
Automatic Heuristic Generation with Genetic
Programming: Evolving a Jack-of-all-Trades or a Master of

One

Edmund K. Bur ke
ekb@cs.nott.ac.uk

Matthew Hyde
mvh@cs.nott.ac.uk

Graham Kendall
gxk@cs.nott.ac.uk

John Woodward
jrw@cs.nott.ac.uk

The University of Nottingham
School of Computer Science and Information Technology

Jubilee Campus
Wollaton Road
Nottingham, UK

ABSTRACT
It is possible to argue that online bin packing heuristics
should be evaluated by using metrics based on their per-
formance over the set of all bin packing problems, such as
the worst case or average case performance. However, this
method of assessing a heuristic would only be relevant to a
user who employs the heuristic over a set of problems which
is actually representative of the set of all possible bin pack-
ing problems. On the other hand, a real world user will often
only deal with packing problems that are representative of
a particular sub-set. Their piece sizes will all belong to a
particular distribution. The contribution of this paper is to
show that a Genetic Programming system can automate the
process of heuristic generation and produce heuristics that
are human-competitive over a range of sets of problems, or
which excel on a particular sub-set. We also show that the
choice of training instances is vital in the area of automatic
heuristic generation, due to the trade-off between the perfor-
mance and generality of the heuristics generated and their
applicability to new problems.

Categories and Subject Descriptors
D.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis

General Terms
Design, Performance, Reliability

Keywords
Bin-Packing, Genetic Programming, Hyper-Heuristics,
Heuristics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7-11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

1. INTRODUCTION
There are many real world examples where an agent (for

example, a factory worker or a robot on a production line)
is trained to excel at a specialised task but is not suited to
carry out other tasks, even if the tasks appear to be similar.
There is often a trade-off between how specialised an agent
is at a given task and how well they can adapt to other tasks.
An example of this is the education system. This is general
at the beginning and specialisation increases the further you
progress through the system. This intuitive observation is
summarised in the phrase, jack of all trades and master of
none, which is used to describe an individual who is capable
of a range of tasks, but who does not excel at any one in
particular.

In this paper, we hypothesise that the same is true when
evolving heuristics for the bin packing problem using our Ge-
netic Programming (GP) hyper-heuristic system. The one
dimensional bin-packing problem involves a set of integer-
size pieces L, which must be packed into bins of a certain
capacity C, using the minimum number of bins possible. In
other words, the set of integers must be divided into the
smallest number of subsets so that the sum of the sizes of
the pieces in a subset does not exceed C [18]. In this paper,
the ‘on-line’ bin packing problem is studied. That is, we do
not know in advance how many pieces there are or the size
of those pieces. Our system must simply pack the pieces
into the bins in the order they arrive, and the pieces cannot
be moved once they have been placed in a bin [7].

The bin packing problem is known to be NP-Hard [13]
so heuristics are commonly used to generate solutions that
are of a high enough quality for practical purposes, as a
polynomial-time exact algorithm is unlikely to exist for the
general case [7]. Examples of online bin packing heuristics
can be found in [23, 7, 14]. No known heuristic has both
a better worst case performance ratio and average uniform
case performance ratio (with items drawn uniformly in the
interval [0,1]) than ‘best-fit’ [15]. This heuristic puts the
piece in the fullest bin that has room for it and opens a
new bin if the piece does not fit into any existing bin. This
heuristic will act as a benchmark to show that the heuristics
presented in this paper perform as well as human-designed
heuristics.

1559

Evolutionary approaches have been applied to bin pack-
ing problems with success [10, 19]. In these applications,
the solution is evolved directly by the heuristic. In contrast,
this paper will present a hyper-heuristic which evolves bin
packing heuristics, and does not evolve solutions directly.
Human competitive heuristics are produced automatically,
which can then be re-used on new problems without any fur-
ther time-intensive evolution, which is not true of previous
evolutionary approaches in this domain. This paper will
attempt to show the reader the benefits and implications
of this automatic heuristic generation process, and that a
heuristic can be evolved to be a ‘jack of all trades’, or a
master of one.

2. HYPER-HEURISTIC BACKGROUND
Hyper-heuristics can be thought of as heuristics which

choose “between a set of low-level heuristics, using some
learning mechanism” [27]. Hyper-heuristic research is con-
cerned with search across spaces of heuristics [24]. One of
the aims of a hyper-heuristic [24, 1] is to “raise the level
of generality at which optimisation systems can operate”.
They can also be thought of as automatic heuristic genera-
tors, where the aim of the hyper-heuristic is to produce an
independent heuristic for a problem, that is capable of being
re-used.

