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ABSTRACT
Considering as an optimization problem the one of knowing
what is hard for a blind optimization algorithm, the useful-
ness of absolute algorithm-independent hardness measures
is called into question, establishing as a working hypothe-
sis the relativity in the assessment of blind search. The re-
sults of the implementation of an incremental coevolutionary
algorithm for coevolving populations of tunings of a simple
genetic algorithm and simulated annealing, random search
and 20-bit problems are presented, showing how these re-
sults are related to two popular views of hardness for genetic
search: deception and rugged fitness landscapes.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—Complexity Mea-
sures, Performance Measures; I.2.8 [Computing Metho-
dologies]: Artificial Intelligence—Problem Solving, Control
Methods, and Search

General Terms
Algorithms, Experimentation, Measurement, Performance
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Blind search, algorithmic assessment, coevolution
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1. INTRODUCTION
Following Wolpert and Macready’s [16] notation, having

a mapping f : X → Y from a finite set X with size |X | to a
finite set of numerical values Y of size |Y|, a combinatorial
optimization problem consists of finding the member in X
corresponding to the optimal in Y. Letting

dm ≡ {(dx
m(1), dy

m(1)), . . . , (dx
m(m), dy

m(m))}
a sample of m pairs sorted as they are visited and Dm =
(X × Y)m the space of all m-size samples such that dm ∈ Dm

and the set of all possible samples with arbitrary size is
D ≡ ∪m≥0Dm.

A blind optimization algorithm a is defined as a mapping
of sets from previously visited points to a new in X without
including any extra information from the problem domain
corresponding to f , this is

a : d ∈ D → {x|x ∈ X} . (1)

Defining P (dy
m|f, m, a) as the conditional probability to

get dm, Wolpert and Macready arrived at the conclusion
that, for any pair of algorithms a1 and a2�

f

P (dy
m|f, m, a1) =

�
f

P (dy
m|f, m, a2) (2)

suggesting that for any performance measure no algorithm
is better than another when their performances are averaged
on all possible discrete functions F , under three conditions:

1. Algorithms do not visit members of X more than once:
a : d ∈ D → {x|x /∈ dx} .

2. All mappings in F have Y as codomain: F = YX .

3. The efficiency in search is not considered in the per-
formance measurement.

Wolpert and Macready named this result the No Free
Lunch (NFL) theorem, and together with the reactions it
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raised, it has been the most important theoretical contribu-
tion concerning the assessment of optimization algorithms
within the last years.

The ad hoc conditions that sustain the NFL theorem are
polemic because identifying and/or attaining them in real
world algorithmic implementations is impractical [15]. On
the other hand the complexity resulting from ignoring these
conditions and considering a more general theoretical ap-
proach to algorithmic assessment suggests the abandonment
of the hope of getting a general analytic result of the kind
of NFL theorem, as pointed humorously by Goldberg:

The larger lesson here is the existence of what
might be called the NFL Theorem for Theorems
in Complex Systems. This theorem —really a
conjecture— says that there is no free lunch with
respect to theorem proving in complex systems
science and engineering in the sense that it is not
possible to say anything definitive or profound
about a complex system without an appropri-
ately complex proof [3, pp. 75,76]

Remembering that optimization algorithms appeared as
feasible alternatives to problems that are analyticly hard to
attack, is it possible to consider as an optimization problem
the one of knowing what is hard for a blind optimization
algorithm, without assuming the conditions sustaining the
NFL theorem? The purpose of this article is to highlight the
connection between the practical accomplishment of such an
endeavor, the unfeasibility of getting meaningful absolute
algorithm-independent hardness measures, and the possibi-
lity of achieving the coevolution of blind search algorithms
and problems.

The remainder of the article is organized as follows: Sec-
tion 2 shows the reasons for establishing the relativity in the
assessment of blind search as a work hypothesis. Section 3
describes the implementation of an incremental coevolutio-
nary algorithm (ICA) for coevolving populations of tunings
of a simple genetic algorithm and simulated annealing, ran-
dom search and 20-bit problems. Section 4 points the diffe-
rence between our approach and previous related work. Sec-
tion 5 shows how the results of the implementation are re-
lated to two popular views of hardness for genetic search: de-
ception and rugged fitness landscapes. Section 6 concludes
this article.

