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ABSTRACT
This work shows asymptotic convergence to global optima
for a family of dynamically scaled genetic programming sys-
tems where the underlying population consists of a fixed
number of creatures (individuals) each of arbitrary size. The
genetic programming systems use common mutation and
crossover operators as well as fitness-proportional selection.
In addition, the mutation and crossover rates are annealed to
zero in predefined fashion over the course of the algorithm,
and power-law scaling is used for the (possibly population-
dependent) initial fitness function with (unbounded) loga-
rithmic growth in the exponent.

We assume that a set of globally optimal creatures for
the optimization problem instance exists. In addition, it is
assumed that the ratio of the best fitness of globally opti-
mal creatures vs. the fitness of other creatures is greater or
equal a constant ρ>1 in any population they jointly reside
in. We discuss how both conditions can usually be satis-
fied in application settings. Under the above conditions,
a selected, traceable sequence of probability distributions
over the possible states of the properly scaled genetic pro-
gramming system converge in time towards the convex set
of probability distributions over uniform populations that
contain only globally optimal creatures.

Categories and Subject Descriptors
I.2.2 [Automatic Programming]: program synthesis.

General Terms
Algorithms

Keywords
Genetic programming, convergence to global optima.

1. INTRODUCTION

1.1. Principles of genetic programming. The term
“evolutionary algorithm” denotes a class of randomized op-
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timization heuristics based on principles held to be valid
for natural evolution. Evolutionary algorithms employ a
sequence of populations p(t), t∈N, where each p(t) is a fam-
ily of candidate solutions for the optimization problem in-
stance, apply genetic operators like mutation and recombi-
nation (crossover) to generate new candidate solutions in the
population p(t), and tend to select the fittest candidate solu-
tions in the current population to form the next population
p(t+1) with the expectation that some p(t) will eventually
contain an optimum. Candidate solutions are usually called
creatures or individuals. Consult [3] for a detailed overview
over such methods.

There are four main paradigms of evolutionary algorithms:
evolution strategies [22], evolutionary programming [6], ge-

netic algorithms [7] and genetic programming [9]. Since
genetic programming was developed later than the other
paradigms, it has borrowed many ideas from these earlier
approaches. In particular, the similarity between a genetic
algorithm and a genetic programming system is shown in [9,
p. 29: Fig. 3.1] vs. [9, p. 76: Fig. 5.1], or [20, p. 183: Tbl.
1] vs. [11, p. 10: Fig. 1.6]. The following listing of pseudo-
code shows that a dynamically scaled genetic programming
system with fixed population size s∈N as considered in this
work resembles a dynamically scaled genetic algorithm set-
ting with creatures of arbitrary size:

GeneticProgrammingSystem() := (

integer s, t=1; (* fixed population size, time *)

integer Θ(); (* time increment function *)

real µ(), χ(); (* mutation, crossover rate functions *)

p = initializeRandomPopulationOfSize(s);

while ( stoppingCriterion != satisfied ) {

for (θ=1, θ ≤ Θ(t), θ++) {

p = mutation(µ(t),p); (* cf. section 3.2 *)

p = crossover(χ(t),p); (* cf. section 3.3 *)

p = selection(t,p); (* cf. section 3.5 *)

};

t = t+Θ(t);

};

);

The main differences between the above paradigms of evo-
lutionary algorithms lie in the representation of the search
space C (i.e., the set of creatures) and the operators used
when optimizing an objective or fitness function1 f : C→R.
Evolution strategies or genetic algorithms in their basic in-
carnations are applied when one is looking for a vector of

1We avoid a discussion of phenotype vs. genotype at this
point.
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finite length ` in C = R
`, C = [0, 1]` or C = {0, 1, . . . , k}`,

k, `∈N, which optimizes the objective function. The search
spaces for evolutionary programming and genetic program-
ming systems are more complex since they try to find an
optimal automaton/program in regard to the fitness func-
tion, and one often cannot limit the size of such an optimum
before running the optimization procedure. In the case of
a genetic programming system, C must therefore equal the
entire set of programs generated from a given set Af of
function symbols and a given set At of terminal symbols.
Thus, elements of C may have arbitrary depth or size. One
therefore has to deal with an infinite dimensional underly-
ing vector space, if the genetic programming system is to
be modeled as (inhomogeneous) Markov chain in contrast
to modeling genetic algorithms as, e.g., in [20].

