
A Systemic Computation Platform for the Modelling and
Analysis of Processes with Natural Characteristics

Erwan Le Martelot
Electronic and Electrical Engineering

University College London
Torrington Place, London WC1E 7JE

e.le_martelot@ucl.ac.uk

Peter J. Bentley
Department of Computer Science

University College London
Malet Place, London WC1E 6BT

P.Bentley@cs.ucl.ac.uk

R. Beau Lotto
Institute of Ophthalmology
University College London

11-43 Bath Street, London EC1V 9EL
lotto@ucl.ac.uk

ABSTRACT
Computation in biology and in conventional computer
architectures seem to share some features, yet many of their
important characteristics are very different. To address this, [1]
introduced systemic computation, a model of interacting systems
with natural characteristics. Following this work, here we
introduce the first platform implementing such computation,
including programming language, compiler and virtual machine.
To investigate their use we then provide an implementation of a
genetic algorithm applied to the travelling salesman problem and
also explore how SC enables self-adaptation with the minimum of
additional code.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development –
Modeling methodologies.

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– Languages and structures, Multiagent systems.

General Terms
Algorithms, Performance, Design, Reliability, Experimentation,
Languages, Theory

Keywords
Systemic Computation, Bio-inspired Computation, Genetic
Algorithm, Travelling Salesman Problem

1. INTRODUCTION
Does a biological brain compute? Can a real ant colony solve a
travelling salesman problem? Does a human immune system do
anomaly detection? Can natural evolution optimise chunks of
DNA in order to make an organism better suited to its
environment?

The intuitive answer to these questions is increasingly: we think
so. We hold these beliefs through drawing analogies with natural
processes and computer algorithms, and demonstrating behaviours
and capabilities of the algorithms. Yet what of the processes
themselves? No-one has shown that a human brain or an ant
colony is Turing Complete. Even if such a proof was developed,

would it be of any use?

Suppose we proved that an ant colony was Turing Complete. This
does not solve nor explain the fundamental differences between
biological and traditional computation. Just as it is ludicrous to
use a real ant colony to model every operation of a modern
supercomputer, it is ludicrous for a modern supercomputer to
model every operation of an ant colony. The two systems of
computation might be mathematically equivalent at a certain level
of abstraction, but they are practically so dissimilar that they
become incompatible.

These differences are important, for natural computation operates
according to very important principles. Natural computation is
stochastic, asynchronous, parallel, homeostatic, continuous,
robust, fault tolerant, autonomous, open-ended, distributed,
approximate, embodied, has circular causality, and is complex.
The traditional von Neumann architecture is deterministic,
synchronous, serial, heterostatic, batch, brittle, fault intolerant,
human-reliant, limited, centralised, precise, isolated, uses linear
causality and is simple. The incompatibilities are obvious.

To address these issues, [1] introduced Systemic Computation
(SC), a new model of computation and corresponding computer
architecture based on a systemics world-view and supplemented
by the incorporation of natural characteristics (listed above). This
approach stresses the importance of structure and interaction,
supplementing traditional reductionist analysis with the
recognition that circular causality, embodiment in environments
and emergence of hierarchical organisations all play vital roles in
natural systems. Systemic computation makes the following
assertions:

• Everything is a system
• Systems can be transformed but never destroyed.
• Systems may comprise or share other nested systems.
• Systems interact, and interaction between systems may cause

transformation of those systems, where the nature of that
transformation is determined by a contextual system.

• All systems can potentially act as context and affect the
interactions of other systems, and all systems can potentially
interact in some context.

• The transformation of systems is constrained by the scope of
systems, and systems may have partial membership within
the scope of a system.

• Computation is transformation.

Computation has always meant transformation in the past,
whether it is the transformation of position of beads on an abacus,
or of electrons in a CPU. But this simple definition also allows us

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007…$5.00.

2809

to call the sorting of pebbles on a beach, or the transcription of
protein, or the growth of dendrites in the brain, valid forms of
computation. Such a definition is important, for it provides a
common language for biology and computer science, enabling
both to be understood in terms of computation. Previous work [1]
has analysed natural evolution, neural networks and artificial
immune systems as systemic computation systems and shown that
all have the potential to be Turing Complete and thus be fully
programmable. In this work we focus on the more applied use of
SC, for computer modelling.

