
Exploring Selection Mechanisms for an Agent-Based
Distributed Evolutionary Algorithm

J. L. J. Laredo
Department of Architecture
and Computer Technology

University of Granada. ETSIT.
juanlu@geneura.ugr.es

E. A. Eiben
Department of Computer

Science
Vrije Universiteit

Amsterdam
gusz@cs.vu.nl

M. Schoenauer
Projet TAO, INRIA Futurs

LRI, Univ. Paris-Sud
marc@lri.fr

P. A. Castillo
Department of Architecture
and Computer Technology

University of Granada. ETSIT
pedro@atc.ugr.es

A. M. Mora
Department of Architecture
and Computer Technology

University of Granada. ETSIT
amorag@geneura.ugr.es

J. J. Merelo
Department of Architecture
and Computer Technology

University of Granada. ETSIT
jmerelo@geneura.ugr.es

ABSTRACT
In this paper we propose an agent-based model of evolution-
ary algorithms (EAs) which extends seamlessly from concur-
rent single-host to distributed multi-host installations. Since
the model is based on locally executable selection, we focus
on the comparison of two selection mechanisms which ac-
complish with such a restriction: the classical tournament
method and a new one called autonomous selection. Us-
ing the latter method the population size changes during
runtime, hence it is not only interesting as a new selection
mechanism, but also from the perspective of scalable net-
works.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search, Heuristic
Methods

; C.2.4 [Computer Systems Organization]: COMPUTER-
COMMUNICATION NETWORKS—Distributed Systems

General Terms
Algorithms

Keywords
self-adaptation, genetic algorithms, multi-agent systems, par-
allelization, performance analysis

1. INTRODUCTION
Distributed applications are emerging with renewed inter-

est since the Peer-to-Peer(P2P) paradigm [16] appeared on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007 ...$5.00.

the area of heterogeneous networks. In order to deal with
development of applications in that environment, questions
such as scalability (since P2P systems can become large-
scale networks) or robustness (given that they have dynam-
ics topologies with continuous variants either on the con-
nected nodes or the network structure) become of the max-
imum interest and have to be addressed [19].

This paper outlines general aspects for the development
of distributed Evolutionary Algorithms (EAs) specially con-
cerning P2P networks and focuses on the analysis of two
selection mechanisms for a proposed new model.

EAs are population-based stochastic search methods with
an inherent parallelism [7]. Their possible parallelism has
been widely studied (see e.g. [4] for a survey) but mainly
under two approaches: master-slave and islands. In the
master-slave mode the algorithm runs on the master and the
individuals are sent for evaluation to the slaves, in an ap-
proach usually called farming. Using the island model sev-
eral EAs (islands) are employed processing their own popu-
lation, and exchanging the best individuals between islands
with a certain rate [3]. Both cases present major adoption
problems in heterogeneous fully decentralized networks such
as P2P networks. On the one hand, master-slave features
do not match with large-scale system robustness (master
represents a single point of failure) and scalability (since it
depends on evaluation function cost, and has a bottleneck
in the efficiency of the master performing the evolutionary
operations). On the other hand, P2P systems do not pro-
vide the knowledge of the global environment that the island
model needs in order to set parameters such as the number
of islands, the population size per island and the migration
rate.

Nevertheless, there is a third, finer grained approach, termed
Fully Distributed Model, in which processors host single in-
dividuals that evolve on their own. Operations that require
more than a single individual (e.g., selection and crossover)
take place among a defined set of neighbors (between indi-
viduals on different nodes or available locally to a node).
This model is able to adapt to heterogeneous networks since
some P2P overlay networks [5] provide a dynamic neighbor-
hood whose size grows logarithmically with respect to the
total size of the system in a small-world fashion. Following

2801

a gossip style, these small-world networks spread informa-
tion in an epidemic manner through the whole network (as
can be seen in [10, 9]), what means that the risk of having
obsolete individuals across the network is minimized as a
consequence of the probabilistic global “infection” that the
nodes undergo.

