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ABSTRACT 
A new family of "Distribution Replacement” operators for use in 
steady state genetic algorithms is presented. Distribution 
replacement enforces the members of the population to conform 
to an arbitrary statistical distribution, defined by its Cumulative 
Distribution Frequency, relative to the current best individual. As 
new superior individuals are discovered, the distribution 
“stretches” to accommodate the increased diversity, the exact 
opposite of convergence. Decoupling the maintenance of an 
optimal set of parents from the production of superior children 
allows the search to be freed from the traditional overhead of 
evolving a population of maximal fitness and, more significantly, 
avoids premature convergence. The population distribution has a 
significant effect on performance for a given problem, and in turn, 
the type of problem affects the performance of different 
distributions. Keeping mainly good individuals naturally does 
well on simple problems (as do distributions that exclude 
"median" individuals). With deceptive problems however, 
distributions which keep mainly bad individuals are shown to be 
superior to other replacement operators and also outperform 
classical generational genetic algorithms. In all cases, the uniform 
distribution proves suboptimal. This paper explains the details of 
distribution replacement, simulation experiments and discussions 
on the extension of this idea to a dynamic distribution. 

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]: Automatic Programming – 
automatic analysis of algorithms. 

General Terms 
Algorithms, Theory. 

Keywords 
Genetic algorithms, steady state genetic algorithm, distribution 
replacement, replacement, CDF, survival of the worst, survival of 
the extremes, keep second best, random keep best, normal 
distribution, beta distribution, DeJong functions, Saw tooth. 

1. INTRODUCTION 
Evolutionary computing (specifically genetic algorithms (GAs) in 
this paper) has been studied for many years as a powerful 
mechanism for navigating the search space of optimisation 
problems. GAs maintain a population of candidate solutions. Each 
solution is assigned a fitness value according to some objective 
function and a new generation of the population is then created 
using selection, crossover and mutation operators to splice, mutate 
and/or copy individuals from the old population; this process is 
repeated until some termination condition is triggered. 
As Wiegand [9] points out, there are essentially two different 
kinds of selection in GAs, parent selection for breeding new 
candidate solutions and survival selection to choose a subset of 
the population to be carried forward to the next generation. The 
importance of this distinction is almost never recognised and it is 
standard practice to perform both functions using a single 
Selection operator. Attempting to do two jobs with one operator 
results in the enviable trade-off that that neither job is performed 
optimally, and usually understood in terms of selection pressure 
(convergence to the best solution) being inversely proportional to 
population diversity (divergence to the best parents) [6, 7]. By 
recognising this as the root cause of the trade-off however, the 
dependency can be broken as it is parent selection (which is 
referred to from here on as Selection) that controls the search for 
the optimum solution; and it is survival selection (referred to as 
Replacement) that controls population diversity. These functions 
(and hence their effects) can therefore be chosen independently.  
Legg proposes his Fitness Uniform Deletion Strategy (FUDS) 
which is “…based on the insight that we are not primarily 
interested in a population converging to maximal fitness, but only 
in a single individual of maximal fitness." [2, 5]. This insight is 
powerful indeed, as the removal of the requirement on population 
convergence breaks the convergence/divergence (or selection 
pressure/diversity) trade-off. The population remains diverse at all 
times, whilst simultaneously searching for the single individual of 
maximal fitness (IMAX). Along with IMAX, other individuals should 
now be carried forward to the next generation not based on their 
current fitness, but on their potential as parents to produce 
children with a higher fitness than IMAX. 
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Figure 1: The Replacement-Selection Loop 

