
uses isotope markers [9]. The basic idea is to provide an
organism, e. g., Bacillus subtilis bacteria with a labeled sub-
strate such as glucose built of 13C isotopes or alternative
heavy isotopes and then determine in which metabolites the
labeled isotopes end up [4]. For these measurements, a num-
ber of amino acids are extracted from the metabolites and
gas chromatography mass spectrometry (GC-MS) is used to
determine the proportion of atoms in these amino acids that
has been replaced by the marker isotopes. The resulting
data specify for each measured amino acid what proportion
of the molecules contain zero, one, two, etc. marked atoms.
Note that the same amino acid is often contained in mul-
tiple metabolites included in the analysis and can thus not
be uniquely linked to one position in the metabolic network.
For a detailed description, the reader is referred to [4].

2.2 Fluxome Profile Analysis
Basically, two different approaches exist for the analysis

of such data sets. If detailed knowledge of the metabolic
reaction network, the substrate uptake, etc. is available flux
ratios can be calculated directly [4]. In the general case,
techniques from multivariate statistics can be applied to
discriminate different mutant strains. From this category
mainly two methods have been applied to the analysis of
fluxome profiles, namely PCA and ICA, which we will now
discuss in some more detail.

PCA is a method mainly used for dimensionality reduc-
tion. The first principle component represents the direction
in which the variance of the data is highest. The following
principle components are chosen such that each captures the
largest amount of remaining variance in the data. All princi-
ple components are orthogonal. Two studies [12, 10] which
investigate the effectiveness of different methods find that
the principle components do not correspond to the under-

lying biological differences. For example in [10] PCA is not
able to identify groups of biological replicas. This is prob-
ably due to the fact that high variance does in general not
coincide with good group discrimination [7] and PCA was
designed to maintain the variance of the data in a reduced
dimensionality.

ICA, in contrast, was developed for the discrimination
of independent signals, a task also known as blind source
separation [7]. It considers the inputs as different additive
mixtures of the unknown signals. The data model requires
that the source signals be mutually independent and non-
Gaussian. Given that, any mixture of the source signals are
more Gaussian than the source signals themselves. The ICA
algorithm thus tries to identify non-correlated components
that are maximally non-gaussian. By itself, ICA does not
change the number of dimensions but an additional method
like PCA can be used to achieve a dimensionality reduc-
tion. Two studies [12, 10] have used ICA for the analysis
of fluxome profiles. In [10] independent components clearly
separated groups of biological replicas which PCA was not
able to do. In [12] the projections of the isotope profiles
on the independent components were correlated to the flux
ratios at critical points in the network. A few combinations
of independent components and flux ratios exhibited high
correlations. However, in general it is not possible to ex-
tract the flux ratios by means of ICA as these flux ratios at
different points in the network are connected and thus not
independent.

3. PROBLEM DEFINITION
In contrast to ICA, which performs a coordinate trans-

form, in this study we search for well discriminated groups
of mutants in the original space of isotope profiles. The un-
derlying idea is that two groups of mutants showing distinct
isotope profiles probably exhibit two different characteristic
flux distributions. The association of mutants with the two
groups can serve as a starting point for further biological in-
vestigation of the characteristic differences and similarities
of the mutant strains. Correspondingly, we are not only in-
terested in finding two well separated groups but multiple
diverse pairs of mutant groups. In the following, we de-
scribe the criteria for these two levels of optimization more
formally by specifying when two groups are well separated
and how to define diversity of multiple pairs of groups.

Given m mutants and c amino acids which are included
in the measurements, the fluxome profiles are given by the
m × n matrix P where each row represents the measure-
ments for one mutant. Such a row vector contains 3–9 el-
ements lijfor each amino acid j according to the number of
carbon atoms it contains, i. e., i ∈ {0, 1, 2, . . . , dj} where dj

is the number of carbon atoms in amino acid j. These values
specify what proportion of the total amino acid contained i
heavy isotopes, c. f. Figure 1. It follows thatX

i=0...d

lji = 1 ∀ j. (1)

For the current study we consider each mutant as a point in
euclidean space given by the corresponding row of P.

