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ABSTRACT
This work addresses selected aspects of natural evolution,
especially of the field of population genetics, that are consid-
ered to be meaningful for algorithmic further developments
in the field of Genetic Algorithms (GAs) and Genetic Pro-
gramming (GP) by the authors. In this connection special
attention is devoted to selection and replacement strategies,
as these are exactly the aspects that do not depend on cer-
tain problem representations and corresponding operators
and therefore allow generic algorithmic further development.
The concept of offspring selection is described as an example
of such a problem independent further developed algorith-
mic concept, which allows to maintain the relevant genetic
information stored in a population more efficiently. The po-
tential of this new selection strategy is pointed out in terms
of references to recent results achieved on the basis of well
known benchmark problems in the field of GAs and GP.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic Methods

General Terms
Algorithms

Keywords
Evolutionary Computation, Population Genetics, Genetic
Drift, Population Structure, Selection, Selection Pressure

1. INTRODUCTION
Research in population genetics was introduced into the

scientific community in the context of genetics and evolution
biology. The history of evolution biology as an independent
discipline dates back to the 17th and 18th century. At that
time the individual was considered as the object of evolution
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which is also the outmoded concept of Lamarck’s hypoth-
esis [13] about the heredity transmission of attributes ob-
tained by the development of the individual. In the middle
of the 19th century, Charles Darwin and Alfred Russel Wal-
lace formulated the idea of selection of individuals. A main
difference to Lamarck’s theory was that not the individuals
but the populations and species evolve [10]. Darwin’s theory
of evolution also represents the theoretical basis of Genetic
Algorithms. In contrast to Lamarck’s postulate, Darwin’s
theory assumes no individual evolution apart from unfre-
quent mutations: As the theory of chromosomes and thus
modern genetics evolved no more until around 1900, Darwin
was only able to speculate about the principles of heredity
transmission. Populations vary in their frequency of various
genetic variants, due to differences in terms of success of in-
dividual reproduction which is determined by selection and
by chance.

In contrast to the early years of research of evolution,
where selection was considered as the more or less only driv-
ing force of evolution, modern population genetics also con-
siders the effects of genetic drift - especially for rather small
populations (as it is certainly the case in Evolutionary Com-
putation). Population genetics is a well suited paradigm
when it comes to describing the topology and temporal dy-
namics of genetic variation in natural populations with the
goal to understand the evolutionary forces that act on pop-
ulations.

Similar to Evolutionary Computation, population genet-
ics also has an empirical as well as a theoretical component,
and especially for scientists in the field of Evolutionary Com-
putation, it should be a very fruitful approach to consider
recent developments of population genetics, which should be
kept in mind as the bionic role-model for further develop-
ments. Therefore, in the following we summarize some up
to date considerations of population genetics which are rel-
evant for the advanced GA concepts. In doing so we first
state some basic principles of population genetics and give a
short overview about the characteristics and the interactions
of selection and genetic drift.

As a result a new problem independent selection model is
presented which supports the survival of the fittest alleles
rather than survival of the fittest individuals which is exem-
plarily demonstrated on the basis of a 130-city benchmark
TSP. Finally, some references to recent related works that
use the described selection mechanism are stated.
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2. GENETIC DRIFT
As a consequence of the Hardy-Weinberg law of popula-

tion genetics [12], evolution will not occur if no mechanisms
that can cause evolution are acting and the gene pool fre-
quencies will remain unchanged. Even if no infinitely large
population actually exists, this does not necessarily negate
the Hardy-Weinberg Law. The effect that is of concern is
genetic drift, which is a change in gene frequency that is
the result of chance deviation from expected genotypic fre-
quencies. This effect is minimal in moderate sized or larger
populations, like is mostly the case in natural populations.
But in small populations as used for Genetic Algorithms
or for the certain demes of distributed Genetic Algorithms,
genetic drift is of major influence and therefore of special
interest for our purposes. Griffiths et al. ([11], p.704) give a
quite easy to understand and intuitive explanation of genetic
drift: ”If a population is finite in size (as all populations are)
and if a given pair of parents have only a small number of
offspring, then even in the absence of all selective forces, the
frequency of a gene will not be exactly reproduced in the
next generation because of sampling error.