2. RELATIVITY IN THE ASSESSMENT OF
BLIND OPTIMIZATION

For a finite set of numerical values Z, suppose there is a
mapping w : F → Z that assigns a difficulty evaluation to
any problem f , therefore seen as an optimization problem it
would allow finding easy or hard problems in F . Is it possi-
ble to get a measure w independent of the algorithms used
to optimize F? Is it possible to find an absolute measure
for the hardness of a problem? It is very improbable such a
measure exists, because finding it would be a simple way of
talking about F ’s complexity [3].

To modify the previous statement, w could be seen as
the performance measure Φ for an algorithm a, so by op-
timizing F it could be possible to answer the question of
knowing what is easy or hard for a. This view faces the dif-
ficulty that comparing the numerical performance measure
of a blind search algorithm on two problems by itself does

not say which one is harder. This suggests it is also impro-
bable to find an absolute measure for what is easy or hard
for a blind optimization algorithm alone.

Proof. Focusing in the maximization case suppose dm

is a sample of algorithm a from problem f1 whose global
maximum is M1 and em a sample of algorithm a from pro-
blem f2 whose global maximum is M2, then it is possible
for M1 − Φ(dy

m) < M2 − Φ(ey
m) to hold and at the same

time Φ(ey
m) > Φ(fy

m) if M2 > M1, what holds in the case
F includes functions whose codomains are taken from Y’s
power set, a case more general than the one stated in the
definition of NFL theorem, because for an authentic blind
search M1 nor M2 values are known.

These difficulties lead us to adopt the next working hy-
pothesis:

Hypothesis 1. Considered as an optimization problem,
it is only possible to know what is easy or hard for a blind
optimization algorithm in relation to the performance of an-
other algorithm. There is not an absolute way to assess
a blind search.

To understand this hypothesis take 1dm as a sample of al-
gorithm a1 and 2dm as a sample of algorithm a2 both from
problem f1,

1em as a sample of algorithm a1 and 2em as a
sample of algorithm a2 both from problem f2, in the maxi-
mization case if Φ(1dy

m)−Φ(2dy
m) > Φ(1ey

m)−Φ(2ey
m) holds

it means problem f1 was easier for a1 than f2 in relation to
a2, independently of the specific values of global maxima for
both problems.

This optimization view for the assessment of algorithms
does not present the restriction a : d ∈ D → {x|x /∈ dx} sus-
taining NFL theorem, so it is possible to use a performance
measure that takes into account the efficiency of a search
process.

Best-found-so-far curve when algorithm a is faced to pro-
blem f is defined as

Ωf
a(i) =

�n
j=1 maxk≤i

jdy
m(k)

n
(3)

where i = 1, . . . , m and jdy
m is the j-th from n m-size

samples. In few words this is a curve resulting from av-
eraging the best-found-so-far value at position i, where i =
1, 2, . . . , m, from n samples.

Ω
a
 f(i)

i

a
1

a
2

Ω
a
 f(i)

i

Figure 1: Examples of best-found-so-far curves for
two algorithms a1 and a2 for n large.

The area below a best-found-so-far curve is a measure
that, besides including the best value found in a sample,
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comprises the temporal evolution of the search, its efficiency,
and since it is built using many samples it reduces fortuitous
effects during the measurement of the performance of an al-
gorithm. The performance measure to maximize for algo-
rithm a1 in relation to algorithm a2 in the implementation
to show in the next sections of this article is:

m�
i=1

�
Ωf

a1(i)− Ωf
a2(i)

�
, f ∈ F , (4)

which is the difference between the areas below their best-
found-so-far curves.

A problem whose measure (4) is greater than zero tends
to benefit algorithm a1 over a2, so for easy reference it will
be called tendentious problem.

3. INCREMENTAL COEVOLUTION
Suppose an algorithm that brings as output a tendentious

problem is implemented. Someone could argue he cannot
object the search process but that the performance mea-
sure was skewed, because of the way algorithms were tuned.
Since in practice most algorithms count with a set of para-
meters that determine their behavior, we face the additional
optimization problem of finding those tunings bringing the
best ones. Is there any algorithm capable of including the
optimization of parameters together with the performance
measure (4)?