There are many different representations of the set of pro-
grams C in genetic programming systems which are accom-
panied by many different types of mutation and crossover
operators. The most widely used representation is that of
the S-expression [9, p. 69], but other forms, e.g., linear ge-
netic programming [4] are also used. S-expressions are de-
fined as follows: an S-expression is a tree, where each inner
node is labeled by an element of Af and has as many chil-
dren as the arity of its labeling function, and each leaf is
labeled by an element of At.

Random initialization of an S-expression starts at the root
and chooses randomly a label from A = Af ∪ At. If the label
is in At, then the process terminates. Otherwise the node
gets as many children as the arity of the function symbol
chosen, and the process is recursively applied for each of
the children with a certain limit of depth for the overall
generated tree (cf. [9, p. 106]). The limit of depth may be
randomly determined: compare the end of section 2.3 and
definition of mutation on a creature in section 3.1.

In its basic form, crossover for S-expressions first chooses
in each of the two parents one node randomly. Then, the
subtrees beginning at the chosen nodes are swapped. In its
basic form, mutation for S-expressions chooses first one node
of the parent (argument) at random. Then, the subtree be-
ginning at the selected node is replaced by a random subtree,
generated by the process used for initialization. Hence, mu-
tation, in contrast to crossover, can generate any individual
regardless of the parent.

Note that by the algorithm-design presented in this paper,
replacing a creature by a random creature under mutation
has a parent-independent, non-zero probability depending
solely upon the mutation rate (cf. sections 3.1 and 3.2).
Thus, mutation has a tendency to “pull back” the size of
creatures towards an expected finite value2 countering the
phenomenon of bloat, i.e., the uncontrolled growth of the
creatures without any improvement of the function value
(see, e.g., [11]). In regard to the mathematical model devel-
oped in this work, this assures weak ergodicity and possibly
strong ergodicity of the Markov chain describing the prob-
abilistic behavior of the genetic programming system under
consideration (cf. Lemmata 2.2.1 and 2.2.3, and section 4.1).
Observe that Lemma 2.2.1 shows strong ergodicity for a ge-
netic programming system with mutation as considered in
this work where the operators are not scaled. Thus, the
mutation operator introduced here prevents bloat in a wide
variety of genetic programming system settings.

2See [15] for some explicit computations in that regard.

Mutation was not considered to be a main operator in
some early genetic programming systems. It was thought
that “the occasional3 usefulness of mutation in the conven-
tional genetic algorithm . . . is largely inapplicable to ge-
netic programming.” cf. [9, p. 106, pp. 73–77, pp. 599–
600]. However, the question ‘whether crossover or mutation

is the main impelling operator in genetic programming’ was
disputed until the end of the last century (see, e.g., [2] or
[13]). In the last few years, the number of papers addressing
this question seemed to have decreased, possibly as a conse-
quence of the No Free Lunch Theorem [23] which states that
no search algorithm can be superior when averaged over all
functions. Observe however that, as already pointed out in
[9, p. 600], mutation in contrast to the crossover and se-
lection operators has the ability to (re-)introduce elements
of A that are not present in the current population. The
discussion in [9, p. 105: top of sec. 6.5.1] ascertains to the
usefulness of such algorithm capability in the course of ex-
ploring a highly non-linear search space. Due to the last
point made, the No Free Lunch Theorem, and the fact that
mutation counters bloat, we believe that a genetic program-
ming system actually should apply mutation to creatures
in the population with non-zero probability in every while-
loop in the program listing given above.

