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ABSTRACT 
Computation in biology and in conventional computer 
architectures seem to share some features, yet many of their 
important characteristics are very different. To address this, [1] 
introduced systemic computation, a model of interacting systems 
with natural characteristics. Following this work, here we 
introduce the first platform implementing such computation, 
including programming language, compiler and virtual machine. 
To investigate their use we then provide an implementation of a 
genetic algorithm applied to the travelling salesman problem and 
also explore how SC enables self-adaptation with the minimum of 
additional code. 

Categories and Subject Descriptors 
I.6.5 [Simulation and Modeling]: Model Development – 
Modeling methodologies. 

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– Languages and structures, Multiagent systems. 

General Terms 
Algorithms, Performance, Design, Reliability, Experimentation, 
Languages, Theory 

Keywords 
Systemic Computation, Bio-inspired Computation, Genetic 
Algorithm, Travelling Salesman Problem 
 

1.  INTRODUCTION 
Does a biological brain compute? Can a real ant colony solve a 
travelling salesman problem? Does a human immune system do 
anomaly detection? Can natural evolution optimise chunks of 
DNA in order to make an organism better suited to its 
environment? 

The intuitive answer to these questions is increasingly: we think 
so. We hold these beliefs through drawing analogies with natural 
processes and computer algorithms, and demonstrating behaviours 
and capabilities of the algorithms. Yet what of the processes 
themselves? No-one has shown that a human brain or an ant 
colony is Turing Complete. Even if such a proof was developed, 

would it be of any use? 

Suppose we proved that an ant colony was Turing Complete. This 
does not solve nor explain the fundamental differences between 
biological and traditional computation. Just as it is ludicrous to 
use a real ant colony to model every operation of a modern 
supercomputer, it is ludicrous for a modern supercomputer to 
model every operation of an ant colony. The two systems of 
computation might be mathematically equivalent at a certain level 
of abstraction, but they are practically so dissimilar that they 
become incompatible. 

These differences are important, for natural computation operates 
according to very important principles. Natural computation is 
stochastic, asynchronous, parallel, homeostatic, continuous, 
robust, fault tolerant, autonomous, open-ended, distributed, 
approximate, embodied, has circular causality, and is complex. 
The traditional von Neumann architecture is deterministic, 
synchronous, serial, heterostatic, batch, brittle, fault intolerant, 
human-reliant, limited, centralised, precise, isolated, uses linear 
causality and is simple. The incompatibilities are obvious. 

To address these issues, [1] introduced Systemic Computation 
(SC), a new model of computation and corresponding computer 
architecture based on a systemics world-view and supplemented 
by the incorporation of natural characteristics (listed above). This 
approach stresses the importance of structure and interaction, 
supplementing traditional reductionist analysis with the 
recognition that circular causality, embodiment in environments 
and emergence of hierarchical organisations all play vital roles in 
natural systems. Systemic computation makes the following 
assertions: 

• Everything is a system 
• Systems can be transformed but never destroyed. 
• Systems may comprise or share other nested systems. 
• Systems interact, and interaction between systems may cause 

transformation of those systems, where the nature of that 
transformation is determined by a contextual system. 

• All systems can potentially act as context and affect the 
interactions of other systems, and all systems can potentially 
interact in some context. 

• The transformation of systems is constrained by the scope of 
systems, and systems may have partial membership within 
the scope of a system. 

• Computation is transformation. 

Computation has always meant transformation in the past, 
whether it is the transformation of position of beads on an abacus, 
or of electrons in a CPU. But this simple definition also allows us 
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to call the sorting of pebbles on a beach, or the transcription of 
protein, or the growth of dendrites in the brain, valid forms of 
computation. Such a definition is important, for it provides a 
common language for biology and computer science, enabling 
both to be understood in terms of computation. Previous work [1] 
has analysed natural evolution, neural networks and artificial 
immune systems as systemic computation systems and shown that 
all have the potential to be Turing Complete and thus be fully 
programmable. In this work we focus on the more applied use of 
SC, for computer modelling. 