It is obviously not straightforward to outline a method
that takes advantage of those P2P properties, obtaining at
the same time high performance and good scalability. That
is why we propose a model where each individual in an evo-
lutionary computation population schedules its own actions.
This model is a step towards a “Fully Distributed Model”
for designing EAs in heterogeneous networks.

A first analysis on the model scalability can be seen in [12]
while within this paper we compare two different selection
mechanisms for suitability within this framework: firstly, a
classical tournament method and secondly the autonomous
selection. Autonomous selection (described in detail in sec-
tion 3.2) lets each individual control its own reproductive
and life status based on an estimation of some population
fitness statistic. This status determines whether the individ-
ual will die or survive, and if it survives, whether it is fertile
to produce offspring. It is essential here that death and birth
are not synchronized. An agent can die without producing
offspring, and newly created children can be added to the
population without removing old ones. As a consequence,
this mechanism leads to a runtime population size adjust-
ment. Such feature can offer benefits when running on a
P2P system since available resources change dynamically.

Since the model is based on locally executable selection,
the main objective of this paper is to explore two selection
mechanisms which tackle such a restriction. To this end,
we perform a study which compares the tournament-based
and the autonomous agents with a Simple Genetic Algo-
rithm (SGA), in a Symmetric Multiprocessing (SMP) node
scenario.

The rest of the paper is organized as follows: section 2
presents some work related to the scope of this paper. Sec-
tion 3 describes the overall model operation and focuses on
the implementation of the two selection mechanisms (sec-
tions 3.1 and 3.2). Section 4 explains the experimental setup
and section 5 deal with the obtained results. Finally, section
6 reaches some conclusions and presents some future works.

2. RELATED WORK
Due to the diversity of fields that this study involves, it

is convenient to revise them in order to set the scope of the
work.

Concerning development of P2P distributed computing
systems, there are some frameworks such as:

• DREAM [1], which focuses in distributed processing
of EAs and uses the P2P network DRM.

• G2DGA [2], equivalent to the previous. It centers on
distributed genetic algorithms processing by the use of
the network G2P2P.

• JADE (Java Agent Development Framework, available
from http://jade.cselt.it/), a P2P system which
includes agents as software components.

The mentioned DRM is an implementation of the news-
cast protocol [10]. This protocol has served as a guide for

Figure 1: Overall architecture of the model

the proposed communication mechanism within this model.
Newscast is an epidemic approach where every node shares
local information with its neighbourhood by selecting a node
from it with uniform probability each certain time (refresh
rate). Our communication model is inspired by such a pro-
tocol. However, our model considers a dynamic refresh rate
which depends on the QoS parameters: latency and band-
width.

There are also several approaches to evolutionary com-
putation using multi-agent systems: Vacher et al. present
in [17], for instance, have presented a multiagent approach
to solve multiobjective problems; recently, Lee [14] has also
presented a multi-agent synchronous evolutionary system,
which uses the JADE middleware mentioned above.

There are some works regarding optimization of parallel
evolutionary algorithms; Viveros and Barán [18] propose the
combination of parallel evolutionary algorithms with local
optimization functions which depends on processor capaci-
ties in heterogeneous computational systems. The authors
have related works on this field [8], shows that the number
of parallel executions must be equivalent to the number of
available processors in order to equilibrate computational ef-
fort and algorithmic results [6] report the benefits of consid-
ering population size adjustment on runtime. Finally some
of the authors of this paper present in [11], another agent-
based model where the load of every evolutionary compu-
tation experiment is self-adaptive depending on the archi-
tecture where it is executed, yielding more efficient results
than the classical sequential approach.

In this paper we explore two selection mechanisms for
our distributed evolutionary algorithm proposal which in-
tends to be a step toward future models allowing real self-
adaptation in dynamic environments such as P2P systems.

3. OVERALL MODEL DESCRIPTION
The overall architecture of our Evolvable Agent Model is

depicted on figure 1. It consists of a group of Evolvable
Agents (each one running on its own thread) whose main
design objective is to carry out the principal steps of evolu-
tionary computation: selection and variation (crossover and
mutation). Obviously, the key element here is the locally
executable selection. Crossover and mutation never involve
many individuals, but selection in EAs usually requires a
comparison among all individuals in the population. Con-
sider, for example, roulette wheel or rank-based selection.