Therefore, genetic drift can be perceived as an undirected
change of allele frequency by stochastical processes and has
some important properties:

• Genetic drift causes a loss of genetic variation in the
population. The velocity of this loss is inversely pro-
portional to the size of the population.

• Genetic drift has a strong effect on newly evolved mu-
tants (this is also the case for advantageous mutants).

In natural populations the loss of genetic variation is com-
pensated by mutation. The interdependency of both forces
is called the mutation-drift equilibrium.

There are two reasons for the random effects which are
considered as the reasons for genetic drift in natural popu-
lations [12]:

• Mendel’s Law of Segregation: Alleles are ran-
domly and with the same probability distributed on
the gametes.

• Demographic Stochasticity: This may be traced
back to the fact that individuals differ in the number
of offspring. In nature the reasons for these differences
are complex and are considered accidental.

In the theory of Genetic Algorithms, selection and selec-
tion pressure are among the most essential success crite-
ria. But these factors support demographic stochasticity,
i.e. the alleles of fitter individuals tend to dominate the
population (as these individuals are selected for reproduc-
tion more often) whereas alleles which are stored only in
individuals with lower fitness tend to get lost due to parent
selection. Together with the fact that the size of the popula-
tion is rather small in a typical GA, or in a certain deme of a
distributed GA, indicates the importance of thinking about
genetic drift for theoretical GA considerations. In popula-
tion genetics, the loss of genetic diversity due to genetic drift
is mainly considered adverse, as in nature genetic diversity
in a population is essential for the ability to adapt to chang-
ing environmental conditions. But from an Evolutionary
Computations point of view, the fixing of alleles containing
genetic information of a global optimal or at least of a highly

qualified solution is desirable. Vice versa, the loss of defi-
nitely disadvantageous alleles also positively influences the
Evolutionary Algorithm.

3. POPULATION STRUCTURE
In nature the fragmentation of the population of a certain

species into unequally sized subpopulations is a commonly
observable phenomenon. Many species have a great area of
circulation of various geographical and environmental struc-
ture which leads to the formation of subpopulations. An
important consequence of the population structure is the
genetic differentiation of subpopulations, i.e. the shift of al-
lele frequencies in the certain subpopulations. The reasons
for genetic differentiation are:

• Local adaptation of different genotypes in different
populations

• Genetic drift in the subpopulations

• Random differences in the allele frequency of individ-
uals which build up a new subpopulation

The structure of the population is hierarchically organized
in different layers (The concept of hierarchical population
structures has been introduced by Wright [28]):

• Individual

• Subpopulation

• Local population

• Entire population (species)

An important goal of population genetics is the detection of
population structures, the analyses of consequences and the
location of the layer with the most diverse allele frequencies.
In our context a deeper consideration of genetic drift and its
consequences is of major interest. The aspect of local adap-
tation of different genotypes in different populations should
give useful hints for multi-objective function optimization or
for optimization in changing environments.

One consequence of the population structure is the loss
of heterozygosity (genetic variation). The Swedish statisti-
cian and geneticist Wahlund described that genetic variation
rises again if the structure is broken up and mating becomes
possible in the entire population. The well established island
model (cf. [9]) as the standard model of coarse grained par-
allel GAs as well as recent developments in SEGA [1] and
SASEGASA [6] systematically take advantage of this effect.