SC has been designed to support models and simulations of any 
kind of nature inspired system, improving the fidelity and clarity 
of such models. In this paper we introduce the first platform for 
systemic computation. This platform models a complete systemic 
computer as a virtual machine within a conventional PC. It also 
provides an intuitive language for the creation of SC models, 
together with a compiler. To illustrate the modelling and the 
mechanism of SC, we present an implementation of a genetic 
algorithm applied to the travelling salesman problem. We discuss 
the structure of the systems chosen and the accuracy when various 
selection and evolution methods are used. We then show how 
such a SC model can simply be turned into a self-adaptive one. 

2.  BACKGROUND 
Systemic computation is not the only model of computation to 
emerge from studies of biology. The potential of biology had been 
discussed in the late 1940s by Von Neumann who dedicated some 
of his final work to automata and self-replicating machines [2]. 
Cellular automata have proven themselves to be a valuable 
approach to emergent, distributed computation [3]. 
Generalisations such as constrained generating procedures and 
collision-based computing provide new ways to design and 
analyse emergent computational phenomena [4][5]. Bio-inspired 
grammars and algorithms introduced notions of homeostasis  (for 
example in artificial immune systems), fault-tolerance (as seen in 
embryonic hardware) and parallel stochastic learning, (for 
example in swarm intelligence and genetic algorithms) [6].  

New architectures are also popular, whether distributed computing 
(or multiprocessing), computer clustering and grid computing and 
even ubiquitous computing and speckled computing [7]. Thus, 
computation is increasingly becoming more parallel, decentralised 
and distributed. However, while hugely complex computational 
systems will be soon feasible, their organisation and management 
is still the subject of research. Ubiquitous computing may enable 
computation anywhere, and bio-inspired models may enable 
improved capabilities such as reliability and fault-tolerance, but 
there has been no coherent architecture that combines both 
technologies. Indeed, these technologies appear incompatible – 
the computational overhead of most bio-inspired methods is 
prohibitive for the limited capabilities of ubiquitous devices. 

To unify notions of biological computation and electronic 
computation, [1] introduced SC as a suggestion of necessary 
features for a computer architecture compatible with current 
processors, yet designed to provide native support for common 
characteristics of biological processes. We now present the work 
achieved in this direction. 

3.  Overview of Systemic Computation 
In systemic computation, everything is a system, and 
computations arise from interactions between systems. Two 
systems can interact in the context of a third system. All systems 

can potentially act as contexts to determine the effect of 
interacting systems. One convenient way to represent and define a 
system is as a binary string. Each string is divided into three parts: 
two schemata and one kernel. These three parts can be used to 
hold anything (data, typing, etc.) in binary as shown in Figure 1. 

 
Figure 1. A system used primarily for data storage. The kernel 
(in the circle) and the two schemata (at the end of the two 
arms) hold data. 
The primary purpose of the kernel is to define an interaction result 
(and also optionally to hold data). The two schemata define which 
subject systems may interact in this context as shown in Figure 2. 

  
Figure 2. Left: A system acting as a context. Its kernel defines 
the result of the interaction while its schemata define 
allowable interacting systems. Right: An interacting context. 
The contextual system Sc matches two appropriate systems S1 
and S2 with its schemata and specifies the transformation 
resulting from their interaction as defined in its kernel. 
A system can also contain or be contained by other systems. This 
enables the notion of scope. Interactions can only occur between 
systems within the same scope. Therefore any interaction between 
two systems in the context of a third implies that all three are 
contained within at least one common super-system. 

4.  PLATFORM 
To realise the SC model a virtual machine (VM) is required. This 
machine can run any SC program. However, to program the VM, 
a dedicated programming language and its associated compiler are 
also necessary. The virtual machine can then run byte-code 
programs compiled from source code by the compiler. In addition, 
we introduce a visualisation framework displaying all interaction 
and computation. This tool aims to provide us with a better 
understanding of the live “on-line” computation when analysing 
complex models with intricate components. 

4.1  Virtual Machine 
A systemic computer (or an SC virtual machine on a conventional 
computer) runs the “Building Blocks” of Systemic Computation: 
the systems. Compiled from the program, the systems carry out all 
computation according to the natural rules of SC. 