The agents know the environmental status by means of

2802

Figure 2: Format of a cache entry. It provides the
following information about a foreign node: Ad-
dress, number of evaluations performed and one in-
dividual of its population termed solution

a blackboard mechanism [15]. The blackboard allows the
interchange of information between agents (Agent-Agent)
or with cache (Agent-Cache).

Within this work we will focus on the Agent-to-Agent
communication in a single node scenario as we intend to
prove that, even in a single node, this novel evolutionary
scheme performs as well or better than traditional, gen-
erational, synchronous evolutionary algorithms. Agent-to-
Cache and the underlying gossip communication mechanism
has been evaluated in [12]. The functional analysis of this
system will be presented below.

The blackboard implements a Scheduler Agent that allows
information spread among nodes in a gossip style. The mes-
sages used among nodes are called contributions and their
structure matches with a cache entry (figure 2). Thus, in-
stead of the classical view of a population of solutions man-
aged by an oracle, this model proposes a population of (more
or less) autonomous agents, each one representing a solution.

Algorithm 1 Scheduler Agent

ΔT ⇐ 1 sec.
loop

sleep ΔT
Node ⇐ Random selected node
Sol ⇐ Selected Solution in Pagents

Contribution ⇐ NumEvaluations,Sol
Ping (Node,Contribution)

end loop

Algorithm 2 Ping Handler

Require: Node, Contribution
Cache(Node)⇐ Contribution
Pong(Node,OK)

Algorithms 1,2 and 3 show the pseudo-code of the main
tasks in the communication process which build the over-
lay network. Each blackboard maintains a cache with a
maximum of one entry per node in the network. Each en-
try follows the contribution format (Figure 2). The cache
indexes the entries with the Address field. Therefore, the
newest contributions replaces the oldest ones. This process
leads the removal of obsolete individuals and allows a global
evolution in a decentralized environment. The scheduling
mechanism is carried out by each node as explained next:

• Algorithm 1 Each ΔT time, a node (the current
node) selects another node with uniform probability to
establish communication. Current node sends an ap-
plication level Ping message to the selected node with

Algorithm 3 Pong Handler

Require: Node
ΔT ⇐ Time used answering the Ping

information about a random solution in the population
of agents (Pagents) in a contribution format (Figure 2).

• Algorithm 2 The selected node stores that solution
in its cache and sends back an acknowledge message
(Pong).

• Algorithm 3 At the arrival of the Pong, the current
node updates its refresh rate (ΔT) with the time spent
in the operation.

Next we present the two possible methods of an Evolvable
Agent under study. They differ in the selection mechanism.
In both cases, selection is locally executable, in the sense
that it does not require direct comparisons with all individ-
uals in the population.

The model using the Basic Evolvable Agent is close to
standard evolutionary algorithms. Local selection is per-
formed by tournament selection, cf. Section 3.1. The sim-
plicity of this scheme makes it appropriate as the base line
for comparison. The model using the Experimental Evolv-
able Agent (Section 3.2) breaks with the traditional EA
models more radically. Local selection is performed by au-
tonomous selection and population updates are made asyn-
chronous by allowing the addition/removal of a new/old in-
dividual without keeping the population size constant. This
causes an extra challenge to EA designers, because in prin-
ciple the population could grow beyond feasible range or
shrink to complete extinction. This necessitates further
research in order to define mechanisms (other than trial-
error tuning of parameters) to maintain the population size
between desirable ranges and according with available re-
sources. Therefore, we give it the status of experimental
agent at this stage.