SC has been designed to support models and simulations of any
kind of nature inspired system, improving the fidelity and clarity
of such models. In this paper we introduce the first platform for
systemic computation. This platform models a complete systemic
computer as a virtual machine within a conventional PC. It also
provides an intuitive language for the creation of SC models,
together with a compiler. To illustrate the modelling and the
mechanism of SC, we present an implementation of a genetic
algorithm applied to the travelling salesman problem. We discuss
the structure of the systems chosen and the accuracy when various
selection and evolution methods are used. We then show how
such a SC model can simply be turned into a self-adaptive one.

2. BACKGROUND
Systemic computation is not the only model of computation to
emerge from studies of biology. The potential of biology had been
discussed in the late 1940s by Von Neumann who dedicated some
of his final work to automata and self-replicating machines [2].
Cellular automata have proven themselves to be a valuable
approach to emergent, distributed computation [3].
Generalisations such as constrained generating procedures and
collision-based computing provide new ways to design and
analyse emergent computational phenomena [4][5]. Bio-inspired
grammars and algorithms introduced notions of homeostasis (for
example in artificial immune systems), fault-tolerance (as seen in
embryonic hardware) and parallel stochastic learning, (for
example in swarm intelligence and genetic algorithms) [6].

New architectures are also popular, whether distributed computing
(or multiprocessing), computer clustering and grid computing and
even ubiquitous computing and speckled computing [7]. Thus,
computation is increasingly becoming more parallel, decentralised
and distributed. However, while hugely complex computational
systems will be soon feasible, their organisation and management
is still the subject of research. Ubiquitous computing may enable
computation anywhere, and bio-inspired models may enable
improved capabilities such as reliability and fault-tolerance, but
there has been no coherent architecture that combines both
technologies. Indeed, these technologies appear incompatible –
the computational overhead of most bio-inspired methods is
prohibitive for the limited capabilities of ubiquitous devices.

To unify notions of biological computation and electronic
computation, [1] introduced SC as a suggestion of necessary
features for a computer architecture compatible with current
processors, yet designed to provide native support for common
characteristics of biological processes. We now present the work
achieved in this direction.

3. Overview of Systemic Computation
In systemic computation, everything is a system, and
computations arise from interactions between systems. Two
systems can interact in the context of a third system. All systems

can potentially act as contexts to determine the effect of
interacting systems. One convenient way to represent and define a
system is as a binary string. Each string is divided into three parts:
two schemata and one kernel. These three parts can be used to
hold anything (data, typing, etc.) in binary as shown in Figure 1.

Figure 1. A system used primarily for data storage. The kernel
(in the circle) and the two schemata (at the end of the two
arms) hold data.
The primary purpose of the kernel is to define an interaction result
(and also optionally to hold data). The two schemata define which
subject systems may interact in this context as shown in Figure 2.

Figure 2. Left: A system acting as a context. Its kernel defines
the result of the interaction while its schemata define
allowable interacting systems. Right: An interacting context.
The contextual system Sc matches two appropriate systems S1
and S2 with its schemata and specifies the transformation
resulting from their interaction as defined in its kernel.
A system can also contain or be contained by other systems. This
enables the notion of scope. Interactions can only occur between
systems within the same scope. Therefore any interaction between
two systems in the context of a third implies that all three are
contained within at least one common super-system.

4. PLATFORM
To realise the SC model a virtual machine (VM) is required. This
machine can run any SC program. However, to program the VM,
a dedicated programming language and its associated compiler are
also necessary. The virtual machine can then run byte-code
programs compiled from source code by the compiler. In addition,
we introduce a visualisation framework displaying all interaction
and computation. This tool aims to provide us with a better
understanding of the live “on-line” computation when analysing
complex models with intricate components.

4.1 Virtual Machine
A systemic computer (or an SC virtual machine on a conventional
computer) runs the “Building Blocks” of Systemic Computation:
the systems. Compiled from the program, the systems carry out all
computation according to the natural rules of SC.

An SC program differs subtly from conventional logic, procedural
or object-oriented program both in its definition and in its goals. A
procedural program contains a sequence of instructions to process
whereas an SC program needs, by definition, to define and declare
a list of agents (the systems), in an initial state. The program
execution begins by creating these systems in their initial state and
then continues by letting them behave indefinitely and
stochastically. The outcome of the program is created from an
emergent process rather than a deterministic predefined algorithm.