The No Free Lunch theorem [29, 28] shows that all search
algorithms have the same average performance over all prob-
lems defined on a given finite search space. However, it is
important to recognise that this theorem is not saying that
it is not possible to build search methodologies which are
more general than is currently possible. Indeed, research
into hyper-heuristics is motivated by the assertion that in
many real world problem solving environments, there are
users who are interested in “good-enough soon-enough cheap-
enough” solutions to their optimisation problems [1].

We will briefly discuss some examples of previous hyper-
heuristic methods that have appeared in the literature. Two
hyper-heuristic methods have been tested on the one di-
mensional bin-packing problem, a learning classifier system
[26] and a genetic algorithm [25]. Simulated annealing is
used as a hyper-heuristic in [9] for the shipper rationali-
sation problem. A case based reasoning hyper-heuristic is
used in [6] for both exam timetabling and university course
timetabling. Three new hyper-heuristic architectures are
presented in [20], which treat mutational and hill climb-
ing low-level heuristics separately. A graph based hyper-
heuristic is presented in [5]. In [4], a tabu search hyper-
heuristic is presented and evaluated upon a nurse schedul-
ing problem and a university course timetabling problem. A
choice function has also been employed as a hyper-heuristic,
to rank the low-level heuristics and choose the best one [8],
and a distributed choice function hyper-heuristic is presented
in [22]. The choice function considers the recent effective-
ness of each heuristic and each pair of heuristics, and also
considers the time since the heuristic was last called.

These examples represent methodologies that involve sup-
plying the hyper-heuristic with a set of low level heuristics
that it can choose between when deciding which heuristic
to use at a given decision point. This approach provides a
solution to each problem that the hyper-heuristic is applied
to. The benefit of this approach is that the strengths of the
low level heuristics can be combined and the results are po-
tentially superior to simply using each low level heuristic in

For each problem s in set S

For each piece p in L

variable bestSoFar = negativeInfinity

For each bin i in A

output = evaluate(bin i)

If (output > bestSoFar)

bestSoFar = output

bestBinIndex = i

End If

End For

Put piece in bestBinIndex bin

End For

FitnessOfHeuristic += fitness of result of s

End For

Figure 1: Pseudo code showing the overall program
structure within which a heuristic operates

isolation. The disadvantage is that it is not always obvious
which low level heuristics to give to the hyper-heuristic. In
many cases the best heuristic (or set of heuristics) for the
problem will not be known.

This paper builds upon our work in [3] where we present a
genetic programming system for solving bin-packing heuris-
tics. This is distinct from most of the hyper-heuristics dis-
cussed in the rest of this section. There is little other pre-
vious work in this area in the literature. The best example
is ‘CLASS’, developed by Fukunaga, which is an automatic
generator of local search heuristics for the SAT problem,
competitive with human-designed heuristics in terms of run-
time and search efficiency [11, 12].

3. THE GP HYPER-HEURISTIC

3.1 Evolving the Choice of Bin
Our system evolves a control program that rates each bin

on its suitability for the piece. An individual is assessed by
rating the results created when the algorithm in Fig. 1 is
run, where S = the set of 20 instances, L = the list of all the
pieces in the current instance, and A = the array of bins.
The GP parameters are summarised in table 1.

Note that when making the choice of which bin to put the
current piece into, each individual in the population is not
constrained by whether it is legal to do so. For example,
putting every piece in the first bin is permitted. However,
this will lead to an illegal solution with a high penalty. For
this reason, when the best-of-run individual produces a legal
solution, it is because the system will have evolved an un-
derstanding of the rules, not because of constraints imposed
by humans.

3.1.1 Initialisation Parameters.
A population size of 1000 was chosen because this makes

the initial population diverse enough, and it allows for rea-
sonable run times. The initial trees are limited to a max-
imum depth of 4, and the bloat effect is limited by using
a very simple method, similar to the ‘Tarpeian wrapper’
method [21]. Any individual 30 nodes larger than the aver-
age of the population is penalised, by setting its fitness to
the same high penalty that is given to a heuristic that pro-
duces an illegal solution. The ‘Grow’ method of initialising
the trees [17] is used, and we ran the evolution for 50 gener-

1560

Table 1: The GP parameters
Population Size 1000

Generations 50
Crossover Proportion 90%

Reproduction Proportion 10%
Selection Method Roulette wheel

Initial Maximum Tree Depth 4

ations, a standard parameter used in [16]. These parameters
were chosen from a range of possible combinations, after a
series of experiments, because they result in good solutions
in reasonable time.