3.1 Basic Evolvable Agent with Tournament
Selection

Algorithm 4 Evolvable Agent with Tournament Selection

St ⇐ Initialize Agent
Register Agent on the blackboard
loop

Sols ⇐ Selection(k, Blackboard)
St+1 ⇐ Recombine(Sols,Pc)
St+1 ⇐ Mutate(St+1, Pm)
St+1 ⇐ Evaluate(St+1)
if St+1 better than Blackboard.BestSol then

Blackboard.BestSol ⇐ St+1

end if
if St+1 better than St then

St ⇐ St+1

end if
end loop

Algorithm 4 shows the pseudo-code of an Evolvable Agent
which uses Tournament Selection. The agent owns a solu-
tion (St) which it tries to evolve. The selection mechanism
works as follows: Each agent selects k (k = tournament

2803

size) solutions among other agents’ current solutions and
solutions stored in cache (which are migrants from network
nodes) with uniform probability by means of the blackboard.
The two best solutions in k are stored in “Sols” ready to be
recombined by a crossover operator. The crossover returns
a single solution St+1 that is mutated and evaluated. If the
newly generated solution St+1 is better than the old one St,
it becomes the current solution. Finally, Blackboard main-
tains global elitism by storing the best solution found so far
in Blackboard.BestSol.

3.2 Experimental Evolvable Agent with Au-
tonomous Selection

Algorithm 5 shows the pseudo-code of an Evolvable Agent
which uses Autonomous Selection. This kind of agent dif-
fers from the previous one (described in Algorithm 4) in
the ability of autonomously determining its own survival
(survive(St)) and child production (fertile(St)). The indi-
vidual survival and fertility are determined by heuristic de-
cisions (explained below) about whether it is “good enough”
to remain in the population (survival) and to reproduce (fer-
tility). If the agent survives, it will remain in the population
of agents otherwise it disappears. Furthermore, a surviving
agent can be fertile in order to generate a child that be-
comes a new evolvable agent in the population (new Evolv-
able Agent (St+1)). A child does not replace either of its
parents, thus the population size can change.

sigm,s(Δf(x)) =
1

e−m(Δf(x)−s)
(1)

Survival and fertility probabilities (respectively Ps,Pf) de-
pend on the sigmoid function (1). This sigmoid yields large
probabilities when Δf > 0 and small probabilities when
Δf < 0 as illustrated in Figure 3. Parameter m (multi-
plier) corrects the sharp shape of the sigmoid and s (shift)
shifts the sigmoid left or right. This way, Ps and Pf dif-
fer on the parameters m and s. Survive function uses ms

(multiplier survive function), ss(shift survive function) and
Fertile function mf (multiplier fertile function), sf (shift fer-
tile function).

Since each agent takes these decisions locally it is neces-
sary to supply it with some global status information. It is
provided by the fitness deviation Δf(x) = f(x)−f in which
f(x) is the fitness of the current solution x (e.g. f(St)) and
f is the mean fitness of the global population (it could be
other class of global estimation).

4. EXPERIMENTAL SETUP
We have carried out an empirical investigation over the

Evolvable Agent Model by comparing between the model
variants using Basic Evolvable Agents and Experimental
Evolvable Agents in a SMP node scenario. Here we also
include the Simple Genetic Algorithm (SGA) as a baseline
result.

As a test problem we have chosen the Travelling Salesman
Problem (TSP) [13]. The TSP is a classical combinatorial
optimization problem widely used to test evolutionary algo-
rithms [20]. In this problem there is a set of N = 1, . . . , n
cities which have to be visited once in such a manner that the
path forms a graph cycle that minimizes the travelled dis-
tance. We have selected three symmetrical instances with
different complexities: bier127, d198 and lin318, extracted

Algorithm 5 Evolvable Agent with Autonomous Selection

St ⇐ Initialize Agent
Register Agent on the blackboard
while isAlive do

if not survive(St) then
isAlive ⇐ false

else if fertile(St) then
Saux ⇐ Random Solution
St+1 ⇐ Recombine(Saux,St,Pc)
St+1 ⇐ Mutate(St+1, Pm)
St+1 ⇐ Evaluate(St+1)
if St+1 better than Blackboard.BestSol then