Besides using mutation, the genetic programming systems
analyzed in this work use standard genetic programming op-
erators. In fact, any regular crossover method such as the
method described above is allowed (cf. section 3.3). Fur-
thermore, the genetic programming systems analyzed in this
work use proportional fitness selection as used, e.g., almost
exclusively in [9] (cf. p. 604).

Since the size of creatures in a genetic programming sys-
tem is not limited in general, special measures are usually
taken to limit the growth of size of the creatures in the popu-
lation. The most widely used measure is to take into account
the size of a creature while computing its fitness value, i.e., a
smaller creature gets a higher fitness value than a larger one,
if both show the same behavior or represent a solution to
the optimization task within a predefined margin of error or
similarity (see, e.g., [9, p. 612: sec. 25.12] or [12]). This so-
called parsimony pressure is also beneficial, as it can further
prevent the phenomenon of bloat already mentioned above.
Furthermore, parsimony pressure can increase the general-
ization capabilities of the programs found according to the
principle of Occam’s Razor (cf. [5]). We observe that if the
standard method of ‘computing the fitness value of a candi-

date solution on a finite set of training inputs’ is employed,
e.g., by using the combined distance of the actual output to
the desired output, and parsimony pressure is applied prop-
erly, then the number of optimal programs can always be
made even finite. As a consequence of the above, we shall
work under the assumption that a set Cmax of globally op-
timal creatures exists for the genetic programming systems
analyzed below.

While the above discussion gives only a rough insight into
principles of genetic programming systems, the following im-
portant points for our analysis become apparent:

1.1.1. The search space is infinite due to the a priori unde-
termined size of an optimal program. The associated math-
ematical formalization requires dealing with an infinite di-

3In [18, Sec. 7.5], the necessity of mutation in a genetic
algorithm is discussed in order to prevent genetic drift.
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mensional Banach space (`1(℘), cf. section 2.2) and bounded
linear operators acting on it.

1.1.2. Mutation can generate any search point with a cer-
tain probability regardless of the parent. This insures weak
ergodicity and eliminates bloat which can be proven within
the Banach space framework considered here.

1.1.3. A set Cmax of global optima exists due to reasonable
assumptions in regard to the genetic programming system
under consideration such as the application of parsimony
pressure. Cmax can even be assumed to be finite.

Most theoretical results on genetic programming systems
so far concentrate on schema theory. Consult [11] for a very
good overview in that regard. These schema theories allow
to understand mainly the one-step behavior of genetic pro-
gramming systems4 and, thus, are possibly helpful to prove
convergence (cf. [14]), but thus far this seems not been ac-
complished.

1.2. Outline of new results and proofs. This paper,
while following a similar path of exploration as, e.g., [20],
contains a number of results that are new even in the ge-
netic algorithm context. For example, Proposition 3.5.2 al-
lows the adaptation of results on convergence of dynamically
scaled genetic algorithms to global optima in [19], [20] and
[21] for an extended family of crossover operators. In addi-
tion, results on genetic algorithms obtained in [19], [20] and
[21] for various distinct settings5 are (or can be) generalized
to genetic programming systems based upon the results pre-
sented below.

Sections 2.1–2.2 mostly introduce notation in regard to in-
homogeneous Markov chains on a discrete (infinite) space ℘
extending [18, Sec. 2] and [20, Sec. 1]. The main results are
Lemmata 2.2.1 and 2.2.3 which establish weak ergodicity for
the inhomogeneous Markov chain describing the probabilis-
tic behavior for the family of the dynamically scaled genetic
programming systems studied in this work.