One of the main motivations for the work presented in this
article was answering this question affirmatively through
evolutionary computation, specificly implementing an in-
cremental coevolutionary algorithm (ICA)[11]. A coevolu-
tionary algorithm seems a natural answer for the multiple
optimization problem stated above because it implies the
competition between populations of problems and tunings,
in which as time passes members from those populations
become better contenders. Specificly there are three popu-
lations involved: 1) a population of a1’s tunings, 2) a popu-
lation of a2’s tunings, and 3) a population of problems. In
the case we search for problems making a1 look better, the
relation between populations 1) and 2) and that between 2)
and 3) will be competitive, whereas it will be cooperative
between 1) and 3).

ICA’s distinctive features are:

• It is non-generational, with populations acting as a
memory that helps them to avoid oscillating around
previously visited zones.

• Individuals in each population compete against a ran-
dom sample of individuals from the oponent popula-
tions.

• The fitness of every individual at time t is an explicit
measure whose adjustement is inspired in the one of
Learning Classifier Systems [4, 12]. Taking S as the
fitness of an invividual, its adjustement for time t + 1
is made through the equation

S(t + 1) = S(t) + Reward− Taxation.

The evaluation of the reward reflects the comparison
against the competitors and, together with the taxa-
tion, is calculated in such a way it is bounded, mak-
ing the fittest individuals tend to a stable state, there

(*Initialize populations*)
Generate random A —population of a1’s tunings—
Generate random B —population of a2’s tunings—
Generate random P —population of problems—

(*Initialize fitness*)
for-each A ∈ A

SA ← (1/10)(RA/TA)
for-each B ∈ B

SB ← (1/10)(RB/TB)
for-each P ∈ P

SP ← (1/10)(RP/TP)

(*Main cycle*)
repeat

(*Competition cycle*)
for c← 1 to #c

A← tuning selected randomly from A

B ← tuning selected randomly from B

P ← tuning selected randomly from P

Calculate ΩP
a1 with n m-size samples

of a1 tuned by A running on P
Calculate ΩP

a2 with n m-size samples
of a2 tuned by B running on P

EA ← (1/m)
�m

i=1 ΩP
a1(i)

EB ← (1/m)
�m

i=1 ΩP
a2(i)

SA ← RA tanh(2EA) tanh(10 TBSB/RB)+(1−TA)SA

SB ← RB tanh(2EB) tanh(10 TASA/RA)+(1−TB)SB

SP ← RP(1/2)(1+tanh(20 (EA−EB)))+(1−TP)SP

end-for c

(*One step of a GA in A*)
Select parents (A1 and A2) proportionally to SA

Create A0 applying crossover with probability cpA

SA0 ← (SA1 + SA2)/2
Replace tuning with worst fitness by A0

Apply mutation to A with small probability mpA

(*One step of a GA in B*)
Select parents (B1 and B2) proportionally to SB

Create B0 applying crossover with probability cpB

SB0 ← (SB1 + SB2)/2
Replace tuning with worst fitness by B0

Apply mutation to B with small probability mpB

(*One step of a GA in P*)
Select parents (P1 and P2) proportionally to SP

Create P0 applying crossover with probability cpP

SP0 ← (SP1 + SP2)/2
Replace problem with worst fitness by P0

Apply mutation to P with small probability mpP

until termination criteria met

Table 1: Incremental coevolutionary algorithm.
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comes some t when for their fitnesses S(t + 1) ≈ S(t)
holds.

Table 1 shows the steps for the implementation of an ICA
with a population A of a1’s tunings, B of a2’s tunings and
P of problems —suppose we search for a tendentious pro-
blem that benefits a1 over a2. RA, RB and RP represent the
maximum rewards given to individuals in each population
according to their performance when competing, and TA, TB

and TP their maximum taxations. EX is the area below
the best-found-so-far curve for algorithm whose tuning is X
divided by m —the size of samples— and SX is the fitness
of tuning X involved in competition, where X = {A, B}.

The phenotype of every problem is the result of multiply-
ing two functions g and h, such that f = g(X1) × h(X2),
where g and h are both codified as follows by a couple of
vectors r and θ that constitute its genotype:

γ = − tan−1

�
� N�

i=1

ri cos

�
i�

j=1

j�
l=1

θl

�	
N�

i=1

ri sin

�
i�

j=1

j�
l=1

θl

�
� ,

(5)

gk = ρ

k�
i=1

ri sin

�
γ +

i�
j=1

j�
l=1

θl

�
, xk = k, (6)

where 0 < ri ≤ 1 and −α ≤ θi ≤ α (α > 0) are real numbers
vectors of N size and ρ = 1/(max g−min g). Figure 2 shows
an example of the way these equations act upon r and θ.