Blackboard.BestSol ⇐ St+1

end if
new Evolvable Agent (St+1)

end if
end while

Figure 3: Sigmoid curve shape

2804

Test-bed

Node Processor AMD Athlon(tm) X2 4200+
Operating System Linux 2.6.17-1.2142 FC4smp

Java version J2RE (build 1.5.0 06-b05)

Operators and Rates All EAs variants
Crossover Order crossover(OX)
Mutation 2-Opt mutation

Termination condition Max. number of eval.
Probability of crossover 0.7
Probability of mutation 0.1

Evolutionary Algorithm SGA
Population size 32
Tournament size 2

Evolutionary Algorithm Basic
Population size 32
Tournament size 7

Evolutionary Algorithm Experimental
Initial population size 32

Maximum population size 500
ms 1000
ss 0.5
mf 60
sf 0.95

Table 1: SMP Node Scenario: Test-bed and Oper-
ator rates. All EA variants share the main evolu-
tionary operators and rates. SGA stands for Simple
Genetic Algorithm, Evolvable Agent is labelled Ba-
sic and Evolvable Agent with Autonomous Selection
Experimental.

from TSPLIB1. It is important to note that our research
objective is not to establish a TSP-solver outperforming ex-
isting ones. Rather, the TSP is just used as a test problem
to perform an empirical study among variants of our algo-
rithm.

This case study is intended to provide experimental data
on the solution quality (accuracy) and algorithm speed ob-
tained by our two Evolvable Agent variants. The more clas-
sical variant uses tournament selection and the experimental
one uses autonomous selection and decentralized population
updates. Table 1 shows the general settings for this case
study. As a test-bed, we have considered a single node with
a Dual-Core processor. The test-bed has been deliberately
chosen since Evolvable Agent thread based implementation,
as explained in section 3, takes advantage of the applica-
tion level parallelism in shared memory computers (dealing
with a self-adaptive response to the heterogeneity found in
P2P nodes). These tests focus on an efficiency and accuracy
analysis, rather than on scalability. Solution quality is com-
pared using the Mean Best Fitness (MBF), while speed is
again measured by the average time spent when computing
a fixed number of 100000 evaluations. Both measures are
calculated over 30 independents runs.

The case of tuning the Autonomous Selection Mechanism
requires special attention. Since population size changes
during a run, we set the initial size to 32 and the maximum
number of individuals to an upper bound of 500. Based
on experience we gained with preliminary experimentation

1http://www.iwr.uni-heidelberg.de/groups/comopt/software
/TSPLIB95/ Accessed on January 2007

 160000

 170000

 180000

 190000

 200000

 210000

 220000

 230000

 240000

Exp.-EvABasic-EvASGA

F
itn

es
s

TSP Instance: bier127

Figure 4: Box-plot representation of the best fit-
ness obtained for the bier127 instance. SGA stands
for Simple Genetic Algorithm, Basic-EvA and Exp.-
EvA for Basic and Experimental Evolvable Agent

we scaled the TSP tour lengths so that we got Δf values
between -1 and 1 and the multipliers and shifts have been
tuned to ms = 1000 ss = 0.5 mf = 60 sf = 0.95.

5. EXPERIMENTAL RESULTS

5.1 Algorithmic comparison
The results of comparing tournament and autonomous se-

lection as the locally executable selection mechanisms for the
Evolvable Agent model are depicted in figures 4, 5 and 6.
To provide a generic benchmark, we also show the outcomes
obtained with a simple Genetic Algorithm (SGA).

We have carried out a t-Student analysis on results for
each problem instance (bier127, d198 and lin318) coupling
the three algorithms under study. They are all different
with a significance of 99% except in d198 instance (figure
5) for the Simple Genetic Algorithm and the Autonomous
Selection which is different with a 95% significance.

From the bier127 instance (figure 4) with the slightest
workload to the lin318 (figure 6) with the heaviest one, we
can observe how the Evolvable Agent with tournament se-
lection gradually outperforms the rest. In terms of mea-
sures of central location i.e. the mean, the Evolvable Agent
with autonomous selection would outperform the SGA, but
the spread in the distribution shape makes difficult a com-
parison. Such a shape could be an effect of the on-the-fly
population size adjustment which introduces an extra non-
deterministic effect on results. We focus on that mechanism
in Section 5.3.