An SC program differs subtly from conventional logic, procedural 
or object-oriented program both in its definition and in its goals. A 
procedural program contains a sequence of instructions to process 
whereas an SC program needs, by definition, to define and declare 
a list of agents (the systems), in an initial state. The program 
execution begins by creating these systems in their initial state and 
then continues by letting them behave indefinitely and 
stochastically. The outcome of the program is created from an 
emergent process rather than a deterministic predefined algorithm. 

Since an SC program runs indefinitely, the virtual machine (VM) 
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has to run an infinite loop. SC is based on parallel, asynchronous 
and independent systems; therefore the VM can simulate this by 
randomly picking a context system at each iteration. Once a 
context is selected, eligible subject systems in the same scope(s) 
are identified. If any are found, two of them are randomly chosen. 
A subject is eligible if its definition sufficiently matches the 
schema of a context. The VM then executes the context 
interaction instructions to transform the interacting systems and 
thus process a computation. 

Since a context may be isolated from its potential subjects, a 
computation may not occur at each iteration. It may also not occur 
if the computing function had nothing to compute from the 
context and systems it was provided with. 

4.2  Language and Compiler 
To enable the creation of effective programs for the VM, a 
language intuitively very close to the SC model has been created 
together with a compiler translating source code into byte-code for 
the virtual machine. The aim of the SC language is thus to aid the 
programmer when defining systems, declaring instances of them 
and setting scopes between them. The main characteristics of the 
language are listed below: 

•  Defining a system involves defining its kernel and its two 
schemata. When a system acts as a context, the two schemata are 
used as the two templates of the systems to interact with, and the 
kernel encodes the context behaviour. This raises the problem of 
coding a schema knowing that it has to specify complete systems 
(defined by a kernel and two schemata). 

The method chosen was to compress information making up each 
schema [1]. A compression code is used for this purpose, coding 
three bits (where each bit may be ‘1’, ‘0’ or the wildcard ‘?’) into 
one character. This allows the complete description of a system 
(kernel and two schemata) in one single schema, as shown in 
Figure 2. Here “abaa” and “aaba”, in a compression code, describe 
S1- and S2-like systems respectively.  

•   Computing function.  The kernel of each system defines the 
function(s) to be applied to matching interacting systems (and 
stores associated parameter values). A lookup table matches 
binary values with the corresponding binary, mathematical, or 
procedural call-back functions (defined in the encoding section, 
see later). These transformation functions are applied to the 
matching systems in order to transform their values. 

•   Labels. In order to make the code more readable, string labels 
can be defined and then used in the program instead of their value. 
These labels must have the correct word length. Since the length 
bounds the amount of information a system can store, the choice 
of the length is left to the user. 

To combine labels, an OR operator is used in combination with 
the wildcard symbol. Labels defining different bits within the 
same schema can then be combined using the ‘|’ operator. For 
instance if “LABEL_1” and “LABEL_2” are respectively set to 
“10??” and “??01” then “LABEL_1 | LABEL_2” means “1001”. 
Note that ‘|’ is not a “binary or” since an operation such as “0011 | 
1100” is not allowed. 

•  Basic system definition. To illustrate the SC language, 
Program 1 provides code defining a system similar to the one in 
Figur. Labels and the “no operation” function NOP, are first 
defined. The system declaration follows where each line 

successively defines the first schemata, the kernel and the second 
schemata. Any definition is given a name, here “MySystem” to be 
later referenced when instantiating. In this example, 
MY_SYSTEM could be a type identifier and MY_K_DATA 
would be data. NOP represents the nil function making this 
system unable to behave as a context system. This first system 
would thus be stored in memory using a string of three words: 
“0101 0001 0111”. 

•   Compression operator. The compression of the template into 
a coded string does not have to be let to the user. We chose to 
provide a compression operator ‘[ ]’ to allow the user to write a 
template like a system definition, without bothering with the 
compression which will be done automatically at compilation. 

•  Full system definition. Program 3 gives an example of a 
definition for a system that will behave as context, like the one in 
Figure 2. In this example, “My_Function” refers to the function to 
call when two systems interact in the current context. This 
fragment of program assumes the code of Program 1 is also 
included. It also assumes the definition of another similar system 
referred to as “MY_OTHER_SYSTEM”. The use of the label 
“ANY” in the template indicates that here the value of the kernel 
and the right schemata do not matter in the search for systems to 
interact with. The other use of the wildcard is shown when 
combining “My_Function” and “MY_CTX_DATA” using the 
operator ‘|’. 