Especially SASEGASA, which is a parallel GA based upon
the selection concept described in this work utilizes the in-
teractions between directed genetic drift and a new dynamic
migration policy by means of self-adaptive selection pres-
sure steering, very advantageously in terms of global solu-
tion quality:

In contrast to the island model, SEGA and especially
SASEGASA allow dynamic and self-triggered migration in
that sense that migration does not happen in fixed intervals
like it is the case for island model parallel GAs; SASEGASA
in particular initiates migration exactly when subpopula-
tions begin to stagnate which is indicated by high selection
pressure values.

As empirically demonstrated in recent conference and
journal publications (cf. Section 7) the procedure mentioned

2596



above makes it possible to scale up global solution quality
by simply increasing the number of subpopulations, with
basically just linearly increasing computational cost. With
an increasing number of equally sized subpopulations the
probability that essential alleles are bared from dying off in-
creases due to the greater total population size (higher sur-
vival probability of the alleles which are not yet considered)
as well as due to the finer scaling of reunification phases.

4. SELECTION
Since Darwin [10], selection is considered the most im-

portant (and only) evolutionary mechanism for adaptation
to the environment. Population genetics considers the basic
model of selection for hermaphroditic organisms in the fol-
lowing way:

Random mating → selection → random mating → selec-
tion → ......

I.e. Selection mainly depends on the probability of sur-
vival of newborn individuals until they reach pubescence,
that is called viability in the terminology of population ge-
netics. In population genetics, sexual selection, which con-
siders selection as selection for reproduction (as it is the
approach in Genetic Algorithm theory), represents just one
of many facets of selection. Our advanced offspring selec-
tion scheme, which allows self-adaptive steering of selection
pressure as described in Section 6, is therefore much more
similar to selection as understood in the context of pop-
ulation genetics. In our new selection model the survival
probability is determined by a comparison of the fitness of
the newly generated individual, with the fitness values of its
parents. Indeed, as demonstrated in the experimental part,
it appears that the first sexual selection step (roulette-wheel,
linear-rank, tournament) as in case of a standard GA does
not drastically effect the qualitative or quantitative perfor-
mance of the algorithm. Even with random sexual selec-
tion (corresponding to the basic model of the population
genetic’s selection model) the results were about the same
or even better than with roulette-wheel or linear-rank, as
the first selection step. A very important consequence of
selection in population genetics, as well as in evolutionary
computation, is its influence on certain alleles. As a matter
of principle there are four possibilities for each allele in the
population:

• The allele may be fixed in the population.

• The allele may disappear in the population.

• The allele may converge to an equilibrium state.

• No change in the allele frequency.

For the purpose of technical optimization it is desirable that
alleles which are part of a global optimal or at least a highly
qualified solution are fixed in the entire population, but on
the other hand it is also desirable that alleles representing
genetic information which is definitely not part of a global
optimal solution are sieved out in a rather early stage of
evolutionary optimization. By the help of the self-adaptive
selection pressure model (offspring selection), the newly pro-
posed SASEGASA (descried in [6]) algorithm utilizes the
interplay between genetic drift and migration in a very di-
rected way: The demes fix a lot of alleles in a quite early

stage of evolution due to their rather small population sizes
which promotes genetic drift. In the case of highly multi-
modal problem situations (which represent the interesting
case for optimization) the self adaptive steering of selection
pressure (w.r.t. the success of the crossover operator) en-
ables the algorithm to combine the essential parts of genetic
information (w.r.t. the global optimal solution) step by step
during the recombination phases.

5. ADJUSTABLE AND SELF ADAPTIVE
SELECTION PRESSURE STEERING

Selection and selection pressure are in the theory of
Genetic Algorithms predetermined by the so-called mat-
ing scheme and by the replacement strategy actually de-
ployed. The classical mating-scheme (roulette-wheel) selects
the candidates for reproduction proportionally according to
their fitness. Thus it should be achieved that offspring of
highly fit individuals are represented in the next generation
with a higher probability than offspring of average or below
average individuals. The goal of this procedure is a contin-
uous advancement of the population over the generations.
Typical mating schemes are roulette wheel, linear rank or
tournament, which are also often just called roulette wheel
selection, linear rank selection or tournament selection in
GA literature. This classical GA selection concept is known
as sexual selection in the terminology of population genet-
ics. From a population genetics point of view sexual se-
lection only covers a rather small aspect of selection which
appears when individuals have to compete to attract mates
for reproduction.

