
Empirical Analysis of Generalization and Learning
in XCS with Gradient Descent

Pier Luca Lanzi†‡, Martin V. Butz�, David E. Goldberg‡
†Artificial Intelligence and Robotics Laboratory, Politecnico di Milano, I-20133, Milano, Italy
�Department of Cognitive Psychology, University of Würzburg, 97070 Würzburg, Germany

Illinois Genetic Algorithm Laboratory (IlliGAL)
University of Illinois at Urbana Champaign, Urbana, IL 61801, USA

pierluca.lanzi@polimi.it, butz@psychologie.uni-wuerzburg.de, deg@uiuc.edu

ABSTRACT
We analyze generalization and learning in XCS with gradi-
ent descent. At first, we show that the addition of gradient
in XCS may slow down learning because it indirectly de-
creases the learning rate. However, in contrast to what was
suggested elsewhere, gradient descent has no effect on the
achieved generalization. We also show that when gradient
descent is combined with roulette wheel selection, which is
known to be sensitive to small values of the learning rate, the
learning speed can slow down dramatically. Previous results
reported no difference in the performance of XCS with gra-
dient descent when roulette wheel selection or tournament
selection were used. In contrast, we suggest that gradient
descent should always be combined with tournament selec-
tion, which is not sensitive to the value of the learning rate.
When gradient descent is used in combination with tourna-
ment selection, the results show that (i) the slowdown in
learning is limited and (ii) the generalization capabilities of
XCS are not affected.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics Based Machine
Learning, Learning Classifier Systems

General Terms
Algorithms, Performance.

Keywords
LCS, XCS, RL, Gradient Descent, Generalization.

1. INTRODUCTION
Learning classifier systems combine temporal difference

learning and genetic algorithms to solve problems online.
They have been successfully applied to several domains [19,
5, 3, 2]. However, their application in sequential decision

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

making tasks is usually restricted to small problems [1,
15], though some successes in complex tasks have been re-
ported [18]. Recently, Butz et al. [6, 8] extended XCS with
gradient descent to improve its performance in sequential de-
cision making tasks. Their results show that the addition of
gradient descent improves the learning performance of XCS
in small though challenging sequential decision making prob-
lems [1, 15, 8, 7]. This improvement was explained by noting
that the gradient acts as an adaptive learning rate that slows
down the update of classifier prediction in low fitness clas-
sifiers [6, 8]. As a consequence, the prediction of inaccurate
classifiers, which usually oscillates (see e.g. [11]), as well as
the classifier prediction error can be estimated more accu-
rately, increasing their chance of being deleted. Drugowitsch
and Barry [13], however, suggested a different explanation:
they argued that the reported improvements [6, 8] may be
mainly due to an additional support of overspecific classi-
fiers, which will result in very little generalization [13, pag.
20]. So far, however, empirical validation was presented nei-
ther in [6, 8] nor in [13]. Thus, it is still unclear, if gradient
descent has any effect on XCS’s generalization capabilities.

The purpose of this paper is to investigate the effect of
gradient descent on the generalization and learning capa-
bilities of XCS in a principled manner. The analysis in [6,
8] focused on sequential decision making problems [15, 1],
which allow little generalization. Since our focus is on gen-
eralization and learning, in this work we considered simpler
problems that allow many generalizations: the Boolean mul-
tiplexer and the Woods2 environment [25]. Initially, we com-
pare XCS with and without gradient descent on the Boolean
multiplexer. We show that XCS with gradient learning is
slower because the gradient actually decreases the learning
rate. We also show that when gradient descent and roulette
wheel selection are used together, such a slowdown can be
dramatic in larger problems. We argue that this effect is not
surprising and it is basically due to a combination of two ef-
fects. First, in large problems gradient descent can result
in very small learning rates. Second, when roulette wheel
selection is used with small learning rates, the performance
of XCS may be impaired–as Butz et al. [9] already showed.
However, tournament selection [9] does not suffer from the
same shortcoming. In fact, when we repeat the same set
of experiments with tournament selection we find that (i)
when gradient descent is used in combination with tourna-
ment selection the slowdown in learning is limited and (ii)
gradient descent has still no effect on the generalization ca-
pabilities of XCS. Overall, our results suggest that although

1814

gradient descent and roulette wheel selection can work well
together in sequential decision making tasks (e.g., [8] and
here in Section 5.2), overall the results suggest that gradi-
ent descent should be usually combined with tournament
selection. This extends the previous analysis in [6] where it
was noted that tournament selection did not provide any ad-
vantage over roulette wheel selection on the set of problems
considered.