Each function defined in a system kernel must refer to an existing 
call-back function. In the current platform implementation these 
call-back functions are written in C++ and compiled as plug-ins of 
the virtual machine. (The only exception is the NOP function.) 

•  Encoding section. The notions of compression code, call-back 
functions, and word length comprise generic information needed 
for the compilation and execution of a program. We define them 
at the beginning of the program file in an “encoding section”. As 
shown in Program 2 the user provides a compression code map 
file, a list of plug-ins (dynamic libraries “.dll”, “.so”, etc) 
containing the transformation functions to be called by the virtual 
machine, sets the word length and finally sets the offset range 
used to encode the functions (so that the VM knows where to look 
in the kernel for the context function reference). In this example, 
the file "sc_code.map" stores the compression code, the library 
"my_plugin.dll" owns the call-back functions, the word length is 4 
and the function value is in the two first bits of the kernel. 

•  System and scope declarations. Once all the systems have 
been defined, the last aim of the SC language is to allow the 
declaration of system instances and their scopes (reminiscent of 
variable declarations and function scopes in a procedural 
program). Since scopes are relationships between instances, we 
propose to handle all this in a “program body”. An example, 
following the previous ones, is given in Program 5. 

The first part of the program body declares instances, one by one 
or in a group (array notation). Note that a system definition name 
(left part of a declaration) is not a type. An instance (right part of a 
declaration) is always a system instance initialised with a system 
definition (triple string value) previously defined and identified by 
the left name (e.g., MySystem, MyContext). These system values 
are by definition only initial values which during computation are 
likely to change. Only inner data such as “MY_ SYSTEM” in 
Program 1 can be used as a method of typing. 
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label MY_SYSTEM 0101 
label MY_K_DATA ??01 
label MY_S_DATA 0111 
 
function NOP 00?? 
 
system MySystem { 
 MY_SYSTEM , 

NOP | MY_K_DATA , 
MY_S_DATA 

} 

encoding { 
 // Characters code map 
 char_map "sc_code.map" 
 // Functions module(s) 
 func_libs { "my_plugin.dll" } 
 // 1 character/bit per word 
 word_length 4 
 // 2 bits for functions (bit 0 to 1) 
 func_offset 0:1 
} 

Program 1. Definition of a non-context system. Program 2. An SC program encoding section. 
label ANY   ???? 
label MY_CTX_DATA  ??01 
 
function My_Function 11?? 
 
system MyContext { 
 [ MY_SYSTEM , ANY, ANY ] , 

My_Function | MY_CTX_DATA, 
[ MY_OTHER_SYSTEM , ANY, ANY ] 

} 

system Solution { 
 ANY , 
 NOP | SOLUTION , 
 ANY 
} 
 
system Operator {  
 [ ANY , NOP | SOLUTION , ANY ] , 
 SelectAndEvolve , 
 [ ANY, NOP | SOLUTION , ANY ] 
} 

Program 3. Definition of a context system. Program 4.  TSP Solution and Operator system declaration. 
program { 
 
 // Declarations 
 Universe universe ; 
 MySystem ms[1:2] ; 
 MyOtherSystem mos[1:2]; 
 MyContext cs[1:2] ; 
 
 // Scopes 
 universe { ms[1:2] , mos[1:2] , cs[1:2] } 
 
} 

system ComputationSpace { 
 ANY , 
 NOP | COMPUTATION_SPACE , 
 ANY 
} 
 
system Initialiser { 
 [ ANY , NOP | SOLUTION , ANY ] , 
 Initialise , 
 [ ANY , NOP | COMPUTATION_SPACE , ANY ] 
} 

Program 5. Systems instantiations and scopes setup. Program 6.  TSP Computation Space and Initialiser definition. 
 

 

 
Figure 3. Human-program interaction in the context of the 
Systemic Computer. 
The second part of the program body then sets the scopes between 
the instances. This notion of scopes refers to embedded 
hierarchies. An SC program is a list of systems behaving in and 
belonging to systems which themselves behave in and belong to 
others and so on. Since the SC definition considers everything as a 
system, the program is a system, the computer running a program 
is a system, the user is a system, etc. The human-program 
interaction can thus be seen as in Figure 3. 