As a first step, we look at the problem of selecting two
groups from the set of m mutants such that the isotope
profiles are similar within the two groups but clearly distinct
between them. This selection corresponds to a partitioning
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Figure 1: A hypothetical isotope profile for one mu-
tant. Amino acid A contains 3 carbon atoms and
amino acid B contains 2 carbon atoms. The values
in the array specify the proportion of amino acid
molecules containing the given number of heavy iso-
topes

of mutants into three parts: the mutants in each group and
the mutants not included in either group. It can be defined
as a pair of sets (G1, G2) where G1, G2 ⊂ {1, . . . , m} and
G1 ∩ G2 = ∅. The size of the induced search space is 3m

as there are three possible assignments for each mutant. A
solution (G1, G2) is evaluated based on two criteria, namely
the separation with respect to the isotope profiles and the
total size of the two groups.

The separation of two sets of points can be defined as the
silhouette width [8]. This is a measure often used in the
validation of clustering methods, as it combines information
about the intra-cluster distances and the inter-cluster dis-
tances into a scalar [6]. The silhouette width w is defined
as the mean silhouette value over all points. The silhouette
value for each point measures the confidence in the point’s
assignment to the group and is calculated as

s(i) =
bi − ai

max(bi, ai)
, (2)

where ai denotes the mean distance between i and all points
in the same group and bi denotes the mean distance between
i and all points in the opposite group. Due to the scaling
factor in (2) the silhouette width w is in [−1, 1]. Note that
higher values of w correspond to better separation. The
silhouette width calculation can be applied to arbitrary dis-
tance measures and in the present study we have focussed
on euclidean distance since large euclidean distances in the
isotope space corresponds to a reasonable degree to large
distances in the space of flux ratios as will be shown in Sec-
tion 5.3.

In general, choosing small groups of mutants leads to bet-
ter separation values then choosing larger groups. To coun-
terbalance this tendency when evaluating the quality of a
pair of groups we need to take into account the total size
of the two groups. In summary, one pair of mutant groups
H = (G1, G2) is evaluated by two criteria: it’s silhouette
width w(H) and its size t(H) = |G1|+ |G2|.

Based on these two criteria, size and separation, differ-
ent optimization problems can be formulated. They could
be aggregated into one objective function or a Pareto-based
multiobjective approach could be used. But as we are only
interested in the solutions where the groups are highly sep-
arated, we impose a user defined constraint σ on the sepa-
ration w and maximize the group size t.

So far we have considered the problem of identifying two
distinct groups of mutants. However, for the biological anal-
ysis we are interested in several pairs of well separable groups
in order to capture the major biological differences in the set
of mutants under investigation. To this end, the different
pairs should not be highly similar to each other.

The extended problem is to identify a set of k group pairs
{H1, H2, . . . , Hk} for which the average group size should be
high and the overlap between the group pairs should be low.
For the present study, we have defined the overlap between
Hi and Hj as follows.

o(Hi, Hj) = max(onormal(Hi, Hj), oflip(Hi, Hj)) (3)

onormal(Hi, Hj) =
|G1,i ∩G1,j |

|G1,i|
· |G2,i ∩G2,j |

|G2,i|
(4)

oflip(Hi, Hj) =
|G2,i ∩G1,j |

|G2,i|
· |G1,i ∩G2,j |

|G1,i|
(5)

The multiplication of the overlaps of the single groups re-
duces the total overlap to zero if either of the groups have
no overlap. Three non-overlapping groups for example can
form two pairs where one group is identical in both pairs
and nevertheless have an overlap of zero.

As we are only interested in solutions with low overlap we
set a constraint δ on the maximal pairwise overlap. This
leads to the following optimization problem:

max
1

k

kX
i=1

t(Hi)

s.t. w(Hi) ≥ σ ∀ i ∈ {1, . . . k}
max

i,j
o(Hi, Hj) ≤ δ ∀ i 6= j, i, j ∈ {1, . . . k}

(6)

Note that the described problem formulation is general in
the following sense: arbitrary distance measures can be used
and any feature selection method or coordinate transform
deemed appropriate can be applied to the isotope data as a
preprocessing step.