The Replacement operator is already a necessary part of a Steady 
State GA (in each generation children are added to the existing 
population, before it is then pruned), see Figure 1. In fact it is the 
explicit use of a Replacement operator (such as replace worst, 
replace parent, DeJong Crowding etc.) that defines the difference 
between steady state and classical GAs. The reason that the steady 
state GA is not the “standard” GA is likely down to a lack of 
analysis on the Replacement operator. Without the insight of the 
separation of responsibility between Selection and Replacement, 
the implementation of  Replacement can seem an unnecessary 
overhead. However, this paper demonstrates that on deceptive 
problems, the addition of a suitable Replacement operator is a 
simple method to improve performance over a classical 
generational genetic algorithm. 
In essence, the separation of responsibilities is such that 
Replacement seeks to maintain the optimal set of parents; 
Selection seeks to match parents into breeding pairs optimally; 
and mutation/crossover seek to recombine those breeding pairs 
into new children optimally. This paper uses standard approaches 
for selection and mutation/crossover as a baseline for the 
introduction of novel replacement strategies and their analysis. 
Legg’s FUDS [2, 5] can best be described as a replacement 
operator that enforce the fitness distribution of individuals in the 
population to conform to a uniform distribution. To the author's 
knowledge this is the only example of a distribution replacement 
strategy currently in the literature and the aim of this paper is to 
extend this work to other distribution shapes, and examine the 
effects on performance (see section 2). Section 3 describes the 
experimental setup and parameter ranges used for investigation. 
Section 4 presents the results of the simulations and sections 5 
and 6 discuss general conclusions and future potential. 

2. REPLACEMENT 
2.1 Standard Replacement Strategies 
Consider Figure 1 where a steady state GA has a population of 
size N. In a single generation the selection, mutation and 
crossover operators splice and mutate individuals from the 
population to generate a set of children of size C. These children 
are added back into the population resulting in an expanded 
population of size N+C. It is now the Replacement operator’s task 
to choose C individuals from expanded population to delete, and 
once again return the population to size N. Standard approaches to 
this are as follows: 

• Random – Remove C individuals randomly. 

• Truncation – Remove the C individuals with the lowest 
fitness scores. 

• Parent – Remove C of the parents chosen by the previous 
selection operator. 

It can be seen that none of these operators explicitly control 
population diversity, or take any account of the child solution 
generated by the selection operator. The following operators were 
therefore developed to try to maintain population diversity by 
considering the similarity of the individuals in the population 
rather than fitness. The similarity is normally determined by the 
Hamming distance between the two individuals (i.e. the minimum 
number of bit flips required to change one individual into the 
other in the binary representation) [10]: 

• DeJong Crowding – For each child, randomly select a 
subset of the old population (with the size of the subset 
defined as the crowding factor). Now remove the individual 
from the subset that is the most similar to the child. [1] 

• Contribution to Diversity / Remove Worst (CDRW) – 
For each child, consider the subset of the old population 
with lower fitnesses. Now remove the member of this subset 
with the lowest contribution to diversity (defined as 
minimum average Hamming distance from all other 
members of the population). Or, in the case that the child 
has the lowest contribution to diversity, simply remove the 
individual with the lowest fitness [6]. 

A major disadvantage of these two approaches is the additional 
computation involved in calculating the similarity between two 
individuals. This is a relatively small overhead for DeJong 
Crowding (scales linearly with crowding factor), but the effect is 
much larger for CDRW which scales with a square of population 
size. In CDRW every child must compare itself with every 
individual in the population, and further, every individual in the 
population must have its contribution to diversity updated every 
time any individual is added or removed. 

2.2 Distribution Replacement 
The replacement operator’s objective is to evolve the population 
towards the optimal set of parents. For any set of selection, 
mutation and crossover operators, on a specific problem, there 
will be a particular distribution of parents for which their 
performance is most effective. Distribution Replacement simply 
maintains that particular distribution of parents in order for the 
other operators to work optimally. Any type of statistical 
distribution can be maintained such as Exponential, Binomial, 
Gaussian, Beta, or a numerical distribution that cannot be easily 
mathematically represented. 
As every individual in the population has a fitness, the fitness 
distribution of the whole population can be mapped onto the 
desired statistical distribution. Rather than considering individual 
population members this abstraction allows for a reduction in 
computational overhead. Simple metrics are usually used to 
define particular distributions for example: 

• The difference between the maximum fitness in the 
population and the mean of the population is a measure of 
what is normally meant by selection pressure (the smaller 
the difference the higher the pressure). 
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• The standard deviation of the population fitnesses is a 
simple measure of population diversity1. 