Sections 2.3–2.4 mainly describe the special notation nee-
ded in regard to creatures and populations used in genetic
programming systems. Interesting are the tensor-representa-
tions of the underlying vector space `1(℘) given in lines (7)
and (8). These are used in the analysis of the mutation and
crossover operators respectively. In turn, this is used in part
of the proof of the steady-state flow inequality, i.e., line (19).
Lemma 2.4.1 is quite obvious but very useful in regard to
proving convergence toward uniform populations.

Sections 3.1–3.2 define and investigate mutation. First
mutation is described as an action on a creature, and then
as action on a population. Many variants of the mutation
operator are allowed in our approach. The main result is
Proposition 3.2.1 which establishes that mutation satisfies
the prerequisites of Lemmata 2.2.1 and 2.2.3, the descrip-
tion of the mutation operator as a tensor product of more
elementary operators (used in the proof of line (19)), and an
estimate for the probability for retaining a population under
mutation (used in the proof of line (18)).

Section 3.3 defines and investigates crossover. Many vari-

4R. Poli: Oral Statement. In W. B. Langdon, R. Poli:
Advanced Tutorial on Genetic Programming Theory I& II.
GECCO 2003, Holiday Inn Mart Plaza, Chicago, Ill, USA.
5Vose-Liepins genetic algorithm [19], convergence to global
optima for non-binary genetic algorithms with dynamically
scaled local mutation [20], and coevolution [21].

ants of the crossover operator are allowed in our approach.
The main observation is Proposition 3.3.1 which establishes
the description of the crossover operator as a tensor prod-
uct of more elementary operators, and an estimate for the
probability for retaining a population under crossover.

Section 3.4 establishes the mixing flow inequality (Propo-
sition 3.4.1.2) for the combined mutation-crossover opera-
tor based upon the above two estimates to retain a popula-
tion. If the mutation rate µ(t) and the crossover rate χ(t)
both converge to 0 as t→∞, then the mixing flow inequal-
ity proves convergence towards uniform populations for the
genetic programming systems studied in this work.

First, section 3.5 lists some known results on fitness-pro-
portional selection in order to fix notation. The scaling of
the initial fitness function6 and, consequently, of the selec-
tion operator is achieved by exponentiation with a function
g(t) = B · log(t), cf. line (14), where B>0 must satisfy a
certain condition, cf. top of section 4.3. In fact, B has to
be chosen large enough such that the conservative tendency
of selection asymptotically outweighs the destructive noise
of mixing. In addition, Proposition 3.5.2 lists a strong re-
sult that provides an estimate for “non-uniformity” in the
steady state probability distributions vt = Gtvt of the infi-
nite stochastic matrices Gt describing the individual steps of
a dynamically scaled genetic programming system (cf. line
(17)).

In section 4.1, a family of scalings for mutation is de-
scribed such that the inhomogeneous Markov chain descri-
bing the probabilistic behavior of the algorithm becomes
weakly ergodic. The crossover rate is set to χ(t) = µ(t)1/m,
where m∈N is fixed such that s/(2m)>1. Here, s denotes
the population size. Thus for large population size, crossover
can be annealed to 0 much slower than mutation and asymp-
totically can become the dominant mixing operator.

In sections 4.2–4.3, two results are obtained for the invari-
ant probability distributions vt of the Gt which are crucial
for convergence: line (18) shows convergence of the vt to-
wards the set of probability distributions over uniform popu-
lations; the steady-state flow inequality, i.e., line (19) shows
convergence of the vt towards the set of probability distri-
butions over populations with creatures taken from the set
Cmax of global optima.

Using the above, we scale the mutation/crossover rates
and selection pressure to be piecewise constant in order to
to employ the contraction of iterates of (fixed) Gt, t∈N,
towards vt. This assures that for selected, predetermined
and computable times t, the probabilistic behavior of the
genetic programming systems considered in this work fol-
lows the trajectory of the vt which asymptotically converge
to probability distributions over uniform populations with
optimal creatures. Thus, we obtain: a dynamically scaled
genetic programming system as described in this work is
a non-elitist, non-memory, randomized algorithm that can
easily be implemented and is able, i.e., inherently directed
to find global optima asymptotically with probability one.