2. REINFORCEMENT LEARNING
In reinforcement learning an agent learns to perform a

task through trial and error interaction with an unknown
environment [21]. At time t, the agent is in state st and
performs an action at in the environment. Depending on
the state st, on the action at performed, and on the effect
that at has in the environment, the agent receives a scalar
reward rt+1 and a new state st+1. The agent’s goal is to
maximize the discounted long term reward it receives from
the environment, often termed the return [21]. The agent
achieves this by learning an action-value function Q(st, at)
that maps state-action pairs into the corresponding expected
payoff. For instance, Q-learning [21] starts from a random
Q(·, ·) and, at time t, it updates the current payoff estimate
Q(st, at) as,

Q(st, at)← Q(st, at) + β(Q̂(st, at)−Q(st, at)), (1)

where, β is the learning rate (0 ≤ β ≤ 1) and Q̂(st, at) is
the new estimate of Q(st, at) computed based on the current
experience as “rt+1 + γ maxa∈A Q(st+1, a)” with a discount
factor γ (γ ∈ [0, 1)). In large problems, Q(s, a) is usually
approximated by a function f parametrized with a vector θ,
i.e.,

Q(s, a) = f(φ(s, a), θ), (2)

where φ(·) is an input mapping function that translates the
state-action space to a feature space [20, 21]. The problem
of learning Q(s, a) thus translates into the problem of esti-
mating the parameter vector θ which at time t minimizes a
given error function Et. This is usually solved with meth-
ods of gradient descent. At time t, the parameter vector θ is
modified following, with step βt, the direction that reduces
the error Et in f , i.e.,

θ = θ − βt
∂Et

∂θ
. (3)

Linear methods are probably the most important class of
approximators used in reinforcement learning [4, 21]. They
assume that the feature vector φ(s, a) and the parameter
vector θ are of the same size so that the approximated
value of Q(s, a) is simply computed by the inner product,
f(φ(s, a), θ) = φ(s, a)′θ. Linear averagers [14] are a type of
linear approximators that minimize the error Et defined as,

Et =
1

2

X
i

“
Q̂(st, at)− θi

”2

φi(st, at) (4)

where θi and φi(st, at) are the i-th component of θ and
φ(st, at); this leads to the update:

θi ← θi + βi(Q̂(st, at)− θi))φi(st, at), (5)

which minimizes the difference between the new estimate
Q̂(st, at) and the parameter θi.

3. THE XCS CLASSIFIER SYSTEM
XCS is a reinforcement learning algorithm that works on

a rule based representation [16]. It maintains a population
of rules (the classifiers), which represents the current solu-
tion to a reinforcement learning problem. Classifiers consist
of a condition, an action, and four main parameters [24, 10]:
(i) the prediction p, which estimates the relative payoff that
the system expects when the classifier is used; (ii) the pre-
diction error ε, which estimates the error of the prediction
p; (iii) the fitness F , which estimates the accuracy of the
payoff prediction given by p; and (iv) the numerosity num,
which indicates how many copies of classifiers with the same
condition and the same action are present in the population.

At time t, XCS builds a match set [M] containing the clas-
sifiers in the population [P] whose condition matches the
current sensory input st; if [M] contains less than θmna ac-
tions, covering takes place and creates a new classifier that
matches st and has a random action. For each possible ac-
tion a in [M], XCS computes the system prediction P (st, a),
which estimates the payoff that the XCS expects if action a
is performed in st. The system prediction P (st, a) is com-
puted as the fitness weighted average of the predictions of
classifiers in [M] that advocate action a:

P (st, a) =
X

clk∈[M](a)

pk × FkP
cli∈[M](a) Fi

(6)

where, [M](a) represents the subset of classifiers of [M] with
action a, pk identifies the prediction of classifier clk, and Fk

identifies the fitness of classifier clk. Next, XCS selects an
action to perform; the classifiers in [M] that advocate the
selected action form the current action set [A]. The selected
action at is performed, and a scalar reward rt+1 is returned
to XCS together with a new input st+1. When the reward
rt+1 is received, the estimated payoff P (t) is computed as
follows:

P (t) = rt+1 + γ max
a∈[M]

P (st+1, a) (7)

Next, the parameters of the classifiers in [A] are updated
in the following order [10]: prediction, prediction error, and
finally fitness. Prediction p is updated with learning rate β
(0 ≤ β ≤ 1):

pk ← pk + β(P (t)− pk) (8)

Then, the prediction error ε and classifier fitness are updated
as usual [24, 10]. On a regular basis (dependent on parame-
ter θga), the genetic algorithm is applied to classifiers in [A].
It selects two classifiers, copies them, and with probability
χ performs crossover on the copies; then, with probability μ
it mutates each allele. The resulting offspring classifiers are
inserted into the population and two classifiers are deleted
to keep the population size constant.