Since an SC program runs indefinitely, the virtual machine (VM)

2810

has to run an infinite loop. SC is based on parallel, asynchronous
and independent systems; therefore the VM can simulate this by
randomly picking a context system at each iteration. Once a
context is selected, eligible subject systems in the same scope(s)
are identified. If any are found, two of them are randomly chosen.
A subject is eligible if its definition sufficiently matches the
schema of a context. The VM then executes the context
interaction instructions to transform the interacting systems and
thus process a computation.

Since a context may be isolated from its potential subjects, a
computation may not occur at each iteration. It may also not occur
if the computing function had nothing to compute from the
context and systems it was provided with.

4.2 Language and Compiler
To enable the creation of effective programs for the VM, a
language intuitively very close to the SC model has been created
together with a compiler translating source code into byte-code for
the virtual machine. The aim of the SC language is thus to aid the
programmer when defining systems, declaring instances of them
and setting scopes between them. The main characteristics of the
language are listed below:

• Defining a system involves defining its kernel and its two
schemata. When a system acts as a context, the two schemata are
used as the two templates of the systems to interact with, and the
kernel encodes the context behaviour. This raises the problem of
coding a schema knowing that it has to specify complete systems
(defined by a kernel and two schemata).

The method chosen was to compress information making up each
schema [1]. A compression code is used for this purpose, coding
three bits (where each bit may be ‘1’, ‘0’ or the wildcard ‘?’) into
one character. This allows the complete description of a system
(kernel and two schemata) in one single schema, as shown in
Figure 2. Here “abaa” and “aaba”, in a compression code, describe
S1- and S2-like systems respectively.

• Computing function. The kernel of each system defines the
function(s) to be applied to matching interacting systems (and
stores associated parameter values). A lookup table matches
binary values with the corresponding binary, mathematical, or
procedural call-back functions (defined in the encoding section,
see later). These transformation functions are applied to the
matching systems in order to transform their values.

• Labels. In order to make the code more readable, string labels
can be defined and then used in the program instead of their value.
These labels must have the correct word length. Since the length
bounds the amount of information a system can store, the choice
of the length is left to the user.

To combine labels, an OR operator is used in combination with
the wildcard symbol. Labels defining different bits within the
same schema can then be combined using the ‘|’ operator. For
instance if “LABEL_1” and “LABEL_2” are respectively set to
“10??” and “??01” then “LABEL_1 | LABEL_2” means “1001”.
Note that ‘|’ is not a “binary or” since an operation such as “0011 |
1100” is not allowed.

• Basic system definition. To illustrate the SC language,
Program 1 provides code defining a system similar to the one in
Figur. Labels and the “no operation” function NOP, are first
defined. The system declaration follows where each line

successively defines the first schemata, the kernel and the second
schemata. Any definition is given a name, here “MySystem” to be
later referenced when instantiating. In this example,
MY_SYSTEM could be a type identifier and MY_K_DATA
would be data. NOP represents the nil function making this
system unable to behave as a context system. This first system
would thus be stored in memory using a string of three words:
“0101 0001 0111”.

• Compression operator. The compression of the template into
a coded string does not have to be let to the user. We chose to
provide a compression operator ‘[]’ to allow the user to write a
template like a system definition, without bothering with the
compression which will be done automatically at compilation.

• Full system definition. Program 3 gives an example of a
definition for a system that will behave as context, like the one in
Figure 2. In this example, “My_Function” refers to the function to
call when two systems interact in the current context. This
fragment of program assumes the code of Program 1 is also
included. It also assumes the definition of another similar system
referred to as “MY_OTHER_SYSTEM”. The use of the label
“ANY” in the template indicates that here the value of the kernel
and the right schemata do not matter in the search for systems to
interact with. The other use of the wildcard is shown when
combining “My_Function” and “MY_CTX_DATA” using the
operator ‘|’.

Each function defined in a system kernel must refer to an existing
call-back function. In the current platform implementation these
call-back functions are written in C++ and compiled as plug-ins of
the virtual machine. (The only exception is the NOP function.)