Of course the actual fitness function will have an impact on 
these measures, as will any scaling function, but in general, 
the metrics are intuitive and practical. 

2.2.1 Implementing Distribution Replacement 
Any statistical distribution (continuous or discreet) can be 
defined by its Cumulative Distribution Function, CDF (or 
it’s probability density function, pdf). This CDF is 
normalized (and truncated if it is defined over an infinite 
range) to give CDFN that it is valid only in the range [0,1], 
so that it can be mapped onto the population. The algorithm 
for removing an individual from the population is then (with 
the effect shown in Figure 2): 
1. Add the child individual and re-sort the population 

according to fitness (ascending). 
2. Identify the individual in the population with maximum 

fitness (final individual), IMAX. 
3. The CDFN is normalised by IMAX‘s fitness, and the 

population size, to give the theoretical CDF that is required 
for this generation, CDFT. CDFT can be used to translate the 
index, n, of a particular individual (with fitness fn) into the 
theoretical fitness, fTn, that it should have: 

fTn  =  CDFT (n)  =  CDFN (n / popsize) / IMAX 
4. The ordered list of individuals can now be considered as a 

set of discreet points that should fall upon the CDFT curve. 
The individual causing the maximum misalignment2 to the 
correlation between the discreet points and the CDFT curve 
needs to be removed. 

5. Rather than introduce the overhead of calculating the 
misalignment for every individual, it is a sufficient 
approximation to use a standard binary decomposition 
process for efficiency: 
5.1. Consider the fitness of a pivot, p, located at the median 

of a range (initially the whole population).  
5.2. If fp ≥ fTp, there are too many individuals below the 

pivot with an actual fitness higher than their theoretical 
CDFT values.  

5.3. The pivot becomes the new upper bound of the range 
(similarly, the lower bound if the fitness of the pivot is 
too low), and repeat from 5.1 until the range contains 
only a single individual. 

6. Remove the single individual in the range. 
From this algorithm, several facts about distribution replacement 
can be discerned: 

• The individual with maximum fitness, IMAX is never 
removed (compared with Roulette Wheel and many other 

                                                                 
1 As the mean and standard deviation of a population varies in 
each generation, both these values must be normalised by the 
maximum fitness in that generation. 
2 The individual at index, n, with the lowest value of (2fn

2 – fn-1
2 – 

fn+1
2) / ( 2fTn

2 – fTn-1
2 – fTn+1

2). 

selection schemes in classical GAs that make no such 
guarantee). 

• The shape of the distribution is normalised by IMAX, so as its 
fitness increases through the generations so the (non-
normalised) mean and deviation of the actual population 
will also increase. 

• A new CDFT is only calculated when a new individual 
supersedes IMAX which occurs much less often than once per 
generation. 

• As this is a binary decomposition process, doubling the size 
of the population adds only one extra pivot comparison 
operation. Therefore the number of times an individual in 
the population is compared with CDFT scales with 
logarithm of the population size, O(log(N)). I.e. 
Significantly less than CDRW, O(N2), although more than 
Random and Truncation O(constant). 

2.3 Other Replacement Strategies 
In order to benchmark distribution replacement, two further 
simple replacement strategies are proposed and used in this paper: 

• Random Keep Best (RandKB) – As Random (above), but 
never remove IMAX. 

• Remove Second Best (2ndBest) – Always remove the 
individual with the second-highest fitness score. This results 
in a large group with low fitnesses and a single maximal 
“explorer”.  

3. EXPERIMENT & SIMULATION SETUP 
The DeJong fitness function test set [1] is a set of five different 
mathematical functions that give highly different search spaces. 
Evaluating the various replacement/selection strategies and 
parameters for each of the functions gives a good indication about 
the type of problems to which each is suited and allows for direct 
comparisons with other work: 

 Function 1 “Sphere” (DF1) - Smooth, unimodal, 
symmetric, a measure of general efficiency. 