As already stated before, the population genetics basic se-
lection model considers the selection process as the repeated
execution of random rating followed by a selection step; se-
lection mainly depends on the probability of surviving of
newborn individuals until they reach pubescence which is
called viability in the terminology of population genetics.
This essential aspect in the interpretation of selection is not
considered in conventional GA selection. The classical (µ, λ)
Evolution Strategy [16] in contrast does indeed: Reconsider-
ing the basic functioning of a (µ, λ) ES in terms of selection,
µ parents produce λ (λ ≥ µ) offspring from which the best µ
are selected as members of the next generation. In contrast
to GAs where selection pressure is widely predetermined by
the choice of the mating scheme and the replacement strat-
egy, ES allow an easy steering of selection pressure by the
ratio between µ and λ. Offspring selection picks up this
basic idea of ES and transforms these concepts for GAs in
order to have an adjustable selection pressure (independent
of the mating scheme and replacement strategy) at one’s
disposal.

Our interpretation of GA-selection similar to the concepts
of a (µ, λ) Evolution Strategy is to generate an intermedi-
ate population (which is called virtual population in our
notation) of size |POP | · T (T ≥ 1) by sexual selection,
crossover and mutation from the actual population of size
|POP |. Then, similar to the interpretation of ES-selection,
the best |POP | members from the virtual population are
chosen as members of the real next generation that con-
tains the genetic information for the evolutionary process
yet to come. The remaining (1− T ) · |POP | candidates can
be seen as individuals that do not reach the age of sexual
maturity. A practical problem in the technical appliance
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of this technique is that it does not contain any indicator
about the effectiveness of actual genetic search, the effec-
tiveness of the operators actually used, etc. In other words,
there is no information about the amount of selection pres-
sure to be employed at a certain stage of genetic search. The
aim is on the one hand to provide enough selection pressure
for not losing essential building block information; on the
other hand, too much selection pressure causes unwanted
premature convergence to a suboptimal solution. Even if
this concept of selection pressure steering has already proven
to be very powerful in terms of stability and global solution
quality [2], [2], it is a time consuming task to find an advan-
tageous steering of (T ) that requires an experienced user.
These considerations already highly indicate the need for
some kind of self-adaptation. The essential question is how
to introduce self-adaptation into the GA-selection process
in a generic way without losing the Markov property, which
is an essential and general feature of GAs [18], [27]. The
approach which we have developed for this reason will be
described in the following subsection.

The basic concept of the new model for self-adaptive se-
lection pressure steering (cf. Section 6) is also abutted on
the basic selection model of population genetics: The parent
population generates a certain number of offspring (greater
than the size of the parent population) which do not all sur-
vive until they reach the age of sexual maturity, i.e. not
all generated offspring become members of the mating pool
of the ongoing evolutionary process. Self adaptive selection
pressure steering is thereby realized in a quite natural and
intuitive way: The number of generated offspring (potential
members of the next generation) depends on how easy or dif-
ficult it is for the algorithm in different phases of evolution
to achieve improvements.

A quantitative measure of actual selection pressure s is
given by the ratio of generated and evaluated individuals to
the population size s:

s =
|POP |

|Individuals actually generated|
where a small value of s denotes high selection pressure

and higher s indicates smaller selection pressure. In order
to keep the mechanism for self adaptation generic (without
using any problem- or solution space-specific knowledge or
local search) we have decided to use the comparison of the
fitness value of the evenly generated offspring and the fit-
ness values of its own parents, as the basis for the decision
whether or not the offspring is selected as a member of the
next generation. Offspring that do not fulfill the criterion
are not selected for the mating pool and can be interpreted
as individuals that do not survive until they reach the age
of sexual maturity, i.e. these unsuccessful individuals do
not contain information which is relevant for the GA. Even
if this procedure shows some similarities to Rechenberg’s 1