The function set is {≤, +,−,×, %} where % is the ‘pro-
tected divide’ function [16], and ≤ returns 1 if true and −1
if false. There are three terminals, the capacity of the bin,
the fullness of the bin, and the size of the piece.

3.1.2 Fitness measure.
The fitness measure is shown in equation 1, where: n =

number of bins, fullnessi = sum of all the pieces in bin i,
and C = bin capacity

Fitness = 1 −
(∑n

i=1(fullnessi/C)2

n

)
(1)

This fitness function is taken from [10]. It puts a premium
on bins that are filled completely or nearly so. Importantly,
the fitness function avoids the problem of plateaus in the
search space that occur when the fitness function is simply
the number of bins used by the heuristic, which is a problem
encountered in [2]. Solutions with lower fitness are better.
A fitness of 1000 is assigned to any illegal solution (an arbi-
trarily high number compared to the range of fitness values
for a legal solution). Another option would have been to use
a penalty proportional to the degree of violation. For exam-
ple, if a heuristic filled bins over their capacity, we could as-
sign a penalty proportional to the percentage that the bin is
overfilled, or the percentage of bins that are overfilled. We
use a fixed penalty for all illegal heuristics because we do
not wish to distinguish between heuristics which violate the
hard constraints of the problem to different degrees. This is
to enhance the simplicity of the algorithm, and because we
do not believe it would be beneficial for components of any
illegal heuristic to be used in the next generation, regardless
of the extent to which they violate the hard constraints.

3.1.3 Genetic Operators.
At the end of each generation, 10% of the next gener-

ation is created with the reproduction operator (cloning),
and 90% is created by crossover. These are standard pa-
rameters taken from [16]. In the crossover operator, any
node in the tree can be selected with equal probability to
be the crossover point. ‘Fitness proportional selection’ is
employed [16] using the normalised fitness, and reselection
is permitted.

4. THE PROBLEM CLASSES
We use uniform distributions of piece sizes to define prob-

lem classes. The classes are referred to as Cl−u where l is
the lower limit of the uniform distribution and u is the up-
per limit. The piece sizes used in our randomly generated

Figure 2: Diagram of the piece size distributions of
each class

instances are shown graphically in Fig. 2. We generated the
dataset in this way because we found no dataset in the lit-
erature containing such a hierarchy structure, which allows
us to test the specialisation of a heuristic over three levels.
Each instance has 120 pieces, and the bin capacity is always
150. Heuristics are always evolved by evaluating their per-
formance on a particular set of 20 bin packing instances.
Each group of 20 instances is referred to as a ‘set’ of in-
stances. The defining characteristic of a set is the uniform
distribution that its piece sizes are taken from. A distribu-
tion will be referred to as a ‘class’.

There are 7 sets involved in training the heuristics, each
from a different class, and therefore there are 7 classes that
the heuristics can be evolved to be applicable for. The 7
classes represent 3 levels of generality as shown in Fig. 2.
We refer to C10−49 and C50−89 as sub-problems of C10−89.
In the same way, C10−29 and C30−49 are sub-problems of
C10−49, and C50−69 and C70−89 are sub-problems of C50−89.
This is because, as can be seen in Fig. 2, all of the values in
a sub-problem can appear in its super-problem, but not all
of the values that appear in the super-problem can appear
in the sub-problem. So the sub-problems are less general as
the pieces have a smaller range of values.

In our experiments, we created 7 training sets and 7 vali-
dation sets, from the 7 classes. The validation sets have the
same format as the training sets, but with new piece size
values taken from the same uniform distributions. They are
7 new problem sets taken from the same 7 classes as the
training sets. Training sets and validation sets are referred
to as Tl−u and Vl−u, where l is the lower limit of the uniform
distribution and u is the upper limit.

To obtain a heuristic, we run the GP on a training set
of instances. This is done 50 times for each set. Each set
of 50 heuristics produced is known as Hl−u where l and u
are the lower and upper limits of the uniform distribution
of the training set they were evolved on. The result is 350
heuristics in total.

In the training stage, a heuristic will only come into con-
tact with one training set. In the validation stage, the
heuristic is separately tested on all 7 validation sets. This is
to investigate how re-usable the heuristic is on new problems
of the same class and problems of different classes.