 
Figure 2: The CDF of a population (at various generations) which 

converges to a Normal distribution and stretches as better individuals 
are discovered 
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 Function 2 “Rosenbrock” (DF2) - Has a narrow, sharp 
ridge running around a parabola, tests ability to discover 
good directions. 

 Function 3 “Step” (DF3) – Real numbers rounded to 
integers - representative of the problem of flat surfaces 
(with no direction information). 

 Function 4 “Quartic” (DF4) – Simple, unimodal function 
padded with gaussian noise, tests ability on noisy data. 

 Function 5 “Shekel’s Foxholes” (DF5) - Multiple (24) 
local optima which is difficult and deceptive.  

Figure 4 shows the two-dimensional representations of the five 
functions, however functions 1-4 were actually implemented as 
10-dimensional functions to make the problems more 
challenging. 
Three different Selection operators were used: Standard Roulette 
wheel, Rank (i.e. Roulette wheel on ranking rather than fitness 
values) and Random selection. Eight different basic Replacement 
operators were used (as discussed above in section 2): Random, 
Truncation, Parent, DeJong Crowding (Factors 1,2,3…9,10 & 
20), CDRW, Random Keep Best (RandKB) and Remove Second 
Best (2ndBest) (see sections 2.1 and 2.3). Three distribution 
replacement operators were used:  

• FUDS (uniform distribution) proposed by Legg. 

• Beta distribution. Controlled by two parameters α and β. 
Parameter sets were chosen to skew the distribution form 
uniform to extreme positive skew, negative skew and “U-
shaped” (see Figure 3). 

• Normal (Gaussian) distribution. Controlled by two 
parameters µ (mean) and σ (variance). A large range of µ/σ 
pairs was used, including “spikes”, “gentle inclines” and 
“flat” distributions. The [-∞, +∞] range had to be 
normalised and truncated, as described in 2.2.1, so it is 
worth noting that the actual mean and variance of the 
population no longer directly corresponded to µ and σ of the 
distribution respectively. 

In some situations the Normal and Beta distributions tended 
towards each other and simpler replacement strategies as can be 
seen in Figure 3. 

 
As this was a steady state GA, there was no benefit in a child 
individual being a direct clone of a parent. Each child was 

therefore a (single point) crossover of two parents, or a mutated3 
version of a single parent, with crossovers and mutations being 
mutually exclusive on any individual child. The overall fraction 
of crossovers to mutations was varied so that crossovers occurred 
0%, 5%, 20%, 40%, 60%, 80% 95% and 100% of the time.  
A population size of 30 was used with 3 (possible) replacements 
per generation for 1000 generation (10000 for DF5). Each 
individual simulation run was also the averaged over a minimum 
of 50 separate trials. 

4. RESULTS 
4.1 Effect of Distribution shape 
For any particular configuration of fitness function, selection 
operator and mutation/crossover fraction, the plots of performance 
against Normal’s µ and σ or Beta’s α and β generate smooth 
continuous curves and surfaces. With the Normal distribution as σ 
increases (tending towards FUDS) the surface flattens. At low σ, 
µ has a significant effect (for example see Figure 5). Crucially, 
the point giving the best performance on the surface (or a subset 
of all maximal points) can always be found on the minimal σ line. 
Equally the worst point can also always be found on the minimal 
σ line. Hence high σ, or FUDS always gives a mid-range 
performance, or at best, a non-uniquely optimal performance. 
This flattening at high σ and extreme ranges of performance at 
low as σ was a fundamental characteristic of the Normal 
distribution across all fitness functions, selection operators and 
crossover/mutation fractions. With optimal performance at low σ 
and either low or high (never median) µ, it is evident that the 
classic normal bell-shape, (or even skewed-bell-shape) was not 
                                                                 
3 A random number (<½ total number of bits) of bit flips. Each 

flip was performed on a random bit, so multiple flips per bit 
were possible, i.e. average of 11.4% bits changed per mutation. 