5
success rule for Evolution Strategies, it implicates a number
of essential advantages especially for Genetic Algorithms:

• In contrast to natural selection, it very often occurs
that when applying a specific GA crossover operator
the offspring generated contain unwanted mutations.
Unwanted mutations in a crossover result are newly
emerged alleles which do not occur in any of the two
parents. Very complex crossover operators (like the
ERX [19] or the EERX [17] operator for the path rep-

resentation of the TSP) have been especially developed
with the goal to keep the relative amount of unwanted
mutations as low as possible. Particularly when ap-
plying sexual selection, as it is done in case of con-
ventional GAs, this aspect is of major importance as
genetic search is mainly directed by recombining the
genetic properties of above average parents. As a con-
sequence a high ratio of unwanted mutations implies
that the demolition of essential building blocks dur-
ing crossover counteracts the directedness of genetic
search. Our self adaptive selection concept has already
proven its potential especially in the case of proven dis-
advantageous crossover operators. For the path repre-
sentation of the TSP, for example, all considered op-
erators were able to achieve results in the range of the
best operators when being equipped with the self adap-
tive selection model (cf. [4] and [6]. The reasoning for
this behavior is rather simple: When using disadvan-
tageous operators, selection pressure is self adaptively
adjusted to a higher value, and more individuals are
generated and evaluated - but in the end only advan-
tageous crossover results become members of the next
generation. Particularly in the development of new
applications, where new representations and operators
have to be introduced, this stabilization is essential
because the theoretical properties of newly introduced
operators are unknown in the majority of cases.

• The double selection of the same individual, or the
reproduction of two equal individuals causes the same
offspring in case of GAs and, is one of the reasons
for rapid loss of diversity and therefore of premature
convergence. When operating with the new selection
principle these offspring are not accepted as they do
not surpass the fitness value of any of the two parents.

• If more than one crossover operator is available for a
certain problem representation, it is beneficial and rec-
ommendable to apply all contemplable crossover oper-
ators in parallel with the same probability of coming
into operation. In this way all operators (even the
worse) propagate only their advantageous crossover re-
sults into the next generation and as different crossover
mechanisms tend to generate different offspring, this
strategy increases the broadness of genetic search with-
out counteracting the goal directedness, which also
helps to retard premature convergence.

• The self adaptive selection mechanism which is closely
related to the basic selection model of population ge-
netics, allows almost complete independence of the
sexual selection step for partner selection: Concretely
it could be verified in various test series that the
achievable solution quality is almost the same - in-
dependent of the mating scheme that is used in the
first selection step (roulette-wheel, linear-rank, tour-
nament). Moreover, it could be demonstrated that
solution qualities in the same range could be achieved
even under random partner selection with compara-
ble computational cost (less selection pressure - more
iterations).

• Premature convergence can be detected immediately
after its occurrence: If it is no longer possible to gen-
erate a sufficient number of offspring that are able to
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outperform their parents (with an upper limit for se-
lection pressure) it becomes obvious that premature
convergence has occurred which gives a precise auto-
matic termination criterion. Particularly for the dis-
tributed GA variants, this criterion is very important
as it indicates when new genetic information has to
be inserted into a subpopulation by migration from
other subpopulations, in order to restimulate genetic
search by combining smaller building blocks that have
evolved in different regions of the search space to larger
building blocks.