4. GRADIENT DESCENT IN XCS
The relation between reinforcement learning and XCS has

been widely investigated in the literature [16, 6, 23, 22, 12,
13]. An initial analysis in [16] showed that (i) the system
prediction P (st, a) in Equation 6 actually represents the
value of Q(st, a) using the classifiers in [A]; while (ii) the
prediction value of P (t) in Equation 7 actually represents

the new estimate Q̂(s, a) in Equation 1. The comparison

1815

has been extended by Butz el al. [6] to the case of reinforce-
ment learning with value function approximation. In [6],
it is noted that (i) the classifier predictions in XCS corre-
sponds to the parameter in θ in Equation 2; (ii) although
XCS implements generalized Q-learning, its prediction up-
date (Equation 8) does not include the gradient term; (iii)
the gradient term for a classifier clk in the action set [A] is
computed as,

∂P (st, at)

∂clk
=

FkP
[A] Fi

, (9)

so that the prediction update for XCS with gradient descent
for classifier clkbecomes,

pk ← pk + β(P (t)− pk)
FkP
[A] Fi

. (10)

The results reported in [6, 8] show that the additional gra-
dient term improves XCS performance over a set of multi-
step problems. Such an improvement is explained by not-
ing that in XCS the gradient acts as an adaptive learning
rate that slows down the update of classifier prediction in
low fitness classifiers [6, 8]. Butz et al. [8] argue that the
gradient improves the estimation of the classifier predic-
tion in inaccurate classifiers. Thus, the prediction and the
prediction error of inaccurate classifiers can be estimated
more accurately, increasing their chance of being deleted
and decreasing the problem of misleading reward propaga-
tion. Later, Wada et al. [23] showed that the derivation
in [6] was not correct if “standard” reinforcement learning
was considered [20]. Nevertheless, Lanzi and Loiacono [17]
also showed that the derivation in [8] is consistent to “aver-
aging” reinforcement learning and that the gradient descent
update in Equation 10 is coherent with the update in Equa-
tion 5.

Recently, Drugowitsch and Barry [12, 13] developed a the-
oretical framework to study the properties of accuracy-based
learning classifier systems. The framework models the main
non-evolutionary components of a typical learning classi-
fier system, that is, function approximation, reinforcement
learning, and classifier replacement. When discussing gra-
dient descent in XCS [13, pag. 20], they argue that the
improvements that gradient descent produces in XCS may
be mainly due to an additional support to overspecific clas-
sifiers, which will eventually result in very little generaliza-
tion. However, no theoretical nor empirical validation was
included in [13] to support this claim. Therefore the purpose
of this paper is to investigate the effect of gradient descent in
XCS on the generalization and learning capabilities of XCS
in a principled manner.

5. THE EFFECT OF GRADIENT DESCENT
The problems considered in the previous study [8] are

challenging for XCS in that they require relatively long ac-
tion sequences but allow few generalizations [15, 1]. To
analyze the effect of gradient descent on the generaliza-
tion and learning capabilities of XCS, we now consider the
slightly simpler Boolean multiplexer and Woods2 environ-
ments, which allow many generalizations.

5.1 Boolean Multiplexer
In the first set of experiments, we apply XCS with gra-

dient (XCSG) and XCS without gradient to the Boolean

multiplexer. These functions are defined for strings of l
bits where l = k + 2k. The first k bits, x0, . . . , xk−1,
represent an address, which indexes the remaining 2k bits,
y0, . . . , y2k−1. The function returns the value of the indexed
bit. For instance, in the 6-multiplexer, mp6, we have that
mp6(100010) = 1 while mp6(000111) = 0. More formally,
the 6-multiplexer can be represented by the following dis-
junctive normal form:

mp6(x0, x1, y0, . . . , y3) = x0 x1y0+ x0 x1y1+x0 x1y2+x0x1y3

We initially applied XCS and XCSG to the 11-multiplexer
with the following parameter setting: N = 1000; P# = 0.3;
β = 0.2; α = 0.1; ε0 = 10; ν = 5; χ = 0.8, μ = 0.04, θdel =
20; θGA = 0; δ = 0.1; GA-subsumption is on with θGAsub =
20; while action-set subsumption is off; when the correct
action is performed, the system receives a 1000 reward, 0
otherwise. The experiment has been designed according to
the standard approach used in previous works [24].