For the implementation made N = |X1| = |X2| = 103,
which means f is a surface with 106 points approximately
equivalent to a 20-bit search space, where the first ten point
toward a position on X1 axis and the next ten point a posi-
tion on X2.

Algorithms whose tunings form populations A and B are
a simple generational genetic algorithm (GA) with tourna-
ment selection and simulated annealing (SA). Tunings for-
ming populations A and B are 32-bit binary vectors codi-
fying the possible values for their parameters, as shown by
Table 2 and 3.

Crossover operator [2, 5] is used in three ways in the im-
plementation:

• In the ICA to create a new P .

• In the ICA to create new A and B.

• In the GA involved in the coevolution.

Parameter Bits Range
Population size [ 1 , 8 ] [ 50 , 250 ]
Tournament size [ 9 , 16 ] [ 2 , 10 ]
Crossover probability [ 17 , 24 ] [ 0.75 , 1 ]
Mutation probability [ 25 , 32 ] [ 0 , 0.1 ]

Table 2: Coding of GA’s tuning.

Calling allele every member in the alphabet of a genotype,
and chromosome a vector of alleles in which single point
crossover is applied, every individual in P is made of four
chromosomes with real alleles, two for the r and θ parts of
g and two for the r and θ parts of h. Every individual in
A and B is made by a binary 32-bit chromosome, whereas

Parameter Bits Range
Markov chain length [ 1 , 10 ] [ 5 , 25 ]
Initial temperature [ 11 , 20 ] [ 103 , 106 ]
Temperature decre-
ment constant

[ 21 , 32 ] [ 0.75 , 0.99 ]

Table 3: Coding of SA’s tuning.

every individual in the GA is made by two binary 10-bit
chromosomes, one for X1 and another for X2.

In the case of SA every new neighbor is generated by
changing a bit in X1 and another in X2 chosen randomly.
ICA was run also with a random search (RS) taking the
place of a1, consisting in sampling uniformly pairs of posi-
tions on X1 and X2. Because in this case its population of
tunings is virtual, the fitness’ updating of tunings in B is
accomplished by

SB ← RB tanh(2EB) + (1− TB)SB .

4. RELATION TO PREVIOUS WORK
Genetic algorithms have been previously proposed as test

case generators for benchmarking purposes. These proposals
differ from ours in three main points:

• The test cases evolved are instances of problems for
which information about bounds on the best possible
performance is included in the genetic algorithm, al-
lowing to measure the fitness of instances according to
the performance of a single algorithm [8, 6, 13].

• When fitness is measured as the difference of perfor-
mance between two algorithms, distance to global op-
tima is used as stop criteria for search [10, 9].

• The need of evolving the tunings of algorithms, as a
way of avoiding a possible bias in the search of test
cases and as a first approach to the evolution of algo-
rithms, is absent in all previous work. Ignoring this
need is a way to leave an open opportunity for some-
one to argue that the results you get depend mainly
on the way you tune algorithms.

5. RESULTS
Table 4 shows the parameters used in the implementation

in all cases.
The length of samples was determined in such a way that

divided by the size of every problem brings a fraction —
2×10−3— that is difficult to reach in practice, where search
spaces tend to be astronomical in size, with affordable execu-
tion time. The algorithm was written in C++ and executed
in a personal computer with Pentium(R)4 CPU, 2.4GHz,
448 MB RAM. Average execution time was approximately
two hours.

Figures 3 to 6 show the best found so far curves obtained
using the fittest tunings and the graph for the best tenden-
tious problem where GA beats SA, SA beats GA, RS beats
GA, and RS beats SA . Measure (EA−EB)/Optimum is the
fraction of the area below the optimum occupied by the dif-
ference between the area below a1’s curve minus a2’s. Five
thousand samples were employed to plot the curves.