5.2 Scalability in the SMP node
Table 2 shows the time that the different algorithms spent

in processing a fixed computational effort of 100000 evalua-
tions when solving the three problem instances. The Evolv-
able Agent model using tournament selection turns out to
be the fastest in all instances (speed-up close to a factor
2 regarding the SGA) while the Evolvable Agent using au-
tonomous selection is slower or faster than SGA depending
on the instance.

2805

 26000

 28000

 30000

 32000

 34000

 36000

 38000

 40000

 42000

 44000

Exp.-EvABasic-EvASGA

F
itn

es
s

TSP Instance: d198

Figure 5: Box-plot representation of the best fitness
obtained for the d198 instance. SGA stands for Sim-
ple Genetic Algorithm, Basic-EvA and Exp.-EvA for
Basic and Experimental Evolvable Agent

 130000

 140000

 150000

 160000

 170000

 180000

 190000

 200000

 210000

 220000

 230000

Exp.-EvABasic-EvASGA

F
itn

es
s

TSP Instance: lin318

Figure 6: Box-plot representation of the best fit-
ness obtained for the lin318 instance. SGA stands
for Simple Genetic Algorithm, Basic-EvA and Exp.-
EvA for Basic and Experimental Evolvable Agent

TSPInstance EA Time(seconds)±σ

SGA 15.6 ± 0.3
bier127 Basic-EvA 9.75 ± 0.344

Exp.-EvA 23.2 ± 1.93

SGA 37.7 ± 1.5
d198 Basic-EvA 19 ± 0.88

Exp.-EvA 40.7 ± 3.98

SGA 98.3 ± 4.7
lin318 Basic-EvA 47.64 ± 2.6

Exp.-EvA 79.9 ± 5.56

Table 2: Time comparison of SGA, Basic and Exper-
imental Evolvable Agents when solving 3 instances
of the TSP. Effort is fixed to 100000 evaluations.

These results show how the thread-based implementation
of the Evolvable Agent Model takes implicit advantage of the
SMP computers regarding sequential implementation of the
canonical form of a SGA. SGA is a single-threaded process
which is able to execute in a single processor. The number
of threads in the Evolvable Agent Model is determined by
the population size, such a kind of parallelism occurs at
application level since the operating system balances the
threads among the available processors. Unfortunately the
experiments conducted on a SMP Dual-Core processor are
just a proof of concept instead of a real scale-up analysis.
Future works will have to address this question.

5.3 The Experimental Evolvable Agent: pop-
ulation size and fitness curve

The Evolvable Agent using autonomous selection present
an extra non-deterministic effect on results which we try
to analyze within this section. This effect is caused by the
on-the-fly population adjustment that takes place. We con-
sider a run of the d198 problem instance depicted in figures
7 and 8. Figure 7 illustrates how the fitness of the popula-
tion evolves over the time by plotting the average and best
fitness. For the same execution, figure 8 depicts the popu-
lation sizes, either the total size and the number of fertile
individuals.

There are two key observations to be made.

• First, within the range of [0,20000) evaluations, fig-
ure 8 depicts how the global population and fertile
individuals shrink and grow while figure 7 shows that
the best and average fitness remain close. Therefore,
Δf values for the sigmoid function must be around
0 within this fragment of execution which allows that
the best individuals become fertile and the worst are
erased maintaining the selection pressure balanced.

• Second, from 20000 evaluations ahead, the population
size explode to the artificial bound of 500 while fertile
individuals decrease with significance. The selection
pressure increases since just few best individuals are
fertile which affects to diversity.

This study reveals that further research is needed in or-
der to control the selection pressure when using autonomous
selection as selection mechanism for the Evolvable Agents.
Nevertheless, the comparison carried out in Section 5.1 shows
how the autonomous selection, even at this early stage, can
obtain better results than SGA and better than Evolvable
Agents with tournament selection in some of the instances.