Figure 1a compares the predictive accuracy of XCS with
gradient (XCSG), solid dots, and without gradient, empty
dots, in the 11-multiplexer. XCS learns faster than XCSG
(Figure 1a). This result is not surprising: the gradient term
Fk/Σ[A]Fi in Equation 9 ranges between 0 and 1. Thus, from
a mathematical viewpoint, it actually reduces the effect of
the learning rate β in the prediction update (Equation 10).
Accordingly, it should be expected that with gradient the
learning may be slower, as it is reported in Figure 1a. XCS
also generalizes faster (Figure 1b). However at the end XCS
and XCSG converge to solutions that contain the same num-
ber of accurate maximally general classifiers. In fact they
reach approximately the same population size. It is interest-
ing to analyze how the specificity of classifiers in the action
sets varies through the evolution.1 Figure 2 compares the
average specificity of classifiers in XCS and XCSG. Both sys-
tems start from the same average specificity, determined by
the value P#. Then, the average specificity decreases faster
in XCSG than in XCS, indicating that the classifiers evolved
by XCSG are initially more general than those evolved by
XCS. Later, the average specificity becomes similar (the two
plots cross) and at the end XCS and XCSG reach the same,
optimal, average specificity (i.e., approximately 36%).

Butz et al. [9] showed that a small learning rate decreases
the learning performance of XCS using roulette wheel se-
lection. For instance, in the 20-multiplexer, when β is 0.2
XCS reliably reaches 100% performance by 100,000 learning
steps. However, when β is 0.01, after 200,000 learning steps
XCS performance is still around 60% [9, pag. 59]. Butz et
al. [9] explain this by noting that the majority of classifiers
in the initial population is over-general. Better offspring of-
ten loose against over-general parents since the fitness of the
offspring classifiers increases slowly due to the small learning
rate. In addition, the initially small differences between the
fitness of accurate and overgeneral classifiers have small ef-
fects when using proportionate selection. Accordingly, Butz
et al. [9] replaced the roulette wheel selection with tourna-
ment selection, showing that the latter was able to eliminate
this sensitivity to the value of the learning rate.

As noted earlier, the gradient term Fk/Σ[A]Fi in the pre-
diction update (Equation 8) can be viewed as an adaptive

1We remind the reader that classifier specificity is measured
as the percentage of completely specified inputs in the con-
dition.

1816

 50%

 60%

 70%

 80%

 90%

100%

 0 10000 20000 30000 40000

P
E

R
F

O
R

M
A

N
C

E
 (

%
)

NUMBER OF LEARNING PROBLEMS

XCS
XCSG

(a)

 0%

 20%

 40%

 60%

 80%

100%

 0 10000 20000 30000 40000

N
O

 M
A

C
R

O
C

LA
S

S
IF

IE
R

S
 (

%
 O

F
 N

)

NUMBER OF LEARNING PROBLEMS

XCS
XCSG

(b)

Figure 1: XCS and XCSG with applied to
11-multiplexer: (a) predictive accuracy; (b) number
of classifiers in the population.

 0%

 20%

 40%

 60%

 80%

100%

 0 10000 20000 30000 40000

C
LA

S
S

IF
IE

R
S

 S
P

E
C

IF
IC

IF
Y

NUMBER OF LEARNING PROBLEMS

XCS
XCSG

Figure 2: XCS and XCSG: average specificity of the
classifiers in [A].

learning rate, which slows down the update of classifier pre-
diction in low fitness classifiers [6, 8]. It is important to
note that, although Fk/Σ[A]Fi ranges between 0 and 1, it
can rarely be one. In fact, it is only one when there is only
one accurate classifier in the action set [A] and either (i)
there are no other classifiers in [A] or (ii) all the others clas-
sifiers in [A] are inaccurate. But this actually happens only
when XCS has reached an optimal solution and it has also
identified the best classifier for each problem subspace (i.e.,
for each action set). More often, action sets contain many
different classifiers and the gradient is consequently much
smaller than 1, drastically reducing the effect of learning
rate β in the prediction update (Equation 10). For instance,
if an action set contains all equally accurate or equally in-
accurate classifiers, the gradient term for each classifier is
around 1/|[A]|. If the action set contains 32 equally accu-
rate classifiers, the gradient is around 0.03, i.e., the gradient
term reduces the effect of the learning by the 97% for all the
classifiers in [A]. Accordingly, we can expect that in larger
problems, in which the niches initially contain many classi-
fiers, the gradient will consistently slow down the learning
process. On the other hand, if such an effect is mainly due
to the sensitivity of roulette wheel selection on the learning
rate, tournament selection should solve the problem. Given
XCS learns the accurate, maximally general classifiers to a
problem, though, no particular effect on the generalization
capabilities of XCS can be expected.