4. AN EA FOR THE DISCRIMINATION OF
FLUXOME PROFILES

Given the scoring scheme described in the previous sec-
tion the primary optimization goal is to find the largest two
groups which meet the user-specified constraint σ on their
separation w. Additionally, we search for several pairs that
are diverse. This section presents an optimization method
for this problem which is based on a combination of an evo-
lutionary algorithm with a local search heuristic and is based
on the method used in [1].

4.1 Basic Architecture
The optimization method consists of two main compo-

nents: a global search method and a local search heuristic.
The global search is used to explore the space of possible
groupings systematically while the local search method im-
proves the solutions identified by the global search. The
global search is performed by an evolutionary algorithm in
which each individual represents one pair of mutant groups,
i. e., two non-overlapping subsets of mutants.

In order to improve the performance of the global search
method regarding the huge search space, a greedy strategy
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Algorithm 1 Environmental Selection for Diversity Main-
tenance

N : number of individuals to select
P : old population to select from
M : size of P
Q = ∅: new population
sort P in decreasing order of t(H)
s = 0
for k = 0 to M do

if max(o(P [k], Q[i]) ∀ i < δ then
add P [k] to Q
s = s + 1

end if
end for
k = 0
while s < N do

if P [k] /∈ Q then
add P [k] to Q
s = s + 1

end if
end while

is incorporated which is able to rapidly improve the solu-
tions locally. The basic idea of the local search heuristic is
to iteratively add or remove mutants until the separation
constraint σ is met. While this method can produce valid
solutions to the optimization problem at hand by itself it
quickly gets stuck in local optima and the global search en-
sures that the local optima can be overcome.

According to the extended optimization problem, we are
not only interested in two well separated mutant groups but
we would like to identify several diverse pairs. The basic
strategy to achieve this is to distribute the population of
the EA and ensure it does not converge to a single point.
We use a special kind of environmental selection to enforce
diversity. This method, along with further details of the
algorithm is described in the next section.

4.2 Algorithmic Details
4.2.1 Representation

Each individual represents two groups of mutants. For
reasons of simplicity we have chosen to use a ternary rep-
resentation with a string of length m. An element is set to
1 or 2 if the corresponding mutant is assigned to the first
or the second group, respectively. Unassigned mutants are
represented by a 0.

4.2.2 Initialization
The initial population should be generated such that a

high diversity of groupings is attained. A simple strategy,
for example, which randomly assigns each mutant to either
group or leaves it unassigned with equal probability pro-
duces groups containing different mutants but all groups
will be of similar sizes. To avoid this, we do not use equal
probabilities but for each individual randomly choose the
probabilities of assigning mutants to the different groups.
This is done, by first randomly sampling the probability for
a mutant to be in any of the two groups from a uniform
distribution and in a second step sampling the probability
for a selected mutant to be in the first of the two groups
from a uniform distribution.

4.2.3 Variation
Each element of the string undergoes mutation with a cer-

tain probability pmut. Mutation changes a 0 into a 1 or 2
with equal probability and vice versa. As recombination op-
erator we apply uniform crossover which for each element
picks the value of either of the parents with equal probabil-
ity.

4.2.4 Selection
For mating selection, tournament selection is used, i. e., τ

individuals are chosen from the population with replacement
and the fittest one is copied to the pool of parents. In choos-
ing the value of τ the selection pressure can be influenced:
A higher τ results in more pressure towards fit solutions.

As described, we propose a specific environmental selec-
tion to maintain diversity in the population. In this process
the constraint δ on the maximal overlap is used as a soft
constraint, i. e., solutions cannot be guaranteed to fulfill the
constraint. The algorithm proceeds as follows. First the in-
dividuals are sorted by the total size of their groups t(H).
Starting with the largest one all individuals are selected
which do not overlap more than a user-defined threshold
δ with any of the previously selected individual. The over-
lap o(Hi, Hj) is calculated as defined in Equation (3). If not
enough non-overlapping individuals are found the new pop-
ulation is filled using the largest of the previously omitted
individuals. The entire procedure is detailed in Algorithm 1.