5. RESULTS AND DISCUSSION
The results are presented in three sections, each address-

ing a different aspect of how the evolved heuristics perform

1561

Table 2: The performance of each set of evolved
heuristics tested against best-fit

Validation Better than No Significant Worse than
Set Best-Fit Difference Best-Fit

H10−89 0 48 2
H10−49 0 50 0
H50−89 0 49 1
H10−29 5 45 0
H30−49 6 44 0
H50−69 0 29 21
H70−89 3 47 0

Table 3: A comparison of the performance of six
sets of evolved heuristics with the heuristic sets
evolved on their respective super-class and super-
super-class. The values represent the probabilities
that the performance values of both heuristic sets
come from underlying populations with the same
mean

Heuristic Set Super-Class Super-Super-Class

H10−49 3.86 ∗ 10−4 N.A
H50−89 0.35 N.A

H10−29 9.11 ∗ 10−3 6.15 ∗ 10−6

H30−49 0.29 3.95 ∗ 10−3

H50−69 0.09 1.86 ∗ 10−6

H70−89 7.15 ∗ 10−10 1.06 ∗ 10−6

on new instances that they have not been evolved on. In this
section we refer to the hierarchy of problem classes shown in
Fig. 2. We discuss going up and down levels of generality in
this hierarchy and we also refer to the concept of two classes
being unrelated if they share no common range of numbers.
There are two classes in the middle layer of the hierarchy,
the four classes at the bottom of the hierarchy each have a
super-class and an unrelated class in the middle layer.

5.1 Quality of the heuristics on new problems
of the same class

In this section, we are only concerned with the results of
each heuristic on the validation set of the class that it was
evolved on, and how they compare to the results of best-fit
on that validation set.

We compare each heuristic to best-fit by using a two-tailed
paired-difference t-test, using the 20 pairs of results that
the heuristic and best fit produce on the 20 instances of
the validation set. This test applies here over a standard
t-test because the values in each sample of 20 results are
not independent. The two results in each pair depend upon
the specific piece sizes of the problem instance.

Table 2 is a summary of the performance of the 50 heuris-
tics evolved for each class of problem, and shows the number
of heuristics that perform significantly better, significantly
worse, and not significantly different, to best-fit. A 0.05 sig-
nificance level is used in the test, below which we discard the
null hypothesis, that the mean of the differences between the
performances over the 20 instances is zero.

The majority of heuristics are competitive with best-fit.
However, there are 14 evolved heuristics that perform signifi-
cantly better than best-fit on their validation sets. These are
all produced from training on classes at the bottom of the

hierarchy, i.e. the narrowest problem distributions. From
this we conclude that it is more probable for a heuristic
to become specialised in these classes due to the piece size
distribution being sufficiently narrow.

The exception appears to be the set H50−69, from which
21 heuristics perform significantly worse than best-fit on
V50−69, and none perform better than best-fit. We attribute
the anomalous result on V50−69 to the good performance of
best-fit on this class of piece sizes. It would seem that best-
fit performs well when the pieces are all roughly between
1/3 and 1/2 of the bin capacity, and so finding a heuristic
that on average outperforms best-fit is more difficult in this
class.

5.2 Quality of the heuristics on new problems
of different classes

In this section we analyse how heuristic sets perform on
the validation set from the class they were evolved on, com-
pared to the performance of heuristic sets evolved on the
super-class and super-super-class of that validation set. For
example, the super-class of P10−29 is P10−49, and its super-
super-class is P10−89. The super-class of P50−89 is P10−89,
and has no super-super-class (indicated by N/A in table 3).
The performance of a heuristic on each instance of the val-
idation set is totalled to obtain a total score for the heuris-
tic. Therefore there are 50 total scores for each heuristic set.
This set of 50 scores is compared to the 50 total scores of
the other set to assess if there is a significant difference in
performance between the two.

The results shown in table 3 are the results of a one-tailed
t-test between the set of 50 total scores of one heuristic set
and the 50 total scores of another. In each comparison,
we are testing the hypothesis (H1) that the values of the
sub-class come from a distribution lower (better) than the
distribution of the super-class. The null hypothesis (H0)
is that the values of both the sub-class and the super-class
come from distributions with the same mean. The values
shown represent the probability that H0 is true. We use a
0.05 significance level in the discussion below.