The second set of experiments, performed on the
20-multiplexer, confirms our hypotheses. Figure 3 compares
the performance of XCS and XCSG on the 20-multiplexer
with the standard parameter setting [25]: N = 2000,
β = 0.2; α = 0.1; ε0 = 1; ν = 5; χ = 0.8, μ = 0.04,
θdel = 20; θGA = 0; δ = 0.1; GA-subsumption is on with
θGAsub = 20; while action-set subsumption is off. As we
expected, XCS rapidly reaches 100% performance while af-
ter 200,000 learning steps the performance of XCSG is still
around 60%. This result is coherent with the findings in [9]:
to solve the 20-multiplexer XCS has to keep 64 separate
niches [8]; with 2000 classifiers, an action set will contain
an average of 31.25 classifiers. Given that all classifiers in
the action set are distinct, the gradient component for each
classifier can be as low as 0.03. Combined with a learning
rate β of 0.2, the actual learning rate is approximately 0.01,
which corresponds to the rate used in [9]).

We repeated the same experiment using tournament se-
lection instead of roulette wheel selection. The results in
Figure 4a confirm what we expected: tournament selection
is not sensitive to the scaling effect on the learning rate. Ac-
cordingly, both XCS and XCSG reach optimal performance
fast. Note, however, that the small learning rate still affects
the parameter update so that XCS converges faster than
XCSG. However, the slower learning does not hinder the
generalization capabilities of XCSG so that XCS and XCSG
reach the same generalization level (Figure 4b).

5.2 Woods2
To evaluate the generalization capabilities also in multi-

step problems, we applied XCS with and without gradient
descent to the Woods2 environment, depicted in Figure 5.
This problem allows many generalizations [25]. Woods2 is
a grid world with two types of obstacles (represented by
“O” and “Q” symbols), goal positions (represented by “F”
and “G” symbols), and empty positions (represented by “.”

1817

 50%

 60%

 70%

 80%

 90%

100%

 0 50000 100000 150000 200000

P
E

R
F

O
R

M
A

N
C

E
 (

%
)

NUMBER OF LEARNING PROBLEMS

XCS
XCSG

Figure 3: Performance of XCS and XCS with gra-
dient (XCSG) in the 20-multiplexer when roulette
wheel selection is used.

symbols). Woods2 is a torus: its left and right edges are
connected as well as its top and bottom edges. The agent
can stay in any of the empty positions and it is able to move
to any adjacent position that is empty. The agent has eight
sensors, one for each adjacent position. Sensors are encoded
by three bits coding features of the object. Thus, the agent’s
sensory input is a string with 24 bits (3 bits × 8 positions).
There are eight possible actions, one for each possible adja-
cent position. The agent has to learn how to reach a goal
position from any empty position. When the agent reaches
a goal position (F or G) the problem ends and the agent re-
ceives a constant reward equal to 1000; otherwise it receives
zero.

Initially, we applied XCS and XCSG to Woods2 with the
following parameter settings: N = 1600, β = 0.2; γ = 0.71;
α = 0.1; ε0 = 10; ν = 5; χ = 0.8, μ = 0.04, θdel = 20;
θGA = 25; δ = 0.1; GA-subsumption is on with θGAsub = 20;
while action-set subsumption is off. Figure 6a compares the
performance of XCS and XCSG with roulette wheel selec-
tion. In this case, the performance is computed as the av-
erage number of steps to reach a goal over the last 100 test
problems [25]. The results in Figure 6a are consistent with
the previous findings. The introduction of the gradient in
XCS slows down the learning process. Nonetheless, XCS and
XCSG have the same generalization capabilities: at the end,
both models evolve solutions of the same size (Figure 6b).
This is confirmed by the analysis of the classifier specificity
(Figure 7). Also in this case, the behavior is similar to what
we observed in the Boolean multiplexer. At the very begin-
ning the classifiers evolved by XCS with gradient descent
are slightly more general, in fact their specificity is lower
(Figure 7). Almost immediately XCS reaches the same gen-
eralization as XCSG (the two lines cross) and from then on,
XCS works on more general classifiers than XCSG. At the
end, both systems reach the same degree of generalization.

As we reported in the experiments with the Boolean mul-
tiplexer, also in this case tournament selection improves
XCSG (Figure 8). However, in this case the improvement
in learning speed is rather small compared to that reported
for the Boolean multiplexer. This result is consistent to the
findings in [6, 8]: in sequential decision making problems

 50%

 60%

 70%

 80%

 90%

100%

 0 50000 100000 150000 200000

P
E

R
F

O
R

M
A

N
C

E
 (

%
)

NUMBER OF LEARNING PROBLEMS

XCS
XCSG

(a)

 0%

 20%

 40%

 60%

 80%

100%

 0 50000 100000 150000 200000

N
O

 M
A

C
R

O
C

LA
S

S
IF

IE
R

S
 (

%
 O

F
 N

)

NUMBER OF LEARNING PROBLEMS

XCS
XCSG

(b)

Figure 4: XCS and XCSG with tournament selection
in the 20-multiplexer: (a) Performance; (b) Number
of classifiers in the population.

the difference in learning speed between roulette wheel and
tournament selection is limited. On the other hand, the two
systems perform similar in terms of generalization as the
curves for population size (Figure 8b) and those for average
specificity show (Figure 9).