6. OFFSPRING SELECTION: AN ALTER-
NATIVE SELECTION PARADIGM FOR
GENETIC ALGORITHMS AND GE-
NETIC PROGRAMMING

As a logical consequence of these theoretical research
achievements, our main goal in the development of ad-
vanced algorithmic aspects within GA theory was to find
concepts for self-adaptive selection pressure steering. Self-
adaption comes into play when considering the question
which amount of offspring has to be created at each round,
and which of these candidates are to be selected as mem-
bers of the next generation, i.e. for the ongoing evolutionary
process. In order to keep the concepts generic, no problem
specific information about the solution space is allowed to
be used for stating the self-adaptive model. Thus, it is desir-
able to systematically utilize just the fitness information of
the individuals of the actual generation for building up the
next generation of individuals, in order to keep the new con-
cepts and methods generic. In principle, the new selection
strategy acts in the following way:

The first selection step chooses the parents for crossover
either randomly or in any well-known way of Genetic Algo-
rithms like roulette-wheel, linear-rank, or some kind of tour-
nament selection strategy. After having performed crossover
and mutation with the selected parents, we introduce a fur-
ther selection mechanism that considers the success of the
apparently applied reproduction. In order to assure that the
proceeding of genetic search occurs mainly with successful
offspring, this is done in a way so that the used crossover
and mutation operators are able to create a sufficient num-
ber of children that surpass their parents’ fitness. Therefore,
a new parameter, called success ratio (SuccRatio ∈ [0, 1]), is
introduced. The success ratio gives the quotient of the next
population members that have to be generated by successful
mating in relation to the total population size. Our adapta-
tion of Rechenberg’s success rule [14] for Genetic Algorithms
says that a child is successful if its fitness is better than the
fitness of its parents, whereby the meaning of ’better’ has
to be explained in more detail: is a child better than its
parents, if it surpasses the fitness of the weaker, the better,
or is it in fact some kind of mean value of both?

For this problem, we claim that an offspring only has to
surpass the fitness value of the worse parent in order to be
considered as ’successful’ at the beginning, while as evolu-
tion proceeds the child has to be better than a fitness value
continuously increasing between the fitness of the weaker
and the better parent. As in the case of Simulated Anneal-
ing, this strategy gives a broader search at the beginning,
whereas at the end of the search process this operator acts in
a more and more directed way. Having filled up the claimed

child
'better' than
parents ?

yes

no

selection (roulette, linear rank, tournament, …)
crossover
mutation

fill up rest of next population after
enough 'better' children have
been created

|POP|

POPi. . . . . . . .

. . . . . . . . POOL

|POOL|

POPi+1. . . . . . .. . . . .

|POP|

|POP| SuccRatio |POP| (1-SuccRatio)

Figure 1: Flowchart for embedding the new off-
spring selection principle into a Genetic Algorithm.

ratio (SuccRatio) of the next generation with successful in-
dividuals according to the above meaning, the rest of the
next generation ((1 − SuccRatio) · |POP |) is simply filled
up with individuals randomly chosen from the pool of in-
dividuals that were also created by crossover but did not
reach the success criterion. The actual selection pressure
ActSelPress at the end of a single generation is defined by
the quotient of individuals that had to be considered until
the success ratio was reached, and the number of individuals
in the population in the following way:

ActSelPress =
|POPi+1|+ |POOL|

|POP |
Fig. 1 shows the operating sequence of the above de-

scribed concepts.
With an upper limit of selection pressure (MaxSelPress)

defining the maximum number of children considered for the
next generation (as a multiple of the actual population size)
that may be produced in order to fulfill the success ratio, this
new model also functions as a precise detector of premature
convergence:

This upper limit of selection pressure (MaxSelPress) de-
fines the maximum number of offspring considered for the
next generation (as a multiple of the actual population size)
that may be produced in order to fulfill the success ratio.
With a sufficiently high setting of (MaxSelPress), this new
model also functions as a precise ’detector heuristics’ for pre-
mature convergence:

If it is no longer possible to find a sufficient number
(SuccRatio · |POP |) of offspring outperforming their own
parents even if (MaxSelPress·|POP |) candidates have been
generated, premature convergence has occurred.