4.2.5 Local Search and Fitness
Before the evaluation of an individual a local search is

performed to improve the solution. If the separation w is
above the user specified threshold σ mutants are added to
the groups in a greedy strategy which in each step adds the
mutant with the maximal silhouette value s(i). The algo-
rithm terminates when no more mutant can be added with-
out violating the constraint. Conversely, if w < σ mutants
are removed applying the opposite greedy strategy, i. e., in
each step the mutant with the lowest silhouette value s(i) is
removed. Note that the local search guarantees constraint
satisfaction with respect to the separation w as it is always
possible to reduce the groups to one mutant each and thus
reach the maximal w.

An individual is evaluated based on the result of the local
search. Since the objective is to find large groups the fitness
f(H) of an individual H is calculated as the inverse of the
total number of mutants included in the two groups f(H) =

1
t(H)

. This fitness is to be minimized. The result of the local

search can either replace the original individual or just be
used to determine the fitness of the original individual while
the latter one remains unchanged. In this study the second
strategy, called Baldwinian evolution, is used since it is able
to generate a more diverse set of solutions.

5. RESULTS
In the simulation runs mainly two questions were investi-

gated: (i) Is the proposed EA effective compared to random
search and two grouping methods based on PCA and ICA,
respectively, and (ii) do the mutant groups which have well
separated isotope profiles identify any biological differences?

5.1 Data Preparation and Experimental Setup
The proposed approach was evaluated on a large-scale

measurement of fluxome profiles for the central carbon me-
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Table 1: Default parameter settings for this study.

σ 0.8 (0.5 for real data)
δ 0.2
mutation rate 0.01
crossover rate 0.1
tournament size 2
population size 100
number of generations 100

tabolism of the microorganism Bacillus subtilis [4] and on
two artificial data sets attained by simulating the same me-
tabolism [2]1. For this simulation random flux maps were
generated by random sampling within the polytope con-
strained by the carbon stoichiometry with glucose as unique
substrate and CO2 and acetoin as unique allowed products.
Carbon labeling experiments were simulated for each flux
map using a Matlab-based implementation of the algorithm
described in [11].

The EA parameter settings used in the following simula-
tions are described in Table 1. The crossover rate refers to
the percentage of parents involved in crossover. The muta-
tion rate is the probability for an element in the ternary
string to undergo mutation. 11 replicates with different
random number generator seeds were performed for each
parameter setting.

5.2 Evaluation of the Evolutionary Algorithm
As a first step in the evaluation, we compared the EA re-

sults to randomly chosen groups. For each of the individuals
in the final population 100 randomly chosen pairs of groups
of the same size were generated. Figure 2 shows a histogram
of the resulting separation values w for the randomly cho-
sen groups in comparison to the threshold set for the EA
(σ = 0.8). As expected the optimization leads to far better
separation for the same group size than randomly choosing
groups.

As an alternative to optimization with the EA, one can
focus on a direction in the isotope space in which the mu-
tants are known or thought to be well separated and form
two groups by picking mutants on the two extremes of this
direction. We have used this strategy to compare the EA
results to ICA, PCA and random components. More specifi-
cally, we have projected the isotope data on each component
and then greedily picked mutants from the extremes of this
projection as long as the constraint on separation (w > σ)
on the original data was satisfied.

Basically, ICA and PCA both produce the same number
of components as the dimension of the input data. But in
most applications the number of components is restricted
to a few, e. g., ten in the present study. In order to com-
pare these results to the EA an additional postprocessing is
necessary to pick the same number of individuals from the
final EA population. This is done by the same algorithm
as used for the environmental selection, i. e, by picking the
largest ones as long as they do not overlap more than a
specified amount with any of the previously selected indi-
viduals. In this procedure one can either choose the same
overlap constraint as during the optimization or be more or

1The data sets are available on
www.tik.ee.ethz.ch/sop/fluxome.

less restrictive. Thus, it is possible to adjust the selection
of the final set within the trade-off between larger groups
and larger overlap on the one hand and smaller groups but
smaller overlap on the other hand.