• Encoding section. The notions of compression code, call-back
functions, and word length comprise generic information needed
for the compilation and execution of a program. We define them
at the beginning of the program file in an “encoding section”. As
shown in Program 2 the user provides a compression code map
file, a list of plug-ins (dynamic libraries “.dll”, “.so”, etc)
containing the transformation functions to be called by the virtual
machine, sets the word length and finally sets the offset range
used to encode the functions (so that the VM knows where to look
in the kernel for the context function reference). In this example,
the file "sc_code.map" stores the compression code, the library
"my_plugin.dll" owns the call-back functions, the word length is 4
and the function value is in the two first bits of the kernel.

• System and scope declarations. Once all the systems have
been defined, the last aim of the SC language is to allow the
declaration of system instances and their scopes (reminiscent of
variable declarations and function scopes in a procedural
program). Since scopes are relationships between instances, we
propose to handle all this in a “program body”. An example,
following the previous ones, is given in Program 5.

The first part of the program body declares instances, one by one
or in a group (array notation). Note that a system definition name
(left part of a declaration) is not a type. An instance (right part of a
declaration) is always a system instance initialised with a system
definition (triple string value) previously defined and identified by
the left name (e.g., MySystem, MyContext). These system values
are by definition only initial values which during computation are
likely to change. Only inner data such as “MY_ SYSTEM” in
Program 1 can be used as a method of typing.

2811

label MY_SYSTEM 0101
label MY_K_DATA ??01
label MY_S_DATA 0111

function NOP 00??

system MySystem {
 MY_SYSTEM ,

NOP | MY_K_DATA ,
MY_S_DATA

}

encoding {
 // Characters code map
 char_map "sc_code.map"
 // Functions module(s)
 func_libs { "my_plugin.dll" }
 // 1 character/bit per word
 word_length 4
 // 2 bits for functions (bit 0 to 1)
 func_offset 0:1
}

Program 1. Definition of a non-context system. Program 2. An SC program encoding section.
label ANY ????
label MY_CTX_DATA ??01

function My_Function 11??

system MyContext {
 [MY_SYSTEM , ANY, ANY] ,

My_Function | MY_CTX_DATA,
[MY_OTHER_SYSTEM , ANY, ANY]

}

system Solution {
 ANY ,
 NOP | SOLUTION ,
 ANY
}

system Operator {
 [ANY , NOP | SOLUTION , ANY] ,
 SelectAndEvolve ,
 [ANY, NOP | SOLUTION , ANY]
}

Program 3. Definition of a context system. Program 4. TSP Solution and Operator system declaration.
program {

 // Declarations
 Universe universe ;
 MySystem ms[1:2] ;
 MyOtherSystem mos[1:2];
 MyContext cs[1:2] ;

 // Scopes
 universe { ms[1:2] , mos[1:2] , cs[1:2] }

}

system ComputationSpace {
 ANY ,
 NOP | COMPUTATION_SPACE ,
 ANY
}

system Initialiser {
 [ANY , NOP | SOLUTION , ANY] ,
 Initialise ,
 [ANY , NOP | COMPUTATION_SPACE , ANY]
}

Program 5. Systems instantiations and scopes setup. Program 6. TSP Computation Space and Initialiser definition.

Figure 3. Human-program interaction in the context of the
Systemic Computer.
The second part of the program body then sets the scopes between
the instances. This notion of scopes refers to embedded
hierarchies. An SC program is a list of systems behaving in and
belonging to systems which themselves behave in and belong to
others and so on. Since the SC definition considers everything as a
system, the program is a system, the computer running a program
is a system, the user is a system, etc. The human-program
interaction can thus be seen as in Figure 3.

A user can interact with a program in the context of a computer.
Therefore the program needs to be embedded in a single entity.
This leads us to introduce the notion of “universe”. Any SC
program should have a universe containing everything but itself
and being the only one not to be contained. This universe can be
defined in any manner, but since it contains everything it cannot

interact by itself with the program. Therefore there is no
constraint on its definition and no need for it to act as a context.
However, it is the only system a user can interact with. The
universe is therefore where user’s parameters, to be changed at
runtime, should be placed.

Program 5 assumes a system named “Universe” has been defined,
although having a dedicated system definition is not mandatory.
In this example the universe contains the two instances of
MySystem, the two of MyOtherSystem and the two of
MyContext, namely everything but itself. This hierarchy is shown
in Figure 4.

Dark grey : Universe
White : MySystem
Black : MyOtherSystem
Light grey : MyContext

Figure 4. Visualisation of a simple program. The universe
encompasses everything.