A user can interact with a program in the context of a computer. 
Therefore the program needs to be embedded in a single entity. 
This leads us to introduce the notion of “universe”. Any SC 
program should have a universe containing everything but itself 
and being the only one not to be contained. This universe can be 
defined in any manner, but since it contains everything it cannot 

interact by itself with the program. Therefore there is no 
constraint on its definition and no need for it to act as a context. 
However, it is the only system a user can interact with. The 
universe is therefore where user’s parameters, to be changed at 
runtime, should be placed.  

Program 5 assumes a system named “Universe” has been defined, 
although having a dedicated system definition is not mandatory. 
In this example the universe contains the two instances of 
MySystem, the two of MyOtherSystem and the two of 
MyContext, namely everything but itself. This hierarchy is shown 
in Figure 4.  

 

Dark grey  : Universe 
White  : MySystem 
Black  : MyOtherSystem 
Light grey  : MyContext 

Figure 4. Visualisation of a simple program. The universe 
encompasses everything. 

4.3  Visualisation 
Although an SC program does not require any graphical output, 
understanding embedded hierarchies and computation in massive 
(hundreds or thousands of) systems can be difficult. Therefore, a 
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visualisation tool used in parallel with the VM enables a user to 
gain a better insight of the changing states. 

A simple 2D visualisation tool has been created, that represents 
system hierarchies using a filled circle to represent a system. A 
visualisation of the program described in the fragments: Program 
1, Program 3 and Program 5 can be rendered in 2D as shown in 
Figure 4. 

It is impossible to represent all possible n-dimensional or 
recursively dimensional (circular hierarchy) environments in a 
2D/3D space, however some models can fit or partly fit and thus 
be well visualised. Such visualisation mainly shows hierarchies 
and cannot easily render information such as numerical or string 
values within the spheres. In this case, non-viewable information 
is provided in a display window as text data, for example Figure 5 

 
Figure 5 State (or value) of all systems in Program 5. 
The combination of systemic computation model, virtual machine, 
language and visualiser enables the programmer to create, follow 
and analyse computation in complex systems. 

5.  A SYSTEMIC COMPUTATION 
IMPLEMENTATION OF TSP 
The Travelling Salesman Problem (TSP) is a classic problem in 
the fields of Computational Complexity Theory and Evolutionary 
Computation (EC). The problem is, given a number of cities and 
the distance from one city to another, find the shortest round-trip 
route that visits each city exactly once and then returns to the city 
of origin. 

In EC, genetic algorithms (GAs) or ant colony optimisation 
(ACO) are commonly used approaches to solve this problem. 
These are inspired by massively parallel natural processes, yet 
they are often run on sequential machines. By definition, SC 
provides us with a stochastic and massively parallel architecture. 
The aim is thus, using this native feature, to develop a simple and 
efficient solution to the TSP. We use a genetic algorithm for TSP 
as a simple test implementation in the SC architecture. The 
following sections explore the implementation on a systemic 
computer. 

5.1  Systemic Analysis 
Systemic computation is an alternative model of computation. 
Before any new program can be written, it is necessary to perform 
a systemic analysis in order to identify and interpret appropriate 
systems and their organisation. When performed carefully, such 
analysis can itself be revealing about the nature of the problem 
being tackled and corresponding solution. A systemic analysis is 
thus the expression of any natural or artificial process in the 
language of systemic computation. 

The first stage is to identify the low-level systems (i.e., determine 
the level of abstraction to be used). The use of a genetic algorithm 
implies we need a population of solutions, so a collection of 
systems, with each system corresponding to one solution, seems 
appropriate. (A lower-level abstraction might use one system for 

every gene within each solution, but for the purposes of this 
investigation, this would add unnecessary complexity.) 

The identification of appropriate low-level systems is aided by an 
analysis of interactions. In a genetic algorithm, solutions interact 
in two ways: they compete for selection as parents, and once 
chosen as parents, pairs produce new offspring. The use of 
contextual systems (which determine the effects of solution 
interaction) for the genetic operations therefore seems highly 
appropriate, as shown in Figure 6. 