2. NOTATION AND PRELIMINARIES

2.1. The underlying vector space. For a given (pos-
sibly infinite) set ℘ let the Banach space `1(℘) be given by

6The initial fitness function for a genetic programming sys-
tems as studied here is allowed to be rank based upon an-
other given fitness function acting on the system.
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`1(℘) = {(vp)p∈℘ : ||v||1 =
P

p∈℘ |vp| < ∞}. (1)

We shall understand elements of `1(℘) as column-vectors.
For p ∈ ℘, let the base vector bp be given by bp = (δp,q)q∈℘ ∈
`1(℘) where δ is the Kronecker delta. It is a notational
convenience to identify p ∈ ℘ with bp. Since `1(℘) ⊂ `2(℘),
the canonical inner product of v = (vp)p∈℘, w = (wp)p∈℘ ∈
`1(℘) is well-defined and given by

<w, v> =
P

p∈℘ w̄pvp. (2)

Let S℘ ⊂ `1(℘) be the set of probability distributions over
the discrete set ℘.

2.2. Infinite matrices. Let B(`1(℘)) denote the com-
plex Banach algebra of bounded linear operators on `1(℘).
The identity map `1(℘) → `1(℘) will be denoted by 1. Ev-
ery X ∈ B(`1(℘)) can be identified with an infinite two-
dimensional array or infinite matrix (Xq,p)q,p∈℘ given by

Xq,p = <bq, Xbp> = <q, Xp> , q, p ∈ ℘. (3)

The infinite matrix (Xq,p)q,p∈℘ ∈ B(`1(℘)) operates by ca-
nonical matrix multiplication from the left on column vec-
tors in `1(℘). X ∈ B(`1(℘)) is called positive, if Xq,p ≥ 0
for all q, p ∈ ℘. This shall be denoted as X ∈ B(`1(℘))+.
X ∈ B(`1(℘))+ is called column-stochastic or for short sto-

chastic, if Xp ∈ S℘ for every p ∈ ℘.
The operator norm of X ∈ B(`1(℘)) is given by

||X||1 = sup{||Xp||1 : p ∈ ℘} < ∞. (4)

See [19, proof of eq. 7]. Thus, a stochastic matrix X ∈
B(`1(℘)) satisfies ||X||1 = 1.

If v ∈ S℘, then let P (v)∈B(`1(℘)) be defined by P (v)p = v
for every p ∈ ℘. P (v) is the stochastic projection onto the
one-dimensional space generated by v. We have:

P (v)(w − w̃) = v − v = 0, w, w̃ ∈ S℘. (5)

In contrast to some conventions, we shall use the Π-symbol
to denote products of possibly non-commuting operators as
follows: for s, t ∈ Z, s 6= t let

Qs
τ=t Xτ = Xt · Xt+sign(s−t) · · ·Xs, Xτ ∈ B(`1(℘)). (6)

2.2.1. Lemma. Let wo, w, w̃ ∈ S℘, and let M, X, Y ∈
B(`1(℘)) be stochastic. In addition, let ε > 0 be such that
M = εP (wo) + N where N ∈ B(`1(℘)) is positive. Then:

1. ||XMY (w − w̃)||1 ≤ (1 − ε) ||w − w̃||1.

2. XMY has a uniquely determined invariant eigenvector
v = XMY v ∈ S℘.

3. limt→∞(XMY )t = P (v).

Proof: Using line (4), we see that ||N ||1 = 1 − ε. Using
line (5), we have:

||XMY (w − w̃)||1 ≤ ||M(Y w − Y w̃)||1

= ||N(Y w − Y w̃)||1 ≤ (1 − ε)||w − w̃||1.

This shows statement (1). Now, Banach’s fixed point theo-
rem [10, p. 338] yields statements (2) and (3). q.e.d.