As a basic principle of this selection model, a higher suc-
cess ratio causes higher selection pressure. Nevertheless,
higher settings of success ratio, and therefore of selection
pressure, do not necessarily cause premature convergence.
The reason for this is mainly, that the new selection step (af-
ter crossover) per definition does not accept clones that em-
anate from two identical parents. In conventional GAs such
clones represent a major reason for premature convergence

2599



 
 
 

 

Number of iterations 

mutation rate: 5% 
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solution quality Standard GA 
Iterations: 10000 
Number of evaluated solutions: 1’000’000 
Population size: 100 
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1-elitism 
Selection: Roulette-wheel 
Crossover: OX 
Mutation: Inversion and translocation 

solution quality 

Number of iterations 

Standard GA 
Iterations: 10000 
Number of evaluated solutions: 1’000’000 
Population size: 100 
Mutation rate: 5% 
1-elitism 
Selection: Roulette-wheel 
Crossover: OX 
Mutation: Inversion and translocation 

Figure 2: The effect of mutation for certain muta-
tion rates (upper diagram) and the distribution of
essential genetic information for a mutation rate of
5% (lower diagram) both in case of a standard GA
for the ch130 benchmark TSP.

of the whole population around a suboptimal value, whereas
the new selection step specifically counteracts against this
phenomenon.

The following considerations aim to point out the impor-
tance of mutation for the recovery of essential genetic infor-
mation in the case of conventional GAs in order to oppose
these results with the results being achieved with offspring
selection. By reasons of compactness, the results are mainly
shown on the basis of diagrams and give only a brief de-
scription of introduced operators, parameter settings, and
test environments. Furthermore, the chosen benchmark in-
stance is of rather small dimension in order to allow the
observation of essential alleles during the run of the algo-
rithm.

The results displayed in Figure 2 (upper diagram) show
the effect of mutation for reintroducing already lost genetic
information. The horizontal line of the diagram shows the
number of iterations and the vertical line stands for the so-
lution quality. The bottom line indicates the global optimal
solution which is known for this benchmark test case. The
three curves of the diagram show the performance of a Ge-
netic algorithm with no mutation, with a typical value of 5%
mutation as well as a rather high mutation rate of 10%. For
each of the three curves the lower line stands for the best so-
lution of the actual population and the upper line shows the
average fitness value of the population members. The results
with no mutation are extremely weak and the quality curve
stagnates very soon and far away from the global optimum.
The best and average solution quality are the same and no
further evolutionary process is possible - premature conver-

gence has occurred. As already stated before, mutation is a
very essential feature of standard GAs in order to avoid pre-
mature convergence. But also a rather high mutation rate
of 10% produces results which are not very satisfying and
indeed the best results are achieved with a mutation rate
which is very typical for GA applications - namely a muta-
tion rate of 5%. Considering a standard benchmark problem
like the ch130 (a 130 city TSP taken from the TSPLib [15])
with one single best solution allows to consider the edges of
the shortest path as the essential alleles whose preservation
during the run can be observed. The following figures in-
dicate the spreading of essential alleles during the runs of
the certain algorithms. This is visualized by inserting bar
charts which have to be considered as snapshots after a cer-
tain number of iterations approximately corresponding to
the position in the figure. The higher a certain bar (130
bars for a 130-city TSP) the higher the relative occurrence
of the corresponding essential allele in the population.

The lower diagram of Figure 2 shows the distribution of
essential alleles over the iterations for a standard GA with
a mutation rate of 5%. The interesting thing is that some
minor ratio of essential alleles is rapidly fixed in the popula-
tion and the majority of essential alleles which are still miss-
ing have disappeared in the entire population. During the
further run of the algorithm it is only mutation which can
reintroduce this essential genetic information. As it could be
seen in Figure 2, without mutation premature convergence
would already have occurred at this early state of evolution-
ary search. But with an appropriate mutation rate (5% in
this example) more and more essential alleles are discovered
ending up with quite a good solution. But there is still a gap
to the global optimum caused by that alleles which could not
be recovered due to mutation. The next figures will show
how the new selection concept is able to close this gap and
make the algorithm much more independent of mutation.