2806

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

F
itn

es
s

Evaluations

TSP Instance: d198

Best fitness
Average fitness

Figure 7: Experimental Evolvable Agent.
Best/average fitness curves for the d198 instance

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
op

ul
at

io
n

si
ze

Evaluations

TSP Instance: d198

Total size
Fertile individuals

Figure 8: Experimental Evolvable Agent. Popula-
tion size and fertile individuals for the d198 instance

6. CONCLUSIONS AND FUTURE WORKS
In this paper we present an Agent-based approach towards

a fully distributed EA model. The model is designed to
deal with heterogeneous networks features and specially P2P
networks. The evolution process consists in maintaining a
population of agents that evolve single solutions. Each agent
can access other agents’ current solution in operations that
needs more than one individual (e.g. selection) by means of
the blackboard mechanism described in section 3.

From the proposed experiments we conclude that:

• The structural changes that the model proposes on the
EA make it faster in obtaining a better fitness than the
canonical SGA for the same number of evaluations,
running in a single node.

• One major aspect, so far outlined in the paper, is
that P2P networks are composed by a wide range of
heterogeneous nodes. As can be gleaned from the
case study in a Dual-Core processor, Evolvable Agents
take implicit advantage of the application level paral-
lelism in shared memory computers (dealing with a
self-adaptive response to the heterogeneity found in
P2P nodes).

• Concerning the two Evolvable Agent methods under
study, we can conclude that Tournament is more ef-
ficient than Autonomous Selection at least with the
current implementations (since a profiling study of this
last could reveal several ways of optimization). How-
ever, the algorithmic results are dependent on the prob-
lem instance without a clear winner.

• This approach is a proof of concept towards a dis-
tributed EA model where scalability and quality re-
sults were possible both together.

Finally, beyond these preliminary tests, we consider that
population size adjustment on runtime should be consid-
ered as a natural mechanism for reaching adaptation to dy-
namic P2P networks in which available resources are chang-
ing through the time. Therefore our future research will
focus on the improvement of Evolvable Agents with Au-
tonomous Selection. Hence, we would have an adequate
adjustment of the population size if we could control the
selection pressure by self-adapting the ms, fs, mf and sf

parameters. Such a dynamic population will allow taking
advantage of the P2P available resources by the use of cor-
rect load balancing policies.

Future works will have to consider the experimentation
in large-scale networks where further conclusions can be
reached respecting scalability limitations, adaptation to het-
erogeneity and algorithmic effects of having a real network
with high latency links. Within this line we plan to imple-
ment the model into a P2P framework such as DREAM [1]
which shares its main design objectives.

Acknowledgements
This work has been partially supported under the Project
NadeWeb (TIC2003-09481-C04).

2807

7. REFERENCES
[1] M. Arenas, P. Collet, A. Eiben, M. Jelasity, J. Merelo,

B. Paechter, M. Preuss, and M. Schoenauer. A
framework for distributed evolutionary algorithms. In
J. M. Guervós, P. Adamidis, H. Beyer, J. F.-V. nas,
and H. Schwefel, editors, Parallel Problem Solving
from Nature - PPSN VII, 7th International
Conference, Granada, Spain, September 7-11, 2002.
Proceedings, number 2439 in Lecture Notes in
Computer Science, LNCS, pages 665–675.
Springer-Verlag, 2002.

[2] J. Berntsson. G2DGA: an adaptive framework for
internet-based distributed genetic algorithms. In
GECCO ’05: Proceedings of the 2005 workshops on
Genetic and evolutionary computation, pages 346–349,
2005.

[3] E. Cantú-Paz. Topologies, migration rates, and
multi-population parallel genetic algorithms. In
W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, and R. E. Smith, editors,
Proceedings of the Genetic and Evolutionary
Computation Conference, volume 1, pages 91–98,
Orlando, Florida, USA, 13-17 July 1999. Morgan
Kaufmann.