 
Figure 6. An operator acts as a context for two interacting 
solutions. 

  
Figure 7. Left: The “Initialiser” acts as context for 
interactions between non-initialised solutions (located outside 
the computation space) and the computation space. Right: 
The result of the interaction, as defined by the initialiser, is an 
initialised a solution inside the computation space where it can 
then interact with other solutions in the context of the 
operators (not shown). 
Program 4 provides an example for the definition of solutions and 
operators. The “SelectAndEvolve” function computes new 
solutions using the two solutions provided. Any selection and 
evolution methods may be used. For simplicity, here we perform 
the selection and reproduction at the same time with the pair of 
interacting solutions. (All conventional operators could be 
implemented, e.g. using ‘selection’ systems to move solutions 
inside a ‘gene pool’ system, from which other ‘reproduction’ 
systems would control the interaction of parents to make 
offspring. Such complexity is unnecessary here, however.) 

Once the systems and interactions are understood, it is necessary 
to determine the order and structure of the emergent program. For 
this we need to determine scopes (which systems are inside which 
other systems) and the values stored within systems. In a genetic 
algorithm, the population is usually initialised with random 
values, before any other kind of interaction can take place. This 
implies a two-stage computation: first all solutions must be 
initialised, then they are permitted to interact and evolve. One way 
to achieve this is to use a ‘supersystem’ as a computation space, 
and an initialiser system. If all solutions begin outside the 
computation space, then the initialiser acts as context for 
interactions between the empty solutions and the space, resulting 
in initialised solutions being pushed inside the space ready for 
evolution, see Figure 7. When declaring the initialiser, the 
wildcard word ANY is used to fill in the schemata. The 
computation space and initialiser can be defined as in Program 6. 
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The systemic analysis is complete when all systems and their 
organization have been designed for the given problem (or 
biological process or organism), providing an easy to understand 
graph-based model. This model can be used on its own as a 
method of analysis of biological systems, e.g. to understand 
information flow and transition states. However, a systemic model 
is best understood when executed as a program. To turn this 
model into a working program, the data and functions need to be 
specified for each system in a systemic computation program. 

5.2  System Design 
5.2.1 Representation and population size. 
The representation of the genetic information in a TSP 
implementation is often chosen as a string of terminals, each of 
them standing for a city. This is the method of representation we 
choose here. A chromosome (i.e. solution) is therefore a route 
(succession of cities). We also use the common method of 
discarding the initial city. As every city has to be visited once and 
as all that matters when computing the distance is the order rather 
than the position, fixing the first city (which therefore does not 
have to be coded in the chromosome) does not reduce the solution 
space but reduces the search space and thus the problem 
complexity. 

There are no constraints in SC about how or where data should be 
stored in a system. In this problem, we store a TSP solution in the 
left schema, and the distance of the route in the right schema. 
With the kernel defining NOP, these systems will not act as 
context for interacting systems matching the schemata (but this 
would be possible should a different function be defined). 

The choice of the number of solutions, or population size, has 
been addressed in [8], and later specifically for the TSP using a 
GA in [9]. The aim of the latter was to provide a population size 
so that the probability that the initial population includes all the 
edges of an optimum tour is close to one. The population size 
naturally depends on the problem size. It has also been shown in 
[9] that the population size in a GA for TSP is not critical, 
especially if the algorithm includes mutation, and [9] observed 
that it is not clear what the best population size should be. For our 
population size we used the estimate provided in [9] (with p = 
0.99) which suggests smaller values than Alander's bounds [8]. 

5.2.2 Genetic operators. 
In the computation space, when two solution systems interact in 
the context of an operator, the operator applies two functions in 
succession: selection and reproduction. 

Because operators exist as entities within the computation space 
in the same way that solutions do, this provides a novel 
opportunity for parameter tuning. Since SC randomly picks a 
context, changing the proportion of operator instances changes the 
probability of different operator types being chosen. The 
probability of being chosen, and therefore the impact, of an 
operator O is thus given by the ratio: 

 (instances of O) / (total number of operator instances). 