Table 3 shows that as the classes become more specialised,
the heuristics evolved on them can be more specialised too.
This hierarchy is observed in all situations except for one
anomaly, where set H10−89 is significantly better at V50−69

than H50−69. In contrast to the other results in table 3, we
use a two-tailed t-test for this comparison of H50−69 with
its super-super-class. This is because the mean of H50−69 is
higher (worse) than the mean of its super-super-class, and
therefore we test whether the distributions are significantly
different in either direction, as opposed to testing H1. The
lesser known full epithet is Jack of all trades, master of none,
though ofttimes better than master of one. The distribution
of the piece sizes of V50−69 and their ratio with the capacity
of the bins present a situation which is obviously one of the
times where the jack of all trades is better than the master
of one. The heuristics which represent the jack of all trades
in this case are able to use their wider ‘skills’ to perform
better on average than heuristics which are specialised in
class C50−69.

There is no statistically significant difference between the
mean performances of H50−89, H50−69 and H30−49 on their
native classes compared to the performances of heuristics
evolved on their super-classes. There seems to be no specific
features of these classes that heuristics can learn through

1562

Table 4: Summary of the illegal results when heuris-
tic sets are each tested on three unrelated validation
sets, containing piece sizes they did not pack in their
evolution. A cross represents at least one illegal re-
sult, a circle represents no illegal results

Validation sets of three classes unrelated
to the heuristic set

Heuristic Set Mid-level Two low-level classes
H10−49 × × ×
H10−29 × × ×
H30−49 × × ×
H50−89 × × ◦
H50−69 ◦ ◦ ◦
H70−89 ◦ ◦ ◦

evolution that they cannot already learn by packing the
pieces of their super-class. In our experiments, it appears
that piece sizes of around 1/3 of the bin capacity apparently
inhibit the specialisation of heuristics on these classes. Con-
versely, there appears to be more scope for specialisation at
the extremes of the range of piece sizes used here. Specifi-
cally, H10−29 and H70−89 are the only sets of heuristics with
means that are significantly better than their super-class
and their super-super-class at the 98% level of confidence.

5.3 Heuristic Robustness
Often the robustness of a heuristic is important in a com-

mercial scenario. Where there are financial considerations,
practitioners may be reluctant to trust in an evolved heuris-
tic to perform well on new problems that it is given. We
recognise this issue and hope to present some reassurance.
The results of this work show how important it is that the
training set used to evolve a heuristic is representative of the
future problems that the heuristic is expected to encounter.
The results show that if a heuristic is presented with pieces
it has not seen before, then there is a chance it will not be
able to function as intended and illegal solutions may result.
However, the results also show that no heuristic generated
automatically by our GP method produced an illegal result
when applied to new problems of the same class.

All the evolved heuristic sets were tested on all of the val-
idation sets, as explained in section 4, but table 4 presents
only the results where the heuristic set is tested on an unre-
lated validation set, containing piece sizes that the heuristics
did not pack during their evolution. In table 4, a cross rep-
resents at least one illegal result on the validation set by the
50 heuristics in the set. A circle represents no illegal results
by that heuristic set on the validation set.

H50−89 produces some illegal results on V10−29 but not
on V50−69 and V70−89. In the same way, H10−49 produces
some illegal results on V50−69 and V70−89 but not on V10−29

and V30−49. H10−89, This is summarised in the first and
fourth rows of table 4. The most general set of heuristics,
produces no illegal results over any of the validation sets.
These results show that heuristics evolved on a super-class
could be applied to sub-classes without them failing. How-
ever, when applied to an unrelated class, there is a chance
that the heuristic will not produce a legal solution. This can
be explained by the fact that when applied to an unrelated
class, the heuristics will be trying to pack pieces that they
have not been evolved to pack and there is a chance that a

Table 5: Summary of the results obtained by the
heuristic shown in equation 2 compared to the re-
sults of best-fit

Validation set Heuristic result Best-fit result
V10−89 835 834
V10−49 676 503
V50−89 1220 1220
V10−29 2400 326
V30−49 702 704
V50−69 1198 1198
V70−89 1815 1815

heuristic may try to use relationships of piece sizes, fullness,
and capacity that cannot exist in the new class.

To help explain the next point, let set A be the group of
classes C10−49, C10−29 and C30−49. Also, let set B be the
group of classes C50−89, C50−69 and C70−89. Table 4 shows
that set A seems to be easier for the heuristics trained on set
B than set B is for the heuristics trained on set A. This can
be seen by comparing the top three rows of table 4 to the
bottom three rows. For example, on set A, only 2 heuristics
from H50−69 result in some illegal solutions, and they only
result in illegal solutions on V10−49 and V10−29. In contrast
to this, H10−49, H10−29, and H30−49 all result in some illegal
solutions on each of V50−89, V50−69 and V70−89.