4.3 Visualisation
Although an SC program does not require any graphical output,
understanding embedded hierarchies and computation in massive
(hundreds or thousands of) systems can be difficult. Therefore, a

2812

visualisation tool used in parallel with the VM enables a user to
gain a better insight of the changing states.

A simple 2D visualisation tool has been created, that represents
system hierarchies using a filled circle to represent a system. A
visualisation of the program described in the fragments: Program
1, Program 3 and Program 5 can be rendered in 2D as shown in
Figure 4.

It is impossible to represent all possible n-dimensional or
recursively dimensional (circular hierarchy) environments in a
2D/3D space, however some models can fit or partly fit and thus
be well visualised. Such visualisation mainly shows hierarchies
and cannot easily render information such as numerical or string
values within the spheres. In this case, non-viewable information
is provided in a display window as text data, for example Figure 5

Figure 5 State (or value) of all systems in Program 5.
The combination of systemic computation model, virtual machine,
language and visualiser enables the programmer to create, follow
and analyse computation in complex systems.

5. A SYSTEMIC COMPUTATION
IMPLEMENTATION OF TSP
The Travelling Salesman Problem (TSP) is a classic problem in
the fields of Computational Complexity Theory and Evolutionary
Computation (EC). The problem is, given a number of cities and
the distance from one city to another, find the shortest round-trip
route that visits each city exactly once and then returns to the city
of origin.

In EC, genetic algorithms (GAs) or ant colony optimisation
(ACO) are commonly used approaches to solve this problem.
These are inspired by massively parallel natural processes, yet
they are often run on sequential machines. By definition, SC
provides us with a stochastic and massively parallel architecture.
The aim is thus, using this native feature, to develop a simple and
efficient solution to the TSP. We use a genetic algorithm for TSP
as a simple test implementation in the SC architecture. The
following sections explore the implementation on a systemic
computer.

5.1 Systemic Analysis
Systemic computation is an alternative model of computation.
Before any new program can be written, it is necessary to perform
a systemic analysis in order to identify and interpret appropriate
systems and their organisation. When performed carefully, such
analysis can itself be revealing about the nature of the problem
being tackled and corresponding solution. A systemic analysis is
thus the expression of any natural or artificial process in the
language of systemic computation.

The first stage is to identify the low-level systems (i.e., determine
the level of abstraction to be used). The use of a genetic algorithm
implies we need a population of solutions, so a collection of
systems, with each system corresponding to one solution, seems
appropriate. (A lower-level abstraction might use one system for

every gene within each solution, but for the purposes of this
investigation, this would add unnecessary complexity.)

The identification of appropriate low-level systems is aided by an
analysis of interactions. In a genetic algorithm, solutions interact
in two ways: they compete for selection as parents, and once
chosen as parents, pairs produce new offspring. The use of
contextual systems (which determine the effects of solution
interaction) for the genetic operations therefore seems highly
appropriate, as shown in Figure 6.

Figure 6. An operator acts as a context for two interacting
solutions.

Figure 7. Left: The “Initialiser” acts as context for
interactions between non-initialised solutions (located outside
the computation space) and the computation space. Right:
The result of the interaction, as defined by the initialiser, is an
initialised a solution inside the computation space where it can
then interact with other solutions in the context of the
operators (not shown).
Program 4 provides an example for the definition of solutions and
operators. The “SelectAndEvolve” function computes new
solutions using the two solutions provided. Any selection and
evolution methods may be used. For simplicity, here we perform
the selection and reproduction at the same time with the pair of
interacting solutions. (All conventional operators could be
implemented, e.g. using ‘selection’ systems to move solutions
inside a ‘gene pool’ system, from which other ‘reproduction’
systems would control the interaction of parents to make
offspring. Such complexity is unnecessary here, however.)

Once the systems and interactions are understood, it is necessary
to determine the order and structure of the emergent program. For
this we need to determine scopes (which systems are inside which
other systems) and the values stored within systems. In a genetic
algorithm, the population is usually initialised with random
values, before any other kind of interaction can take place. This
implies a two-stage computation: first all solutions must be
initialised, then they are permitted to interact and evolve. One way
to achieve this is to use a ‘supersystem’ as a computation space,
and an initialiser system. If all solutions begin outside the
computation space, then the initialiser acts as context for
interactions between the empty solutions and the space, resulting
in initialised solutions being pushed inside the space ready for
evolution, see Figure 7. When declaring the initialiser, the
wildcard word ANY is used to fill in the schemata. The
computation space and initialiser can be defined as in Program 6.