[4] E. Cantú-Paz. Efficient and Accurate Parallel Genetic
Algorithms. Kluwer Academic Publishers, Norwell,
MA, USA, 2000.

[5] D. Doval and D. O’Mahony. Overlay networks: A
scalable alternative for P2P. IEEE Internet
Computing, 7(4):79–82, July/August 2003.

[6] A. Eiben, E. Marchiori, and V. Valkó. Evolutionary
algorithms with on-the-fly population size adjustment.
In Parallel Problem Solving from Nature - PPSN VIII,
volume 3242 of LNCS, pages 41–50, Birmingham, UK,
September 2004. Springer-Verlag.

[7] A. E. Eiben and J. E. Smith. Introduction to
Evolutionary Computing. SpringerVerlag, 2003.

[8] I. Hidalgo and F. Fernández. Balancing the
computation effort in genetic algorithms. In
Evolutionary Computation, 2005. The 2005 IEEE
Congress on, volume 2, pages 1645–1652. IEEE Press,
2005.

[9] M. Jelasity, A. Montresor, and O. Babaoglu.
Gossip-based aggregation in large dynamic networks.
ACM Trans. Comput. Syst., 23(3):219–252, 2005.

[10] M. Jelasity and M. van Steen. Large-scale newscast
computing on the Internet. Technical Report IR-503,
Vrije Universiteit Amsterdam, Department of
Computer Science, Amsterdam, The Netherlands,
October 2002.

[11] J.L.J.Laredo, P. Castillo, A. Mora, and J. Merelo.
Estudio preliminar sobre autoadaptación en agentes
evolutivos sobre arquitecturas heterogéneas. In XVII
Jornadas de Paralelismo – XVII JP, pages 389–394,
September 2006.

[12] J. Laredo, E. Eiben, M. Schoenauer, P. Castillo,
A. Mora, F. Fernández, and J. Merelo. Self-adaptive
gossip policies for distributed population-based
algorithms, 2007. http://arxiv.org/abs/cs/0703117.

[13] E. Lawler, J. Lenstra, A. R. Kan, and D. Shmoys. The
travelling salesman problem: A guided tour of
combinatorial optimization. New York: Wiley and
Sons, 1985.

[14] W. . Lee. Parallelizing evolutionary computation: A
mobile agent-based approach. Expert Systems with
Applications, 32(2):318–328, 2007.

[15] H. P. Nii. Blackboard systems: The blackboard model
of problem solving and the evolution of blackboard
architectures. AI Magazine, 7(2):38–53, 1986. Cited
By (since 1996): 101.

[16] R. Steinmetz and K. Wehrle. What is this
peer-to-peer about? In R. Steinmetz and K. Wehrle,
editors, Peer-to-Peer Systems and Applications,
volume 3485 of Lecture Notes in Computer Science,
pages 9–16. Springer, 2005.

[17] J.-P. Vacher, A. Cardon, F. Lesage, and T. Galinho.
Genetic Algorithms in a Multi-Agent System. In
Proceedings IEEE International Joint Symposia on
Intelligence and Systems, pages 17–26, Rockville, MD,
USA, 1998.

[18] E. Viveros and B. Barán. Algoritmos genéticos
aśıncronos combinados para una red heterogénea de
computadoras. In Conferencia Internacional de
Ciencia y Tecnoloǵıa para el Desarrollo, 1997.
http://www.cnc.una.py/cms/
invest/download.php?id=46205,66,1.

[19] S. Voulgaris, M. Jelasity, and M. van Steen. A robust
and scalable peer-to-peer gossiping protocol. In Moro,
Sartori, and Singh, editors, Agents and Peer-to-Peer
Computing, volume 2872 of Lecture Notes in
Computer Science (LNCS), pages 47–58. Springer
Berlin / Heidelberg, 2004.

[20] L. Wang, A. Maciejewski, H. Siegel, and
V. Roychowdhury. A comparative study of five
parallel genetic algorithms using the traveling
salesman problem. In IPPS: 11th International
Parallel Processing Symposium, pages 345–349. IEEE
Computer Society Press, 1998.

2808

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