Our results show that the techniques evolved for the distri-
butions above 1/3 of the bin capacity can mostly be applied
to lower piece sizes (piece sizes of less than 50), even if these
techniques do not result in equivalent performance in the
lower distributions.

The reverse is true for the bin packing techniques devel-
oped for lower piece size distributions. The heuristics that
embody these techniques are less applicable to problems
with higher piece sizes and result in more illegal solutions.

5.4 Example Heuristic
Equation 2 shows a simplified representation of a 35 node

individual which was evolved on T10−90. Table 5 shows the
results that this heuristic obtains on the seven validation
sets.

2S + F

S + F
+

C

((F
C

) ≤ (2C − F)) + (C − S − F)
(2)

The table shows that the heuristic uses at most 1 more bin
than best fit on each validation set, apart from sets V10−29

and V10−49. Indeed, the result for V10−29 represents the
heuristic putting each piece in a new bin. Given a piece size
between 10 and 29, no fullness between 10 and 29 can make
the heuristic evaluate to a result greater than it does when
the fullness is 0. So the ‘rating’ that the heuristic gives to
the bins with a piece in will always be lower than the rating
that it gives to the empty bin. Therefore, no piece will ever
be put in a bin which already contains a piece, it will always
be placed in an empty bin.

However in all other classes, where the pieces can be
larger, there are combinations of piece sizes and fullness that
can make the heuristic value greater than when the fullness
is zero. So it is possible for pieces to be put in bins that
already contain a piece, but still, no piece of less than 30
will ever be put in a bin with a fullness of less than 30. The
heuristic’s result on V10−49 also shows this difficulty that the
heuristic has when packing small pieces, however the result

1563

is better than for V10−29 because some of the pieces are large
enough for the fullness to reach a high enough value, so that
more pieces can be put in the same bin.

It is worth noting that while the result for V10−29 is very
poor, none of the solutions are illegal. The safeguard against
illegal solutions is the right hand term of the two terms in
equation 2, and it is a safeguard that holds in all problem
classes. If putting a piece in a bin would overfill the bin by
1 unit, then the right hand term becomes equal to 1, which
is low enough for the whole heuristic to value an empty bin
more, so the heuristic will never choose a bin that would
be overfilled over a bin that the piece can fit in. If the bin
would be overfilled by 2 or more units, then the value of the
whole heuristic becomes negative, and again the heuristic
will rate the open bin more highly than it rates an illegal
placement.

Equation 2 is an example of a heuristic strategy that uses
ratios of piece sizes, bin fullness and bin capacity that exist
in the class it was evolved on, but can not exist in certain
other classes.

6. SUMMARY AND CONCLUSIONS
The results of this paper lead to three main conclusions.

Firstly, on new instances of a particular class, a heuristic
evolved on instances drawn from that class will perform bet-
ter on average than a heuristic evolved on instances from a
different class. Secondly, heuristics can be evolved to be
specialists on a particular sub-problem, or general enough
to work on all sub-problems. However there is a trade-off
between performance and generalisation. Thirdly, heuris-
tics evolved on a super-class will not produce illegal results
on problems from one of its sub-classes. However there is a
chance that if a heuristic is applied to problems of a different
class then illegal solutions may be produced.

These three points show, above all, that care must be
taken to ensure that a representative training set is pro-
vided when automatically evolving heuristics. The heuris-
tics generated by this type of system will all be specialised
to some degree, and just because a heuristic can solve a bin
packing problem, does not mean it can solve all bin packing
problems.

It is also important to note that the heuristics evolved
here have learned how not to violate the hard constraints of
the bin packing problem. The heuristics are free to do so,
but their evolved strategies guard against this violation.

Research into conventional hyper-heuristics is indicative
of how difficult it is to predict which heuristic will work
best on a particular problem. The hyper-heuristic is there to
automate that decision process. The next step is to develop
systems capable of automatically generating the heuristics
themselves, as Fukunaga has shown [11, 12], and as we have
shown here with a system that can generate heuristics which
are competitive with the human-created best-fit heuristic,
over a range of different bin packing problems.