2.2.2. Remark. One can obtain by induction that the
powers of M converge to ε(1 − N)−1P (wo) which must be
a projection. Lemma 2.2.1.3 then shows that the invariant
eigenvector of M in S℘ is given by ε(1 − N)−1wo.

Using [16, Thms. 10.20, 10.31.b, 10.28.b] and investigating
powers of XMY , one sees that 1 is an isolated point in the
spectrum of XMY and the only element of modulus 1. c

Note that Lemma 2.2.1.3 shows strong ergodicity of a ge-
netic programming system with a mutation operator as con-
sidered in this work, if the genetic operators are not dynam-
ically scaled.

Lemma 2.2.1.2 will be used to show that the stochastic
operator Gt associated with an individual step of a dynami-
cally scaled genetic programming system as considered here
(cf. line (17)) has a positive, invariant eigenvector vt. Using
the contraction property established in Lemma 2.2.1.1, we
then keep the individual steps of the genetic programming
system constant for certain intervals of time such that the
overall trajectory of the scaled genetic programming system
follows the trajectory of the vt.

The next Lemma follows directly from Lemma 2.2.1.1.

2.2.3. Lemma. Let w, w̃, wt ∈ S℘, t∈N. Let Mt, Xt, Yt

∈ B(`1(℘)) be stochastic. In addition, let εt ∈ R
+ be such

that
P

t∈N
εt = ∞ and Mt = εtP (wt) + Nt where Nt is an

element of B(`1(℘))+. Then we have:

limt→∞(
Q1

τ=t(Xτ · Mτ · Yτ ))(w − w̃) = 0. c

Proposition 3.2.1.1 together with the settings of section
4.1 shows that mutation contributes matrices satisfying the
conditions in Lemma 2.2.3 to the inhomogeneous Markov
chain which represents the algorithm. Thus, Lemma 2.2.3
allows for a simple treatment of weak ergodicity in this work.
Compare [8, pp. 142–151, p. 151: Thm. V.3.2].

2.3. The alphabet and creatures. The alphabet A
used in the model for the optimization algorithm described
in this work shall consist of two subsets: a finite set At of
terminal symbols, and a finite set Af of function symbols
[9, p. 80]. Thus, A = At ∪ Af .

We assume that the closure property [9, Sec. 6.1.1] holds,
i.e., that all output of all elements in A is admissible as input
to all functions in Af . The output of a terminal symbol is
by definition its value upon input.

Following [9, p. 81] and our outline in the introduction, we
define a creature (candidate solution, candidate program,
individual) as an S-expression, i.e., a rooted, labeled tree
with elements of Af labeling the non-leaves and elements of
At labeling the leaves.

Let C` be the set of all creatures of depth `∈N. Since every
function-symbol admits a specific number of arguments, and
since Af is finite, C` is finite. Let C = ∪∞

`=1C` be the set of
all creatures.

We assume that the reader is familiar with one procedure
generating a (pseudo-)random tree of exact depth ` speci-
fying a creature in C` as above. This procedure is hereafter
denoted as randomCreature(`). See the introduction (sec-
tion 1.1) for a short description of one possible initialization
procedure for a random creature.

2.4. Populations. The set ℘ of populations, to which the
genetic programming system is applied, is the set of s-tuples
of creatures, s∈N. That is ℘ = Cs. We shall assume that
s is even, and s ≥ 4. If p = (c1, c2, . . . , cs) is a population,
cσ ∈ C, 1 ≤ σ ≤ s, then we define set(p) = {cσ : 1 ≤ σ ≤ s}.
If c ∈ C, then we shall write c ∈ p, if c ∈ set(p). A spot in
a population p is, by definition, the position of one of the
creatures in p.