The resulting pairs of mutant groups all satisfy the sepa-
ration constraint σ and an equal number of pairs has been
chosen for each method. Thus, the different methods can be
directly compared by comparing the respective group sizes,
the overlaps or the number of mutants that are included in
any of the groupings, in the following referred to as cover-
age. Figure 4 shows the histogram of group sizes, overlap
and coverage for random components and the correspond-
ing results for PCA, ICA and the EA. For both the random
components and the ICA, which is also a stochastic method,
1000 sets of ten components were sampled to build the his-
tograms. It can be clearly seen that the EA achieves higher
group size, higher coverage and lower overlap than the other
methods. While the EA results are not necessarily signifi-
cantly better for each run on each criterion separately, they
are highly significant with respect to the combination of all
criteria. In the whole analysis no random set of components
was found to be superior or equal to any EA result in all
three criteria simultaneously. It is interesting to note that
the relative performance of the EA is much better on the
real data set than on the synthetic data sets. Whether this
difference is due to general characteristics of synthetic and
real data sets remains to be seen.

These results demonstrate that the proposed combination
of an evolutionary algorithm and a local search heuristic is
successful in solving the optimization problem of finding a
diverse set of well separated group pairs.

5.3 Validation using Flux Ratios
The last section provided results which demonstrated that

the proposed method is successful in identifying mutant
groups which are well separated with respect to the isotope
data. While this is the main focus of this study the use
of synthetic data enables us to test whether the similarities
of the fluxome profiles are representative for the underly-
ing fluxes. For the synthetic data sets flux ratios can be
calculated exactly. For the analysis, we calculated the sil-
houette width for the EA solutions based on the flux ratios
and compared them to the corresponding silhouette widths
for random groups of the same size. As Figure 3 shows, the
groups that were optimized for separation on the isotope
values are far better separated on the flux ratios than ran-
dom groups of the same size. It is thus possible, using the
proposed problem formulation, to extract information about
biological differences and similarities without calculating the
exact flux ratios.

6. CONCLUSIONS
Fluxome profiles provide indirect information about the

molecular fluxes through a metabolic network. Extracting
the real fluxes or flux ratios from these data is often not pos-
sible. Thus, we propose the identification of distinct groups
of profiles as a possible first step in the fluxome analysis. To
this end, we have

• formalized the problem in terms of the separation of
two groups as measured by the silhouette width,

• proposed a flexible optimization method for this prob-
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Figure 2: Comparison of the silhouette widths for the
EA results and those for random groups of the same
size.
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Figure 4: Comparison of the EA results to mutant groups extracted from predefined directions given by
random directions, ICA and PCA. The results are compared with respect to the three criteria: average size
of mutant groups, number of mutants included in any of the groups (coverage) and average overlap of all
pairs of mutant groups. The analysis was performed on a real world data set (a), and two synthetic data sets
(b and c). EA results are given by the median (solid line) of 11 runs and the width of 2 standard deviations
(dotted lines).

359



lem based on a combination of an evolutionary algo-
rithm and a local search strategy, and

• verified both the usefulness of the problem formulation
with respect to the actual flux ratios and the effective-
ness of the evolutionary algorithm for this optimization
problem.

The problem formulation and the optimization method
are flexible with respect to the actual distance measure used.
While euclidian distance was used in this study any other
distance measure could be used instead and even feature
selection methods can be easily included in the flow of the
analysis. However, our analysis of an artificial data set sim-
ulating fluxes in Bacillus subtilis mutants showed that even
euclidean distance leads to a good correspondance between
highly separated groups on the profiles and distinct flux ra-
tios. Further simulations using both artificial and real-world
data sets showed that the proposed approach compares fa-
vorably to alternative heuristics based on PCA or ICA. The
EA is able to identify multiple pairs of mutant groups where
the individual groups are larger (for a fixed separation) and
the different pairs are more diverse than those found by the
alternative methods.

Potential directions for future research in this young field
include the investigation of alternative distance measures
and the potential inclusion of a feature selection step. Addi-
tionally, more biological validation is indubitably necessary.
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[11] W. Wiechert, M. Möllney, N. Isermann, M. Wurzel,
and A. A. de Graaf. Bidirectional reaction steps in
metabolic networks: III. explicit solution and analysis
of isotopomer labeling systems. Biotechnol Bioeng,
66:69–85, 1999.

[12] N. Zamboni and U. Sauer. Model-independent fluxome
profiling from 2H and 13C experiments for metabolic
variant discrimination. Genome Biology, 5(R99), 2004.

360