In this work, we created several types of genetic operators, which 
used different approaches for selection, reproduction and 
mutation. Selection is performed using a simple tournament 
selection, where the fitness of both solutions is calculated and the 
winner is the solution with the better fitness. During selection 
there are two alternatives: 

• strictly elitist: the best solution is always kept (KB); 

• fitness proportional: the better a solution, the more likely it is 
to be kept (FP). 

It is noticeable that our configuration has many similarities with 
steady-state GAs. However, the systemic selection chooses two 
competing solutions at random rather than from a fitness sorted 
set, which makes it subtly different. (It would be possible to sort 
and order solutions using ‘sort’ systems and ‘linking’ systems to 
produce an ordered chain of solutions, but again this was deemed 
unnecessary complexity here.) 

After selection, reproduction replaces the less fit solution with a 
new child, created either by crossover using the two interacting 
solutions as parents or by duplication and mutation of the selected 
solution. We chose two different crossover methods: 

• partially mapped crossover (PMX) [10], 

• ordered crossover (OX) [11]. 

They were chosen because they are commonly known and usually 
provide good results. They both guarantee to create only valid 
chromosomes and to keep the order in the exchanged chunks of 
genes. 

When duplication and mutation is used to generate the child, three 
alternative methods of mutation were available: 

• Swap: chooses two successive cities and swaps them; 

• Move: chooses a city and moves it somewhere else; 

• Reverse: chooses a route portion and reverses it. 

All these operations are commonly used in TSP implementations 
using GAs. Program 4 defines only one operator as an example. In 
our implementation we define an operator for each combination of 
selection and evolution method (i.e. KB or FP using PMX, OX, 
Swap, Move, Reverse). Therefore, the context function of each 
operator defines one of the above combinations.  

5.3  Experiments and Results 
In this section we provide and compare the results of several 
configurations. 

5.3.1  Experiment 1: Selection Comparison 
The first experiment we conducted was to assess relative 
performances of the two selection methods in this 
implementation. Three identical SC programs were created, one 
with a KB operator in the computation space, one using an FP 
operator, and one using both a KB and FP operator. The TSP 
comprised a well known city map of 48 cities (gr48 from the 
TSPLIB) for which the best solution is empirically known. Using 
the formula from [9], a population size of 195 solutions was used, 
in 1 computation space, with 1 initialiser. The experiment was 
repeated 10 times, with consistent results. Representative results 
of one run from this experiment are shown in Figure 8. 

As can be seen in Figure 8, while the use of KB enables solutions 
to converge in a normal manner towards better solutions, the FP 
method seems to actively prevent evolution, with evolution 
halting early on. When both operators are used, performance is 
slightly improved compared to FP, but again evolution halts early. 
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Figure 8. Comparative test of the two selection methods. 
This result is not surprising if we consider the mechanisms behind 
the selection methods. Systemic computation by default causes 
solutions in the same scope to interact randomly in the context of 
the operator system. Although only two individuals compete at a 
time, the overall effect on the population is similar to fitness 
ranked proportional selection. While the KB operator 
acknowledges this, the FP selection contests it partially. When 
selecting with FP, if out of the two solutions one is much better 
than the other, the FP selection will tend to act as a KB selection. 
If the two solutions are close, the FP selection will be fairly close 
to random, and randomness is already present when picking the 
two interacting solutions. It thus appears that the FP operator can 
only slow down the convergence process without bringing much 
in return. For this reason, we only use the KB method in further 
experiments. 

5.3.2 Experiment 2: Operator Comparison 

In addition to selection, gene diversity depends on the method of 
reproduction. For example, if operators tend to keep and duplicate 
the best, the population will quickly tend to contain only copies of 
this best and may converge prematurely. The aim of the second 
experiment is thus to evaluate and compare the efficiency of the 
operators. Using KB selection, six versions of the program were 
created, each using one of the five operators, and one using all 
five together (one copy each). Each was executed 10 times with 
consistent results; Figure 9 provides a plot of one run showing 
representative results. 

 

 
Figure 9. Comparative test of the operators all together and 
individually. 

 
Figure 10. Operators’ fitness distribution over time for the 
crossover operators PMX and OX. 
Examining both speed of optimisation, and the ability of the 
population to keep improving without premature convergence, we 
can observe in Figure 9 that all operators together perform better 
in time than any used individually. When used alone, both 
crossover operators (and especially PMX), perform well but 
premature convergence seems to occur. Figure 10 shows the 
effectiveness of OX and PMX over time, by plotting: best parent’s 
fitness / child fitness. Both settle at 1, indicating children with 
identical fitness to parents, a premature convergence of the 
population to an imperfect solution. 