2813

The systemic analysis is complete when all systems and their
organization have been designed for the given problem (or
biological process or organism), providing an easy to understand
graph-based model. This model can be used on its own as a
method of analysis of biological systems, e.g. to understand
information flow and transition states. However, a systemic model
is best understood when executed as a program. To turn this
model into a working program, the data and functions need to be
specified for each system in a systemic computation program.

5.2 System Design
5.2.1 Representation and population size.
The representation of the genetic information in a TSP
implementation is often chosen as a string of terminals, each of
them standing for a city. This is the method of representation we
choose here. A chromosome (i.e. solution) is therefore a route
(succession of cities). We also use the common method of
discarding the initial city. As every city has to be visited once and
as all that matters when computing the distance is the order rather
than the position, fixing the first city (which therefore does not
have to be coded in the chromosome) does not reduce the solution
space but reduces the search space and thus the problem
complexity.

There are no constraints in SC about how or where data should be
stored in a system. In this problem, we store a TSP solution in the
left schema, and the distance of the route in the right schema.
With the kernel defining NOP, these systems will not act as
context for interacting systems matching the schemata (but this
would be possible should a different function be defined).

The choice of the number of solutions, or population size, has
been addressed in [8], and later specifically for the TSP using a
GA in [9]. The aim of the latter was to provide a population size
so that the probability that the initial population includes all the
edges of an optimum tour is close to one. The population size
naturally depends on the problem size. It has also been shown in
[9] that the population size in a GA for TSP is not critical,
especially if the algorithm includes mutation, and [9] observed
that it is not clear what the best population size should be. For our
population size we used the estimate provided in [9] (with p =
0.99) which suggests smaller values than Alander's bounds [8].

5.2.2 Genetic operators.
In the computation space, when two solution systems interact in
the context of an operator, the operator applies two functions in
succession: selection and reproduction.

Because operators exist as entities within the computation space
in the same way that solutions do, this provides a novel
opportunity for parameter tuning. Since SC randomly picks a
context, changing the proportion of operator instances changes the
probability of different operator types being chosen. The
probability of being chosen, and therefore the impact, of an
operator O is thus given by the ratio:

 (instances of O) / (total number of operator instances).

In this work, we created several types of genetic operators, which
used different approaches for selection, reproduction and
mutation. Selection is performed using a simple tournament
selection, where the fitness of both solutions is calculated and the
winner is the solution with the better fitness. During selection
there are two alternatives:

• strictly elitist: the best solution is always kept (KB);

• fitness proportional: the better a solution, the more likely it is
to be kept (FP).

It is noticeable that our configuration has many similarities with
steady-state GAs. However, the systemic selection chooses two
competing solutions at random rather than from a fitness sorted
set, which makes it subtly different. (It would be possible to sort
and order solutions using ‘sort’ systems and ‘linking’ systems to
produce an ordered chain of solutions, but again this was deemed
unnecessary complexity here.)

After selection, reproduction replaces the less fit solution with a
new child, created either by crossover using the two interacting
solutions as parents or by duplication and mutation of the selected
solution. We chose two different crossover methods:

• partially mapped crossover (PMX) [10],

• ordered crossover (OX) [11].

They were chosen because they are commonly known and usually
provide good results. They both guarantee to create only valid
chromosomes and to keep the order in the exchanged chunks of
genes.

When duplication and mutation is used to generate the child, three
alternative methods of mutation were available:

• Swap: chooses two successive cities and swaps them;

• Move: chooses a city and moves it somewhere else;

• Reverse: chooses a route portion and reverses it.

All these operations are commonly used in TSP implementations
using GAs. Program 4 defines only one operator as an example. In
our implementation we define an operator for each combination of
selection and evolution method (i.e. KB or FP using PMX, OX,
Swap, Move, Reverse). Therefore, the context function of each
operator defines one of the above combinations.