The main contribution of this paper is to highlight im-
plications for future systems such as this in other domains.
When we are using uniform distributions of piece sizes that
fit neatly together in a hierarchy, it may seem obvious to
which class a training set of instances belongs to, and there-
fore one can be fairly confident of which other classes a
heuristic evolved on that set will perform well on. However,
in messy real-world timetabling and scheduling domains, for
example, the constraints and parameters are so varied that

it is much more difficult to say that an instance is a mem-
ber of a certain class. Certain subtle, unforeseen features of
a new problem instance may cause a pre-evolved heuristic
to produce much worse solutions than expected, even if the
new problem is judged to belong to the same class as the
training set.

7. FUTURE WORK
We wish to extend this work to offline bin packing, where

the heuristics are, in general, more complex than for on-
line algorithms. We intend to develop a grammar-based
GP system which will be capable of expressing most of the
man-made bin packing heuristics described in the literature.
When such a grammar is in place, the system will be able
to develop more complex heuristics than is possible with the
technique described in this paper.

In contrast to the conventional hyper-heuristic approaches
and other meta-heuristics, our GP hyper-heuristic approach
has two outputs, good quality solutions, and a heuristic that
can be re-used on future problems of the same type with-
out further training. The additional output of a re-usable
heuristic means that the computationally expensive evolu-
tion process can be employed to produce a heuristic on small
problems, and then the resulting heuristic can be applied
quickly to larger problem instances. In this way, the solu-
tions to the larger instances could potentially be obtained
much more efficiently than if an evolutionary algorithm is
employed on the larger instances directly. We intend to in-
vestigate further this potential benefit of the heuristic gen-
eration process.

8. ACKNOWLEDGMENTS
This work was carried out under ESPRC grant reference

EP/C523385/1.

9. REFERENCES
[1] E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross,

and S. Schulenburg. Hyper-heuristics: An emerging
direction in modern search technology. In F. Glover
and G. Kochenberger, editors, Handbook of
Meta-Heuristics, pages 457–474. Kluwer, 2003.

[2] E. K. Burke, M. Hyde, and G. Kendall. Evolving bin
packing heuristics with genetic programming. In
T. Runarsson, H.-G. Beyer, E. Burke,
J. J.Merelo-Guervos, D. Whitley, and X. Yao, editors,
LNCS 4193, Proceedings of the 9th International
Conference on Parallel Problem Solving from Nature
(PPSN 2006), pages 860–869, Reykjavik, Iceland,
September 2006.

[3] E. k. Burke, M. R. Hyde, and G. Kendall. Evolving
bin packing heuristics with genetic programming. In
T. Runarsson, H.-G. Beyer, E. Burke,
J. J.Merelo-Guervos, D. Whitley, and X. Yao, editors,
LNCS 4193, Proceedings of the 9th International
Conference on Parallel Problem Solving from Nature
(PPSN 2006), pages 860–869, Reykjavik, Iceland,
September 2006.

[4] E. K. Burke, G. Kendall, and E. Soubeiga. A
tabu-search hyper-heuristic for timetabling and
rostering. Journal of Heuristics, 9(6):451–470, 2003.

[5] E. K. Burke, B. McCollum, A. M. S. Petrovic, and
R. Qu. A graph-based hyper heuristic for timetabling

1564

problems. European Journal of Operational Research,
176:177–192, 2007.

[6] E. K. Burke, S. Petrovic, and R. Qu. Case-based
heuristic selection for timetabling problems. Journal
of Scheduling, 9(2):115–132, 2006.

[7] E. G. Coffman Jr, G. Galambos, S. Martello, and
D. Vigo. Bin packing approximation algorithms:
Combinatorial analysis. In D. Z. Du and P. M.
Pardalos, editors, Handbook of Combinatorial
Optimization. Kluwer, 1998.

[8] P. Cowling, G. Kendall, and E. Soubeiga. A
hyperheuristic approach to scheduling a sales summit.
In E. K. Burke and W. Erben, editors, Proceedings of
the 3rd International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2000),
pages 176–190, Konstanz, Germany, August 2000.

[9] K. Dowsland, E. Soubeiga, and E. K. Burke. A
simulated annealing hyper-heuristic for determining
shipper sizes. European Journal of Operational
Research, 179(3):759–774, 2007.

[10] E. Falkenauer and A. Delchambre. A genetic
algorithm for bin packing and line balancing. In
Proceedings of the IEEE 1992 Int. Conference on
Robotics and Automation, Nice, France, May 1992.

[11] A. Fukunaga. Automated discovery of composite sat
variable-selection heuristics. In Eighteenth national
conference on Artificial intelligence, pages 641–648,
Menlo Park, CA, USA, 2002. American Association
for Artificial Intelligence.