6. DISCUSSION
The results show that gradient descent slows down learn-

ing in XCS, but it has no effect on the generalization
achieved. The reported slowdown is due to the addition
of the gradient term Fk/Σ[A]Fi to the classifier prediction
update equation, which decreases the effect of the prediction
learning rate in Equation 10. To quantify the effect of gra-
dient, the expected value of Fk/Σ[A]Fi should be computed.
But this would require knowledge about the distribution of
classifier fitness in the action set, which is unavailable in
practice. We can trace the evolution of the average gradient
of the classifiers in the action set to get a rough quantifi-
cation of the effect that gradient has on the learning rate.
Figure 10 reports the average gradient of the classifiers in
the action sets for the experiment with XCSG using tour-
nament selection on the 20-multiplexer, discussed in Sec-

1818

..............................

.QQF..QQF..OQF..QQG..OQG..OQF.

.OOO..QOO..OQO..OOQ..QQO..QQQ.

.OOQ..OQQ..OQQ..QQO..OOO..QQO.

..............................

..............................

.QOF..QOG..QOF..OOF..OOG..QOG.

.QQO..QOO..OOO..OQO..QQO..QOO.

.QQQ..OOO..OQO..QOQ..QOQ..OQO.

..............................

..............................

.QOG..QOF..OOG..OQF..OOG..OOF.

.OOQ..OQQ..QQO..OQQ..QQO..OQQ.

.QQO..OOO..OQO..OOQ..OQQ..QQQ.

..............................

Figure 5: The Woods2 Environment.

tion 5.1 (Figure 4). At the very beginning, the gradient term
is large since the action sets contain few classifiers. Then,
as more classifiers appear in the action sets, the gradient
decreases: the average gradient is around 0.03, when 4000
learning steps were performed. Later, as accurate maximally
general classifiers emerge in the population and take control
in the action sets, the gradient increases until it stabilizes
when the maximally accurate, maximally general classifiers
dominate the action sets.

Since the gradient term in XCS decreases the effect of
the learning rate in the prediction update (Equation 10), a
higher learning rate for classifier prediction in Equation 10
should decrease the gap between the learning speed of XCS
with and without gradient. Figure 11 compares the perfor-
mance of XCS and XCSG using different learning rates for
classifier prediction in Equation 10: 0.2, 0.6, and 1.0. Note
that we did not increase the overall learning rate β but only
the learning rate for the prediction update in Equation 10,
named βP from now on. XCS reaches the optimum faster
than all the other versions of XCSG; when the prediction
learning rate βP is increased from 0.2 to 0.6 the learning
speed of XCSG increases and XCSG reaches optimality al-
most at the same time as XCS, although the learning of
XCSG is initially slower. When the prediction learning rate
is increased further up to 1.0, the learning speed of XCSG
shows a slight, though not statistically significant, improve-
ment (analysis not reported). These results can be easily
explained. At the beginning, when the accurate classifiers
in the niches are specific, that is, before accurate maximally
general classifiers appear, the gradient term is very small
(around 0.03 after 4000 learning steps). Thus, even when
the prediction learning rate βP is set to 1.0, the combina-
tion of the gradient and the prediction learning rate β+P is
still smaller than the learning rate used with XCS in Equa-
tion 8 (that is, β=0.2).

7. CONCLUSIONS
We have analyzed generalization and learning in XCS

with gradient descent. Our results show that the gradient
slows down learning but has no effect on the generalization
achieved. The experiments on Woods2 show that this slow-
down is rather limited: a result coherent with the previous
results reported in [6, 8]. However, our experiments on sim-
ple functions show that the difference in learning speed can
be dramatic when gradient descent with roulette wheel se-

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000

N
O

 S
T

E
P

S
 T

O
 G

O
A

L

NUMBER OF LEARNING PROBLEMS

XCS
XCSG

OPTIMUM

(a)

 0%

 25%

 50%

 75%

100%

 0 500 1000 1500 2000 2500 3000

N
O

 C
LA

S
S

IF
IE

R
S

 IN
 [P

] (
%

 O
F

 N
)