5.3 Experiments and Results
In this section we provide and compare the results of several
configurations.

5.3.1 Experiment 1: Selection Comparison
The first experiment we conducted was to assess relative
performances of the two selection methods in this
implementation. Three identical SC programs were created, one
with a KB operator in the computation space, one using an FP
operator, and one using both a KB and FP operator. The TSP
comprised a well known city map of 48 cities (gr48 from the
TSPLIB) for which the best solution is empirically known. Using
the formula from [9], a population size of 195 solutions was used,
in 1 computation space, with 1 initialiser. The experiment was
repeated 10 times, with consistent results. Representative results
of one run from this experiment are shown in Figure 8.

As can be seen in Figure 8, while the use of KB enables solutions
to converge in a normal manner towards better solutions, the FP
method seems to actively prevent evolution, with evolution
halting early on. When both operators are used, performance is
slightly improved compared to FP, but again evolution halts early.

2814

Figure 8. Comparative test of the two selection methods.
This result is not surprising if we consider the mechanisms behind
the selection methods. Systemic computation by default causes
solutions in the same scope to interact randomly in the context of
the operator system. Although only two individuals compete at a
time, the overall effect on the population is similar to fitness
ranked proportional selection. While the KB operator
acknowledges this, the FP selection contests it partially. When
selecting with FP, if out of the two solutions one is much better
than the other, the FP selection will tend to act as a KB selection.
If the two solutions are close, the FP selection will be fairly close
to random, and randomness is already present when picking the
two interacting solutions. It thus appears that the FP operator can
only slow down the convergence process without bringing much
in return. For this reason, we only use the KB method in further
experiments.

5.3.2 Experiment 2: Operator Comparison

In addition to selection, gene diversity depends on the method of
reproduction. For example, if operators tend to keep and duplicate
the best, the population will quickly tend to contain only copies of
this best and may converge prematurely. The aim of the second
experiment is thus to evaluate and compare the efficiency of the
operators. Using KB selection, six versions of the program were
created, each using one of the five operators, and one using all
five together (one copy each). Each was executed 10 times with
consistent results; Figure 9 provides a plot of one run showing
representative results.

Figure 9. Comparative test of the operators all together and
individually.

Figure 10. Operators’ fitness distribution over time for the
crossover operators PMX and OX.
Examining both speed of optimisation, and the ability of the
population to keep improving without premature convergence, we
can observe in Figure 9 that all operators together perform better
in time than any used individually. When used alone, both
crossover operators (and especially PMX), perform well but
premature convergence seems to occur. Figure 10 shows the
effectiveness of OX and PMX over time, by plotting: best parent’s
fitness / child fitness. Both settle at 1, indicating children with
identical fitness to parents, a premature convergence of the
population to an imperfect solution.

When analysed, only the reverse mutation seems to enable rapid
convergence and continuous improvement thereafter. However,
when all operators are available together, the population evolves
more effectively.

Indeed, when the contribution of each operator is analysed in
more detail (by assessing how frequently each operator produced
a fitter solution over time), it becomes apparent that all enable
convergence to solutions at different rates, and that those rates all
vary over time. Indeed, it can be seen that different combinations
of operators would be more appropriate at different times during
evolution.

5.4 Self-Adaptive Evolutionary Operators
It is clear that when solutions interact in the right context at the
right times, the speed of evolution can be increased, or the ability
of evolution to continue making progress can be improved. In
nature, factors affecting the progression of evolution (whether part
of the evolving organisms, or of the environments of the
organisms), are also subject to evolution. The contexts that affect
evolutionary progress may co-evolve, giving evolution of
evolvability.

If we perform a new systemic analysis and identify the systems,
interactions and structure, it is clear that the evolution of
evolvability implies new interactions and new systems. Now the
genetic operator systems must interact with each other in the
context of new operator adapter systems, see Figure 11. This
enables the genetic operators to evolve in parallel to the solutions
they modify.

In figure 10 we showed how the fitness of individual operators
could be assessed by comparing the relative fitness of parent and
child solutions produced by an operator. This information is
calculated and stored in the operator systems. We thus already
have the necessary information to enable the genetic operator
adapters to modify the genetic operators.