 
 
 
 
 
 
 
 
 
 
 
 

Normal parameters Beta parameters Other distribution 

µ → 1 (Imax) α << β 2ndBest (-ve skew) 

µ → 0 α >> β Truncation (+ve skew) 

σ >> 1 α = β = 1 FUDS 

Figure 3: The CDF of the Beta distribution as α and β parameters 
are varied along with a table of the asymptotic tendencies of 

Normal and Beta distribution replacement 

 
Figure 4: 2D Representations of the 5 DeJong Fitness 

Functions [www.denizyuret.com]] 
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the most effective distribution for Replacement. In other words, 
keeping mainly average individuals was never as effective as 
keeping mainly good or mainly bad individuals. As can be seen 
from Figure 3, such distributions are more easily modelled with 
the Beta distribution. Hence this same effect can be seen in Figure 
6 and Figure 7, where moving away from the symmetrical FUDS 
(α = β = 1 at the bottom in all cases) towards more extreme skews 
improves performance. From here on only the Beta distribution is 
discussed. 
Considering now Figure 6.2.3, with its optimal performance at 
large α (when β = 1). This is exactly the well known effect that 
the Truncation replacement operator already exploits. In other 
words, keeping only the best individuals with minimal diversity. 
High +ve skew mirrors the effect of Truncation replacement very 
accurately, doing consistently well on the unimodal DFs 1, 2, 3 
and 44 and consistently badly on the deceptive multimodal DF5 
(Figure 6.1.3), across all selection operators and crossover 
fractions. The explanations for the Beta –ve skew or U-
shaped’s performance is not so familiar however. 
The Beta –ve skew tends towards keeping the single best and 
all the worst individuals each generation, and further as β 
increases (when α = 1) it asymptotically approaches the 
2ndBest replacement strategy. For all selection schemes, 
performance improves with more extreme –ve skew on the 
deceptive and multi-modal DF5. Truncation replacement (i.e. 
extreme +ve skew) is inherently unsuited to this problem due 
to the massive loss of diversity. –ve skew (or 2ndBest) on the 
other hand manages to maintain more diversity and hence 
avoids the premature convergence problem (see section 4.3). 
The Beta U-shaped distribution (Figure 6.1.1 & 6.2.1) whereby 
only the extremely good and bad individuals are preserved, 
generally mirrors the performance of +ve skew (Truncation 
replacement). The U-shaped distribution can take advantage of 
both the +ve and –ve skew effects, although it is able to do 
neither optimally and was therefore always the median result 
out of the three distribution skews. As α = β, the distribution 
was symmetrical and so simply had the effect of halving the 

                                                                 
4 Hence the reason these functions are averaged together 

useful population which naturally impacted performance. It stands 
to reason that there is a spectrum of possible non-symmetrical U-
shaped distributions with +ve and –ve skews being at opposite 
ends. Although this spectrum was not considered in this work its 
implication is discussed later (see section 5). 

4.1.1 Other Replacement strategies  
Random and Parent replacement both perform badly in every 
situation. DeJong Crowding’s performance, although better than 
Random and Parent was also poor, but improved with higher 
crowding factors. Random-Keep-Best performed surprisingly 
well, although never the best, it should certainly always be used 
in place of Random replacement as it is a trivial extension to 
implement and results in a significant performance improvement. 
CDRW was impressive and proved very effective indeed, out-
performing, or in the top few strategies, in almost every situation. 
The down side of course is the significant run time overhead to 
calculate and maintain the real time diversity measures. When its 
performance is evaluated against actual CPU overheads or time, it 
is likely to drop down the rankings significantly. Although the 
author acknowledges that this particular CDRW implementation 
was not coded for optimal CPU efficiency, simulation runs 
involving CDRW nevertheless took 2 or 3 orders of magnitude 
longer to run than the other replacement strategies. 