So let us take a closer look at the distribution of essen-
tial genetic information in the population when using the
enhanced selection concepts. The upper diagram of Figure
3 shows the quality curve and the distribution of essential
alleles for a mutation rate of 5% (which was able to achieve
the best results in case of a standard GA).

When applying the GA with the new selection principle
to the same benchmark test case one can see that the global
optimal solution is detected in only about 100 iterations.
Nevertheless, the computational effort is comparable to the
standard GA as much more individuals have to be evaluated
at each iteration step due to the higher selection pressure.
Considering the distribution of essential alleles we see a to-
tally different situation. Almost no essential alleles get lost
and the ratio of essential alleles continuously increases in or-
der to end up with a final population that contains almost all
pieces of essential genetic information and therefore achiev-
ing a very good solution. This shows that the essential alleles
are preserved much more effectively and indicates that the
influence of mutation should be much less. But is this really
the case? In order to answer this question, let us consider
the same example with the same settings - only without
mutation. And indeed the assumption holds and also with-
out mutation the algorithm finds a solution which is very
close to the global optimum (see lower diagram of Figure
3). The essential alleles interfuse the population more and
more and almost all of them are members of the final pop-
ulation. Reconsidering the standard GA without mutation
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solution quality 

Figure 3: The distribution of essential genetic infor-
mation when using the enhanced selection concept
considering the ch130 benchmark TSP with 5% mu-
tation (upper diagram) and with no mutation (lower
diagram).

the algorithm was prematurely converging very soon with a
very bad total quality.

7. RESULTS
Population genetics inspired further developed algorith-

mic concepts, as shown in the last sections, have been ap-
plied to several fields of application.

Firstly, offspring selection in its parallel formulation
(SASEGASA) bas bee applied to several well known combi-
natorial optimization problems like the Traveling Salesman
Problem (TSP), Job Shop Scheduling Problem (JSSP), Ca-
pacitated Vehicle Routing Problem (CVRPTW) and also to
the optimization of various real-valued test functions which
have been tackled in various dimensions. It has been shown
empirically in [6], [3], [5], [8] that for combinatorial opti-
mization problems it is possible to use the concept of mul-
tiple subpopulations in order to scale the achievable results
in terms of achievable solution quality. Also for the ana-
lyzed real-valued test functions (Ackley, Schwefel, Rastri-
gin, Rosenbrock, Griewangk) highest quality results could
be achieved just by integrating offspring into the general
concept of a Genetic Algorithm with well-established oper-
ators for real-valued codification [6], [3], [7].

Very recently, offspring selection has been able to proof its
high ability in the field of Genetic Programming based struc-
ture identification. In that context, further developed con-
cepts of Genetic Programming with offspring selection as a
key feature has been applied to classification, regression and
time-series. We have shown in several articles this method’s
ability to efficiently and robustly detect highly nonlinear in-
tercorrelations in benchmark as well as real-world datasets
steaming from the fields of mechatronics, business-and fi-
nancial engineering as well as from the field of medical data
mining. In [20], [22], [21], [24], [23], [26] and [25] further al-
gorithmic developments and results are shown. It has been
shown that the use of these advanced developments yields re-
sults that outperform the results achievable by conventional
Genetic Programming concepts as well as results achieved by
techniques from the field of applied statistics and machine
learning.

8. CONCLUSION
Some selected aspects of population genetics have been

pointed out and possibilities how to integrate these aspects
into the general concept of a Genetic Algorithm. Special at-
tention has been given to those aspects that are independent
of problem representations and therefore independent of the
problem at hand. The realization of offspring selection with
birth surplus and its integration in the algorithmic flow of
a GA or GP has been shown. References to recent publica-
tions ave been given in order to demonstrate the benefits of
these further developed algorithmic variants.
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