[12] A. S. Fukunaga. Evolving local search heuristics for
SAT using genetic programming. In K. Deb, R. Poli,
W. Banzhaf, H.-G. Beyer, E. Burke, P. Darwen,
D. Dasgupta, D. Floreano, J. Foster, M. Harman,
O. Holland, P. L. Lanzi, L. Spector, A. Tettamanzi,
D. Thierens, and A. Tyrrell, editors, Proceedings of
the Genetic and Evolutionary Computation
Conference 2004 (GECCO ’04), volume 3103, pages
483–494, Seattle, WA, USA, 2004. Springer-Verlag.

[13] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, San
Fransisco, 1979.

[14] D. Johnson, A. Demers, J. Ullman, M. Garey, and
R. Graham. Worst-case performance bounds for
simple one-dimensional packaging algorithms. SIAM
Journal on Computing, 3(4):299–325, December 1974.

[15] Kenyon. Best-fit bin-packing with random order. In
Proceedings of the Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, 1996.

[16] J. R. Koza. Genetic Programming: on the
Programming of Computers by Means of Natural
Selection. The MIT Press, Boston, Massachusetts,
1992.

[17] J. R. Koza and R. Poli. Genetic programming. In
E. K. Burke and G. Kendall, editors, Search
Methodologies: Introductory Tutorials in Optimization
and Decision Support Techniques, pages 127–164.
Springer, Boston, 2005.

[18] S. Martello and P. Toth. Knapsack Problems:
Algorithms and Computer Implementations. John
Wiley and Sons, Chichester, 1990.

[19] M. O’Neill, R. Cleary, and N. Nikolov. Solving
knapsack problems with attribute grammars. In
Proceedings of the Third Grammatical Evolution
Workshop (GEWS’04), Seattle, WA, USA., 2004.

[20] E. Ozcan, B. Bilgin, and E. E. Korkmaz. Hill climbers
and mutational heuristics in hyperheuristics. In
T. Runarsson, H.-G. Beyer, E. Burke,
J. J.Merelo-Guervos, D. Whitley, and X. Yao, editors,
LNCS 4193, Proceedings of the 9th International
Conference on Parallel Problem Solving from Nature
(PPSN 2006), pages 202–211, Reykjavik, Iceland,
September 2006.

[21] R. Poli. A simple but theoretically-motivated method
to control bloat in genetic programming. In C. Ryan,
T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa,
editors, Genetic Programming, Proceedings of the 6th
European Conference, EuroGP 2003, pages 211–223,
Essex, April 2003. Springer-Verlag.

[22] P. Rattadilok, A. Gaw, and R. Kwan. Distributed
choice function hyper-heuristics for timetabling and
scheduling. In E. Burke and M.Trick, editors, Practice
and Theory of Automated Timetabling V, Springer
Lecture notes in Computer Science, volume 3616,
pages 51–67, 2005.

[23] W. T. Rhee and M. Talagrand. On line bin packing
with items of random size. Math. Oper. Res.,
18:438–445, 1993.

[24] P. Ross. Hyper-heuristics. In E. K. Burke and
G. Kendall, editors, Search Methodologies:
Introductory Tutorials in Optimization and Decision
Support Techniques, pages 529–556. Springer, Boston,
2005.

[25] P. Ross, J. G. Marin-Blazquez, S. Schulenburg, and
E. Hart. Learning a procedure that can solve hard
bin-packing problems: A new ga-based approach to
hyperheurstics. In Proceedings of the Genetic and
Evolutionary Computation Conference 2003 (GECCO
’03), pages 1295–1306, Chicago, Illinois, 2003.

[26] P. Ross, S. Schulenburg, J. G. Marin-Blazquez, and
E. Hart. Hyper heuristics: Learning to combine simple
heuristics in bin packing problems. In Proceedings of
the Genetic and Evolutionary Computation
Conference 2002 (GECCO ’02), 2002.

[27] E. Soubeiga. Development and Application of
Hyperheuristics to Personnel Scheduling. PhD thesis,
Univesity of Nottingham, School of Computer Science,
2003.

[28] D. Whitley and J. P. Watson. Complexity theory and
the no free lunch theorem. In E. K. Burke and
G. Kendall, editors, Search Methodologies:
Introductory Tutorials in Optimization and Decision
Support Techniques. Kluwer, Boston, 2005.

[29] D. H. Wolpert and W. G. Macready. No free lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation, 4:67–82, 1997.

1565

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