When analysed, only the reverse mutation seems to enable rapid 
convergence and continuous improvement thereafter. However, 
when all operators are available together, the population evolves 
more effectively. 

Indeed, when the contribution of each operator is analysed in 
more detail (by assessing how frequently each operator produced 
a fitter solution over time), it becomes apparent that all enable 
convergence to solutions at different rates, and that those rates all 
vary over time. Indeed, it can be seen that different combinations 
of operators would be more appropriate at different times during 
evolution. 

5.4  Self-Adaptive Evolutionary Operators 
It is clear that when solutions interact in the right context at the 
right times, the speed of evolution can be increased, or the ability 
of evolution to continue making progress can be improved. In 
nature, factors affecting the progression of evolution (whether part 
of the evolving organisms, or of the environments of the 
organisms), are also subject to evolution. The contexts that affect 
evolutionary progress may co-evolve, giving evolution of 
evolvability. 

If we perform a new systemic analysis and identify the systems, 
interactions and structure, it is clear that the evolution of 
evolvability implies new interactions and new systems. Now the 
genetic operator systems must interact with each other in the 
context of new operator adapter systems, see Figure 11. This 
enables the genetic operators to evolve in parallel to the solutions 
they modify. 

In figure 10 we showed how the fitness of individual operators 
could be assessed by comparing the relative fitness of parent and 
child solutions produced by an operator. This information is 
calculated and stored in the operator systems. We thus already 
have the necessary information to enable the genetic operator 
adapters to modify the genetic operators. 
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Figure 11. Scheme of an self-adaptive approach to the TSP 
using a GA on a SC architecture: A Genetic Operator 
Adapter is added to the current interaction scheme to adapt 
or evolve Genetic Operators during computation. 
We implemented this new feature with a new context system 
which adapts the operator type between the different approaches. 
When two operators interact in the context of this system, a fitter 
operator has on average a higher chance of replacing a less fit one, 
thus making the number of fitter operators more numerous in the 
population. The average fitness of a genetic operator is measured 
within a window of size W last operations. This grows in time 
following the distribution W = A.(1-exp(-k.n)) where n is the total 
number of computations performed and A and k are constants set 
to 1000 and 0.0001 respectively. Lack of diversity was penalised 
by giving 0.9 instead of 1 when an operator generates an identical 
copy of the chosen solution.  

The system was run using 3 instances of each of the 5 operators, 
using KB selection, and 1 operator adapter. Figure 12 shows a 
representative run, comparing the adaptive algorithm with 4 other 
combinations of operators. It should be clear that the adaptive 
method consistently outperforms the other approaches; analysis 
indicates that the relative number of operators changes during the 
course of evolution. 

 
Figure 12. Comparison of the adaptive method with the best 
tuned methods. 

6.  CONCLUSION 
Biological computation has many significant characteristics that 
help give it desirable properties. Systemic computation is a model 
of computation that incorporates those characteristics and suggests a 
non-von Neumann architecture compatible with conventional 
hardware and able to support biological characteristics natively. 

This paper introduced a platform for the newly introduced systemic 
computation model including a virtual machine, language, compiler 
and visualiser. This permits us to design, run and test systems with 
natural characteristics. This platform was presented together with a 
concrete application, the travelling salesman problem. We proposed 

a genetic algorithm making use of the native characteristics of SC 
and showed how it could be made self-adaptive with minimal extra 
code. 

Systemic computation is an alternative approach to computation, 
and can be implemented on any interacting systems, electronic, 
biological, or mechanical. In addition to being a model of 
computation, it may also be viewed as a method of analysis for 
biological systems, enabling information flow, structure and 
computation within biology to be formulated and understood in a 
more coherent manner. 

Work is still ongoing in this area. It is anticipated that systemic 
computation may enable a clear formalism of ‘complex system.’ 
Another goal is the creation of dedicated parallel hardware for the 
systemic computer – work is currently underway towards this. 
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