The vector space `1(℘) is the vector space underlying our
model for the genetic programming system considered in
this paper. We observe that `1(℘) can be identified (as a
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Banach space, cf. [17, p. 92: Ch. III.6]) with the s-fold closed
projective tensor product of `1(C) as follows:

`1(℘) =
Ns

σ=1 `1(C). (7)

Under this identification, a population p = (c1, c2, . . . , cs)
∈ `1(℘), cσ ∈ C, 1 ≤ σ ≤ s is mapped to c1 ⊗ c2 ⊗ · · · ⊗ cs ∈
Ns

σ=1 `1(C), where the cσ are seen as base vectors in `1(C).
The tensor product description of `1(℘) in equation (7) can
be used to analyze the mutation operator (see Proposition
3.2.1.2, 3.2.1.4). Consult also [20, Prop. 2.2.2.2–3 and fur-
ther comment].

Similarly to the above, we can identify `1(℘) in the fol-
lowing way:

`1(℘) =
Ns/2

σ=1 `1(C2). (8)

This shall be used in the analysis of the crossover operator.
Let U ⊂ `1(℘) be the closed subspace of `1(℘) generated

by the populations which are uniform, i.e., which consist of
s copies of a single creature. Let ℘ ∩ U denote the set of uni-
form populations. In addition, PU ∈ B(`1(℘)) shall denote
the continuous projection onto U given by PUp = p for every
p ∈ ℘ ∩ U , and PUp = 0 for every p /∈ ℘ ∩ U . In subsequent
proofs, the following Lemma replaces [20, Lemma 1.6.1].

2.4.1. Lemma. Let X ∈ B(`1(℘)) be such that Xp = p
for every p ∈ ℘ ∩ U . Then X satisfies XPU = PU , and
(1 − PU )X = (1 − PU)X(1 − PU ).

Proof: A simple check shows XPUp = PUp for p ∈ ℘. Thus,
XPU = PU by continuity of the operators involved. Now
consult the proof of [20, Lemma 1.6.1]. q.e.d.

3. THE GENETIC OPERATORS
The operators used in the genetic programming system de-
scribed in this work are as follows: (1) mutation Mµ acts
sequentially on creatures and with a certain probability µo

completely replaces a creature at spot σ in the population
with a randomly generated new creature; (2) practically
any known crossover operator Cχ; and (3) scaled fitness-
proportional selection St. For selection, the initial fitness-
value of creatures in the population is exponentiated (scaled)
in accordance with a predetermined schedule of logarithmic
growth (cf. lines (14,15)). Note that fitness-proportional
selection is used as the standard selection operator in [9].

3.1. Mutation on creatures. Let µo ∈ (0, 1] be fixed.
In what follows, µo shall denote the probability by which
mutation acting on a creature shall replace the creature by
a randomly generated new creature. Mutation acts on a
creature c ∈ C in accordance with the following listing of
pseudo-code:

mutationOnCreature(c) := (

r = randomNumberInUnitInterval();

if (r < µo) then {

d = randomCreature(randomInteger());

} else {

d = changeCreature(c);

};

return(d);

);

Thereby, the unit interval is [0, 1]; the procedure randomIn-
teger() selects a random integer ` according to some fixed
probability distribution such as a discrete Poisson distribu-
tion; the procedure randomCreature(`) generates a random

creature of depth `; and the procedure changeCreature mu-
tates a creature in a predefined, customized way. For exam-
ple, one can follow the procedure described in the introduc-
tion (section 1.1).

The above procedure determines a creature-mutation op-
erator Mc. The operator Mc defines a stochastic infinite
matrix in B(`1(C)) which shall also be denoted as Mc. The
stochastic matrix Mc describes transition probabilities for
creatures. Let vc ∈ `1(C) be the strictly positive probability
distribution corresponding to the execution of randomCrea-
ture(randomInteger()), i.e., generating a random creature
with the procedures described above. Then we have:

Mc = µoP (vc) + Nc (9)

where Nc ∈ B(`1(C))+ corresponds to the action of change-
Creature.