4.2 Effect of Selection operator 
The principle of the selection operator is to identify the best 
possible parents. As this measure is relative to the population as a 
whole, controlling the diversity profile using a replacement 
operator clearly has a significant effect. 
Again, there is a clear distinction between the performance on the 
unimodal and multimodal functions. As can be seen from Figure 
7, for the multimodal DJ5 a -ve skewed distribution is the most 
effective replacement strategy irrespective of the selection 
operator. Maximising diversity is fundamental to the DF5 
problem which is achieved by maximising the -ve skew and hence 

 
Figure 5: Surface plot of Performance (% of theoretical max 

achieved after 250 generations) vs Normal µ and σ 
parameters on DF3 with Roulette Wheel selection and a 

Crossover fraction of 5%. 

 
Figure 6: Contour plot of relative performance of a (α, β, Crossover-

fraction)-tuple expressed as a ranking (i.e. 100% is best, 0% the worst). 
Top row is DF5, Bottom row the average of DFs 1-4. Averaged over all 3 

selection functions. [Individual graphs referenced by row.column 
notation (e.g. Figure 6.2.3 for “Av DJ1-4, Beta +ve Skew”] 
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relegating effects of the selection operator to the point where it 
only has a secondary effect on multimodal problems. 
The selection operator's influence is more evident in the unimodal 
problems. Roulette Wheel takes the relative fitness of individuals 
in the population into account when making selections, unlike 
Rank and Random which were only affected by the distribution of 
the population in an indirect manner. Figure 7.2.2 and 7.2.3 show 
that on the unimodal problems increasing -ve skew is inversely 
proportional to performance and these operators performed far 
more effectively on the +ve skewed distributions. These operators 
are most effective when the mean fitness of the population is as 
close to IMAX as possible (for unimodal problems). 
Consider Figure 7.2.1, as the –ve skew increases (tending towards 
2ndBest) the relative fitness of IMAX becomes significantly higher 
than the rest the population. Hence with Roulette Wheel selection, 
the probability of the best few individuals being selected is 
proportional to the –ve skew. It is therefore almost 
always the best few individuals that are mutated, or 
crossed-over. In effect, all the “effort” or “selection 
pressure” of the GA is being concentrated on these top 
individuals. Unfortunately this concentration results in 
a reduction of the effective population size, and in 
extreme cases tends towards the classic (1+1) GA 
(which has a population size of 1 and simply replaces 
this individual when a new better individual is found 
through random search) [3]. However, it never actually 
reaches pure random search as it is still based upon 
mutations/crossover of the best individual and so 
suffers from the premature convergence problem. 
Hence, although Roulette wheel is relatively more 
effective on –ve skewed distributions compared to the 
other shapes. Both Rank and Random selection 
outperform Roulette wheel for the -ve skewed case on 
DJ5 (see Figure 9). 

4.3 Diversity 
Figure 8 shows the population diversity through the 

generations for various replacement operators. The initially high 
diversity of the randomly initialised population falls off as 
selection and replacement operate over the generations, imposing 
structure on the population. High mutation rates allow for more 
"random jumping" than high crossover rates and so the drop-off in 
the high mutation rate case is much slower. Across all selection 
operators and mutation/crossover fractions the performance of the 
replacement operators was highly consistent and so the following 
generalisations can be made: 
• Parent replacement usually has the highest diversity 

(although associated poor performance), as removing the 
best individuals every time generates a lot of churn. 

• Truncation replacement always has the lowest diversity due 
to population convergence (possibly suboptimally). CDRW 
is the next lowest after Truncation, as it is in fact a modified 
version of Truncation. 

• DeJong crowding does extremely well under high mutation 
rates. It has mid range performance at high crossover rates, 
as in this case the children are more likely to be similar to 
the best individuals causing the removal of worse 
individuals and hence tending towards Truncation. 

• The Random, Distribution based and 2ndBest replacement 
strategies all have mid range performance. Distribution and 
2ndBest do much better than Random and RandKB at 
maintaining diversity at high crossover rates, and all have 
similar performance at low crossover rates. 