2815

Figure 11. Scheme of an self-adaptive approach to the TSP
using a GA on a SC architecture: A Genetic Operator
Adapter is added to the current interaction scheme to adapt
or evolve Genetic Operators during computation.
We implemented this new feature with a new context system
which adapts the operator type between the different approaches.
When two operators interact in the context of this system, a fitter
operator has on average a higher chance of replacing a less fit one,
thus making the number of fitter operators more numerous in the
population. The average fitness of a genetic operator is measured
within a window of size W last operations. This grows in time
following the distribution W = A.(1-exp(-k.n)) where n is the total
number of computations performed and A and k are constants set
to 1000 and 0.0001 respectively. Lack of diversity was penalised
by giving 0.9 instead of 1 when an operator generates an identical
copy of the chosen solution.

The system was run using 3 instances of each of the 5 operators,
using KB selection, and 1 operator adapter. Figure 12 shows a
representative run, comparing the adaptive algorithm with 4 other
combinations of operators. It should be clear that the adaptive
method consistently outperforms the other approaches; analysis
indicates that the relative number of operators changes during the
course of evolution.

Figure 12. Comparison of the adaptive method with the best
tuned methods.

6. CONCLUSION
Biological computation has many significant characteristics that
help give it desirable properties. Systemic computation is a model
of computation that incorporates those characteristics and suggests a
non-von Neumann architecture compatible with conventional
hardware and able to support biological characteristics natively.

This paper introduced a platform for the newly introduced systemic
computation model including a virtual machine, language, compiler
and visualiser. This permits us to design, run and test systems with
natural characteristics. This platform was presented together with a
concrete application, the travelling salesman problem. We proposed

a genetic algorithm making use of the native characteristics of SC
and showed how it could be made self-adaptive with minimal extra
code.

Systemic computation is an alternative approach to computation,
and can be implemented on any interacting systems, electronic,
biological, or mechanical. In addition to being a model of
computation, it may also be viewed as a method of analysis for
biological systems, enabling information flow, structure and
computation within biology to be formulated and understood in a
more coherent manner.

Work is still ongoing in this area. It is anticipated that systemic
computation may enable a clear formalism of ‘complex system.’
Another goal is the creation of dedicated parallel hardware for the
systemic computer – work is currently underway towards this.

7. REFERENCES
[1] Bentley, P.J . Systemic Computation: A Model of Interacting

Systems with Natural Characteristics. In Adamatzky, A.,
Tueuscher, C. and Asai, T. (Eds) Special issue on Emergent
Computation in Int. J. Parallel, Emergent and Distributed
Systems (IJPEDS), Taylor & Francis pub., Oxon, UK. Vol
22:2.. 2007. pp. 103-121.

[2] J. von Neumann, The theory of selfreproducing automata. A.
Burks (ed), Univ. of Illinois Press, Urbana 1966

[3] S. Wolfram A New Kind of Science. Wolfram Media, Inc.,
ISBN 1579550088. (May 14, 2002)

[4] J. H. Holland, Emergence. From Chaos to Order. Oxford
University Press, UK. (1998)

[5] A. Adamatzky Computing in Nonlinear Media and Automata
Collectives. IoP Publishing, Bristol, 410 pp. ISBN
075030751X. (2001)

[6] G. B. Fogel, D. W. Corne (Eds), Evolutionary Computation in
Bioinformatics. Morgan Kaufmann Pub. ISBN: 1558607978
(2003)

[7] D. K. Arvind, K.J. Wong, “Speckled Computing: Disruptive
Technology for Networked Information Appliances”. In Proc.
of the IEEE International Symposium on Consumer
Electronics (ISCE'04) (UK), pp 219-223, (September 2004).

[8] Jarmo T. Alander. On optimal populationsize of genetic
algorithms. In Patrick Dewilde and Joos Vandewalle, editors,
CompEuro 1992 Proceedings, Computer Systems and
SoftwareEngineering, 6th Annual European Computer
Conference, pages 65-70, The Hague, 4.-8. May 1992. IEEE
Computer Society Press. 5, 11, 12.

[9] Population Size in GAs for TSP, Proceedings of the Second
Nordic Workshop on Genetic Algorithms and their
Applications (2NWGA), 21-23 Aug 1996, Finland

[10] D. E. Goldberg and R. Lingle, “Alleles, loci and the traveling
salesman problem”, Proceedings of the International
Conference on Genetic Algorithms and their Application,
Pittsburgh, PA, 1985, pp 154-159

[11] Davis L. “Applying adaptive algorithms to epistatic domains.”
Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, Los Angeles, CA, 1985, pp 162-164

2816

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