NUMBER OF LEARNING PROBLEMS

XCS
XCSG

(b)

Figure 6: XCS and XCSG with roulette wheel selec-
tion in Woods2: (a) average number of steps to reach
a goal; (b) number of classifiers in the population.

lection is used. We argued that this is due to a combination
of two effects: the reduction of the learning rate that the
gradient introduces and the sensitivity that roulette wheel
has with respect to small values of the learning rate [9].
In fact, when tournament selection replaces roulette wheel
selection, the slowdown caused by the introduction of gra-
dient descent is limited. In contrast to what was suggested
elsewhere [13], in none of the experiments performed the
use of gradient descent had an effect on the generalization
achieved: the final solutions evolved by XCS with gradient
descent are as maximally general as those evolved by XCS
both in terms of compactness and in terms of classifier gen-
erality. Overall, our analysis suggests that the combination
of gradient descent and tournament selection can provide a
good trade-off between robustness and learning speed.

Acknowledgments
This work was supported by the European commission con-
tract no. FP6-511931. This work was also sponsored by the
Air Force Office of Scientific Research, Air Force Materiel
Command, USAF, under grant FA9550-06-1-0096, the Na-
tional Science Foundation under ITR grant DMR-03-25939

1819

 0%

 25%

 50%

 75%

100%

 0 500 1000 1500 2000 2500 3000

A
V

E
R

A
G

E
 S

P
E

C
IF

IC
IF

Y

NUMBER OF LEARNING PROBLEMS

XCS
XCSG

Figure 7: Average classifier specificity for XCS and
XCSG in Woods2 with roulette wheel selection.

at Materials Computation Center, UIUC. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
government purposes notwithstanding any copyright nota-
tion thereon.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of the Air Force Office of Scientific Re-
search, the National Science Foundation, or the U.S. Gov-
ernment.

8. REFERENCES
[1] Alwyn M. Barry. Limits in long path learning with

XCS. In Springer-Verlag, editor, Genetic and
Evolutionary Computation Conference
(GECCO-2003), pages 1832–1843, Chicago, IL, 2003.

[2] Alwyn M. Barry, John H. Holmes, and Xavier Llorà.
Data mining using learning classifier systems. In Bull
[5], pages 15–67.

[3] Ester Bernadó, Xavier Llorà, and Josep M. Garrell.
XCS and GALE: A comparative study of two learning
classifier systems on data mining. In Pier Luca Lanzi,
Wolfgang Stolzmann, and Stewart W. Wilson, editors,
Advances in Learning Classifier Systems, volume 2321
of LNAI, pages 115–132. Springer-Verlag, Berlin, 2002.

[4] Justin A. Boyan and Andrew W. Moore.
Generalization in reinforcement learning: Safely
approximating the value function. In G. Tesauro et al.,
editors, Advances in Neural Information Processing
Systems 7, pages 369–376, 1995. The MIT Press.

[5] Larry Bull, editor. Applications of Learning Classifier
Systems. Studies in Fuzziness & Soft Computing.
Springer-Verlag, 2004.

[6] Martin Butz, David G. Goldberg, and Pier Luca
Lanzi. Gradient descent methods in learning classifier
systems. Technical Report 2003028, Illinois Genetic
Algorithms Laboratory – University of Illinois at
Urbana-Champaign, 117 Transportation Building, 104
S. Mathews Avenue, Urbana, IL 61801, January 2003.

[7] Martin V. Butz. Rule-Based Evolutionary Online
Learning Systems: A Principled Approach to LCS
Analysis and Design. Springer-Verlag, Berlin, 2006.

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000

N
O

 S
T

E
P

S
 T

O
 G

O
A

L

NUMBER OF LEARNING PROBLEMS

XCS
XCSG

OPTIMUM

(a)

 0%

 25%

 50%

 75%

100%

 0 500 1000 1500 2000 2500 3000

N
O

 C
LA

S
S

IF
IE

R
S

 IN
 [P

] (
%

 O
F

 N
)

NUMBER OF LEARNING PROBLEMS

XCS
XCSG

(b)

Figure 8: XCS and XCSG with tournament selec-
tion applied to Woods2: (a) average number of steps
to reach a goal; (b) number of classifiers in the pop-
ulation.

[8] Martin V. Butz, David E. Goldberg, and Pier Luca
Lanzi. Gradient descent methods in learning classifier
systems: Improving XCS performance in multistep
problems. IEEE Transaction on Evolutionary
Computation, 9(5):452–473, October 2005.

[9] Martin V. Butz, Kumara Sastry, and David E.
Goldberg. Strong, stable, and reliable fitness pressure
in XCS due to tournament selection. Genetic
Programming and Evolvable Machines, 6:53–77, 2005.