• 2ndBest usually has lower diversity than the distribution 
replacements, but is always much better (around twice as 
good) as Truncation. Even though 2ndBest is effectively the 
mirror image to Truncation, it maintains higher diversity 
because there are vastly more combinations of solutions 
with equally bad fitness scores than there are with equal 
good ones. In other words, although the deviation of fitness 
values is similar in the two cases, the diversity of the 
population (as measured by Hamming Distance) is not. 

These graphs graphically demonstrate the success of the 
distribution replacements at maintaining diversity. The fact that 
in many cases they are comparable with random replacement is 
impressive indeed. 

 
Figure 7: Relative performance ranking as Figure 6 (same 
scale). However ranking is only for the Beta ‘-ve Skew’ not 

across the whole parameter range and is now broken down by 
selection function. 

 
Figure 8: Population Diversity (average Hamming distance from a 

theoretical all 0’s individual) vs Generation using Roulette Wheel selection 
with a crossover fraction of 95% averaged over all 5 DeJong Functions 
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4.4 Comparison with Classical GAs 
Up to now only steady state GA’s have been considered. This 
section compares the performance against the more common 
"Classical GA” that does not use a specific Replacement operator. 
Figure 9 (left hand side) shows a comparison between the three 
selection operators used on their own, in the classical scenario, 
and used with a -ve skewed distribution replacement, in a steady 
state scenario, on DJ5. The population size was fixed at 30, 
however, a large range of mutation, crossover and skew 
parameters was simulated (each simulation is the average of 100 
separate runs). For each of the different cases, the best performing 
combination of these parameters is presented (which was different 
in each case). CDRW (the best performing non-distribution 
Replacement operator) is also included (using its best set of 
parameters and best Selection operator). For the classical GA, an 
elitism of 1 was introduced so as to guarantee the best individual 
was always carried forward into subsequent generations (without 
this elitism the classical GA results are significantly worse). 
The nature of the deceptive and multimodal DJ5 problem means 
that improved performance is achieved by not concentrating on 
the best individuals. In other words, pure random search is highly 
effective and is represented by the (1+1) GA. Accordingly, this is 
most effectively mimicked by Random followed by Rank, and 
finally Roulette wheel selection. For each selection operator, it 
can be seen that the introduction of the explicit -ve distribution 
replacement improves its performance (against number of fitness 
function evaluations) over its classical counterpart and other 
distribution operators. Moreover, -ve distribution replacement 
accounts for 3 out of 4 of the top results. 
Figure 9 (right hand side) show the same comparison using the 
Sawtooth principle [4]. With a Sawtooth GA (either steady-state 
or classical) the population size is monotonically decreased each 
generation. When it reaches a minimum population size, it is 
increased to the maximum size and the monatomic decreases 
starts again (hence the graph of population size vs generation 
looks like a serrated sawtooth). When the population size is 
expanded to maximum, it is filled with new randomly drawn 

individuals. Sawtooth therefore combines the benefits of both the 
variable population size and multi-restart principles. 
A population size of 55 decreasing to 5 (i.e. average 30) was used, 
however the rate of the decrease was varied. Again the very best 
performing set of parameters (now including rate of decrease) is 
presented. Sawtooth GA’s clearly outperform their standard 
counterparts. The performance improvement found by using -ve 
skewed distributions is again evident and graphically 
demonstrated by the fact that all three distribution replacements 
are now able to outperform the random search of (1+1) GA. With 
Sawtooth, CDRW is also able to escape from its premature 
convergence and match the performance of –ve skew. However, 
as previously discussed, CDRW entails a significant and highly 
detrimental computation overhead that is hidden on these plots. 