Problems where SA won are differ from those where it lost
mainly by allowing it to travel longer distances before finding
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Figure 2: Example of the decoding of functions from θ and r, for N=6: (a) the length of segment i is ri and�i
j=1 θj is the angle between i− 1 and i , (b) rotation, (c) scaling and reordering of domain, getting a 1 to 1

function.

Parameter Description Value
m Length of samples 2000
n Amount of samples to calculate EA y EB 10
#c Number of competitions per iterarion 50
|P| Size of the population of problems 100

|A| = |B| Size of population of tunings 25
cpP Crossover probability for population of problems 1

cpA = cpP Crossover probability for populations of tunings 1
mpP Mutation probability for population of problems 0.05

mpA = mpP Mutation probability for population of tunings 0.05
TP Maximum taxation for problems 0.01

TA = TB Maximum taxation for tunings 0.01
RP Maximum reward for problems 0.1

RA = RB Maximum reward for tunings 1

Table 4: ICA’s parameters used in all cases.

local optima. Problems where SA lost are characterized by
having their local optima more distributed, with increasing
values as you approach to the global optimum in Hamming
space. In these kind of problems both GA and RS have
the advantage of sampling them without stopping, whereas
SA has to decide more often if continuing after finding local
optima.

It was found that all the tendentios problems where GA
was involved are deceptive in the highest possible order: 20
[14]. Variables that deception theory considers relevant to
measure the hardness for a genetic search, including the
amount and order of deceptions, variances and scaling in
the evaluation of highest order schemata [3], do not seem to
give determinant information to justify the cases where the
GA was beaten.

The only variable that was confirmed to be relevant was
high multimodality, as the flatness in problems depicted in
Figure 4 and 5 testifies. This property showed up in all
the problems where the GA was beaten, and calls into ques-
tion the usefulness of associating ruggedness to GA-hardness
when assuming our working hypothesis.

Rugged fitness landscapes [7] —see Figure 7— have been
previously called into question within biology as an adequate

model for speciation, based on the assertion that the birth
of a new species should not necessarily imply a temporal
reduction in fitness. How can a population evolve from a
converged local peak to another through an adaptive valley
without deleterious effects?

As an alternative holey landscapes [1] have been proposed,
consisting in flat multidimensional functions with unitary
fitness and multiple holes with null fitness. What this ap-
parently trivial model aims to represent is that it is not
proper to assume different species having different aptitudes
but simply that there are good combinations of genes cor-
responding to apt individuals —fitness 1— and bad ones
corresponding to non apt individuals —fitness 0, letting ge-
netic drift to perform the exploration.

An important prediction made by holey landscapes is that
viable genotypes tend to group, to be connected by chains
of small genetic steps. These groupings are called connected
components.

As can be seen in Figure 4 and 5 problems where GA was
beaten resemble holey landscapes. For the problem where
SA won the 351 global optima form a connected component.
What this comparison suggests is that a way to beat a GA
is to ensure genetic drift takes over the search process.
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Figure 3: Best-found-so-far curves obtained using fittest tunings and the graph for the best tendentious
problem where GA beats simulated annealing.

6. CONCLUSIONS
The results presented in the last section are an evidence of

the connection existent between the accomplishment of the
coevolution of optimization algorithms and problems, and
assuming the relativity in the assessment of blind search.

The discrepancies found between the analysis of the ten-
dentious problems where the GA was involved and popular
paradigms about GA hardness highlights the difference im-
plied by this assumption. The fact that the order of decep-
tion and ruggedness did not show to be determinant features
in problems where a local search algorithm (SA) performed
better than GA, calls into question their significance as de-
terminant measures of algorithmic competence. Should the
concept of “GA-competence” be re-formulated in the light
of the working hypothesis introduced by this paper? This
remains as an open question.

The sacrifice implied by turning the problem of knowing
what is easy or difficult for an algorithm into an optimization
problem is that it cannot have the status that a mathe-
matical proof could have, but it is very probable such a
demostration will never be found. The approach of this
conversion is impartial since problems are generated by an
evolutionary process and carries an implicit weighing of the
efficiency of an algorithm.

Main objections to this approach may be focused on its
implementation, but the fact that it was possible to find
tendentious problems using the one depicted shows its suf-
ficiency.

On the contrary to NFL theorem in the depicted work
assertions about an infinitude of problems are not made,
but an impartial method to find tendentious problems is
introduced.
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