[10] Martin V. Butz and Stewart W. Wilson. An
algorithmic description of XCS. Journal of Soft
Computing, 6(3–4):144–153, 2002.

[11] Marco Dorigo. Genetic and non-genetic operators in
alecsys. Evolutionary Computation, 1(2):151–164,
1993.

1820

 0%

 25%

 50%

 75%

100%

 0 500 1000 1500 2000 2500 3000

A
V

E
R

A
G

E
 S

P
E

C
IF

IC
IF

Y

NUMBER OF LEARNING PROBLEMS

XCS
XCSG

Figure 9: Average classifier specificity for XCS and
XCSG in Woods2 with tournament selection.

0.0

0.2

0.4

0.6

0.8

1.0

 0 50000 100000 150000 200000

A
V

E
R

A
G

E
 G

R
A

D
IE

N
T

 IN
 [A

]

NUMBER OF LEARNING PROBLEMS

Figure 10: XCSG in the 20-multiplexer with tour-
nament selection: average gradient for the classifiers
in the action set.

[12] Jan Drugowitsch and Alwyn M. Barry. A formal
framework and extensions for function approximation
in learning classifier systems. Technical Report
CSBU-2006-02, Department of Computer Science,
University of Bath, January 2006.

[13] Jan Drugowitsch and Alwyn M. Barry. A formal
framework for reinforcement learning with function
approximation in learning classifier systems. Technical
Report CSBU-2006-02, Department of Computer
Science, University of Bath, January 2006.

[14] Geoffrey J. Gordon. Online fitted reinforcement
learning from the value function approximation.
Workshop on Value Function Approximation held
during the 12th International Conference on Machine
Learning, 1995.

[15] Pier Luca Lanzi. An Analysis of Generalization in the
XCS Classifier System. Evolutionary Computation
Journal, 7(2):125–149, 1999.

[16] Pier Luca Lanzi. Learning classifier systems from a
reinforcement learning perspective. Soft Computing -
A Fusion of Foundations, Methodologies and
Applications, 6(3):162–170, 2002.

 50%

 60%

 70%

 80%

 90%

100%

 0 25000 50000 75000 100000

P
E

R
F

O
R

M
A

N
C

E
 (

%
)

NUMBER OF LEARNING PROBLEMS

XCS
XCSG β=0.2

XCSG βp=0.6
*XCSG βp=1.0

Figure 11: Average classifier specificity for XCS and
XCSG in the 20-multiplexer with tournament selec-
tion and different values of learning rate.

[17] Pier Luca Lanzi and Daniele Loiacono. Standard and
averaging reinforcement learning in XCS. In GECCO
’06: Proceedings of the 8th annual conference on
Genetic and evolutionary computation, pages
1489–1496, New York, NY, USA, 2006. ACM Press.

[18] Pier Luca Lanzi, Daniele Loiacono, Stewart W.
Wilson, and David E. Goldberg. Classifier prediction
based on tile coding. In GECCO ’06: Proceedings of
the 8th annual conference on Genetic and evolutionary
computation, pages 1497–1504, New York, NY, USA,
2006. ACM Press.

[19] Pier Luca Lanzi, Wolfgang Stolzmann, and
Stewart W. Wilson, editors. Learning Classifier
Systems: From Foundations to Applications, volume
1813 of Lecture Notes in Computer Science.
Springer-Verlag, April 2000.

[20] Stuart Ian Reynolds. Reinforcement Learning with
Exploration. PhD thesis, School of Computer Science.
The University of Birmingham, Birmingham, B15
2TT, December 2002.

[21] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning – An Introduction. MIT
Press, 1998.

[22] Atsushi Wada, Keiki Takadama, and Katsumori
Shimohara. Learning classifier system equivalent with
reinforcement learning with function approximation,
2005. Eighth International Workshop on Learning
Classifier Systems (IWLCS-2005).

[23] Atsushi Wada, Keiki Takadama, Katsumori
Shimohara, and Osamu Katai. Learning classifier
systems with convergence and generalization. In Larry
Bull and Tim Kovacs, editors, Foundations of Learning
Classifier Systems, volume 183 of Studies in Fuzziness
and Soft Computing, pages 285–304. Springer, 2005.

[24] Stewart W. Wilson. Classifier Fitness Based on
Accuracy. Evolutionary Computation, 3(2):149–175,
1995. http://prediction-dynamics.com/.

[25] Stewart W. Wilson. Generalization in the XCS
classifier system. In Genetic Programming 1998:
Proceedings of the Third Annual Conference, pages
665–674. Morgan Kaufmann, 1998.

1821

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