5. DISCUSSION 
The discoveries and methodologies outlined in this paper open up 
some exciting possibilities for further extension. It is clear that a 
simple Gaussian distribution, centred near the middle of 
population fitness (relative to IMAX), always yields sub optimal 
results no matter what the variance. Similarly, FUDS (the uniform 
distribution) also generated sub optimal results. As FUDS 
provided the original foundation for this work, this paper has 
certainly extended the understanding of this family of Distribution 
Replacement strategies.  
The -ve skewed distributions proved to be highly successful 
(across a large range of crossover fractions) on the most taxing 
multimodal DF5. Not only did the "survival of the worst" strategy 
outperform other distribution shapes but it was more effective 
than standard classical GAs.  Survival of the worst was also 
successful with Roulette Wheel on unimodal problems or when 
the fitness of the children was less dependent on the fitness of the 
parents (high mutation rates) which is a major characteristic of 
non-linear and dynamic problems.  
The superior performance of the negatively skewed distributions 
(survival of the worst strategy) in these situations leads the author 
to hypothesis that this strategy of maintaining a large diversity in 

     
Figure 9: Comparison between performance of negatively skewed distributions and the classical GA (using the same selection 

function but without a replacement operator) on DJ5. Right graph is the same comparison but using the "Saw tooth" approach. 
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reserve will really start to out class survival of the fittest in highly 
complex, deceptive, non-linear and/or dynamic problems. 
Applications into co-evolution (where agents inherently change 
each other's learning environments) and “simultaneous multiple 
learners” multiagent systems [8] seem to be the fields which 
might benefit most directly from this approach. Further work with 
more dynamic and difficult benchmarks would be beneficial along 
with an ongoing analysis of different distribution shapes (e.g. 
non-symmetrical U-shapes). 
CDRW certainly proved to be the best performer out of the non-
distribution replacement strategies. However, its superior 
performance is coloured by the high overhead of continuously 
maintaining the contribution to diversity metrics that it relies 
upon. By contrast, distribution replacement has a significantly 
lower overhead and is intuitive and straightforward to implement. 
Of course further work is needed to empirically gauge this 
difference in performance against CPU overhead rather than 
generational, or fitness function evaluation metrics. 
Clearly different distribution shapes are suited to different types 
of problem, and in the real world, with scant knowledge about the 
actual problem, the choice of distribution shapes maybe not be 
obvious. With a better understanding of the effect of distribution 
shape the possibility of a dynamic distribution could be realised 
(most likely on based upon a non-symmetrical U-shape). As the 
search progresses it effectively samples the fitness landscape and 
this knowledge about the characteristics of the problem can be 
used to continually modify the distribution to a more effective 
shape. 
Another major area for research is into tailored selection 
strategies. Roulette wheel, Rank and Random selection were 
chosen in this paper due to their widespread usage, however they 
are inherently designed for a generational GA architecture, rather 
than the steady-state GA with explicit distribution based 
replacement. In this paper there was no attempt to design an 
optimal selection operator. Some simple reworking of the Rank 
and Roulette Wheel operators to truly take advantage of the 
explicitly controlled (and guaranteed) distribution of parents 
provided by Distribution Replacement is likely to produce some 
sizeable performance improvements. 

6. CONCLUSION 
This paper has taken the single example of a prior distribution 
based replacement strategy (FUDS) and extended it to a new 
family (or class) of replacement strategies. This family provides a 
mechanism to explicitly control the diversity of population and a 
simple method for its implementation. Specifically, it has shown 
that the only prior example of a distribution replacement strategy 
(FUDS) is always sub-optimal (or at best, non-uniquely optimal), 
on the standard benchmarking problems represented by the 
DeJong fitness function test set. 

Analysis on the effects of distribution shape revealed that the 
“survival of the extremes” was a serious contender to the standard 
“survival of the fittest” approach in the simplest problems. The 
novel keep-the-worst strategy proved most effective on the taxing 
and deceptive problems (even outperforming some advanced 
classical GAs), and in situations where the fitness of children 
differed from the fitness of parents more radically, indicating its 
likely suitably on highly dynamic and challenging problems. 
In the real world, the structure of such problems is generally not 
known a-priori and is therefore not possible to choose the optimal 
distribution for the problem. However, as the GA runs, knowledge 
about the problem space is improved which can in turn be used to 
optimise a dynamic population distribution for which this work 
provides a foundation. 
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