3.2. Mutation on populations. Let µ ∈ (0, 1]. In
what follows, µ describes the mutation rate which equals
the probability for every individual creature in a population
to be subject to action of mutationOnCreature. Consider
p = (c1, . . . , cs) ∈ ℘. Then mutation acts on p in accordance
with the following listing of pseudo-code:

mutation(µ,p) := (

for(σ=1; σ ≤ s; σ++) {

r = randomNumberInUnitInterval();

if (r < µ) then { cσ = mutationOnCreature(cσ ); };

};

);

The above procedure determines a mutation operator Mµ.
The operator Mµ determines an infinite stochastic matrix in
B(`1(℘)) which shall also be denoted as Mµ. The stochastic
matrix Mµ describes transition probabilities for entire pop-
ulations. Let vc ∈ `1(C) be given as at the end of section
3.1. Let

vπ = vc ⊗ vc ⊗ · · · ⊗ vc ∈ `1(℘) (10)

where the tensor product has s factors vc.

3.2.1. Proposition. Let µ ∈ (0, 1] denote the mutation
rate for the multiple-spot mutation operator Mµ ∈ B(`1(℘)).
Let vπ be given by line (10). Then we have:

1. Mµ = (µµo)
sP (vπ) + Nπ where Nπ ∈ B(`1(℘))+.

2. Mµ =
Ns

σ=1((1 − µ)1 + µ Mc) where the identifica-

tion in line (7) is taken into account.

3. If p ∈ ℘, then <p, Mµp> ≥ (1 − µ)s.

4. If µ<1/2, then Mµ is an invertible element of B(`1(℘)).

Proof: Mµ applies randomCreature(randomInteger()) in
every spot with probability (µµo)

s according to the defi-
nitions of Mc and Mµ. If that case is executed, then the
probabilities to generate a (new) particular population are
determined by vπ and are obviously independent from the
current (old) population. This shows statement (1). If one
compares the actions of Mµ and

Ns
σ=1((1−µ)1+µ Mc) on

base vectors p ∈ `1(℘) while taking into account the identi-
fication in line (7), then statement (2) follows immediately
from the continuity of the operators involved. Statement (3)
follows from statement (2). Finally, we show statement (4).
Mc is an infinite stochastic matrix and, consequently, has
operator norm 1 using line (4). Now statement (4) follows
as in [20, Prop. 2.2.2.3]. q.e.d.
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3.2.2. Remark. Suppose that p = (c1, c2, . . . , cs) and q =
(d1, d2, . . . , ds) are populations such that cσ 6= dσ for every
σ∈[1, s] ∩ N. Using Proposition 3.2.1.2, we obtain

<q, Mµp> =
Qs

σ=1 <dσ, ((1−µ)1 + µMc) cσ>

= µs · <q, M1p> (11)

Thus, a summation in line (11) over all possible q is bounded
by µs. Similarly, if we consider populations q that differ only
in so creatures from p, so∈[1, s]∩N, then the corresponding
sum over <q, Mµp> is bounded by a term in the order of
µso . c

3.3. Crossover. We shall assume that a local pair-cross-
over procedure7 pairCrossover(c1,c2) is defined on pairs
of creatures (c1, c2) ∈ C2. Output of pairCrossover(c1,c2)

is an element in C2. Thus, essentially all known crossover
methods can be incorporated in our model. In addition, we
shall assume that pairCrossover(,) induces a stochastic
pair-crossover operator C∗∗ ∈ B(`1(C2)).

Under the above assumptions, we let χ ∈ [0, 1] denote the
crossover rate and define the crossover operator on popula-
tions as follows: Let p = (c1, . . . , cs) ∈ ℘. Then crossover
acts on p in accordance with the following listing of pseudo-
code:

crossover(χ,p) := (

for(σ=1; σ ≤ s/2; σ++) {

r = randomNumberInUnitInterval();

if (r < χ) then {

(c2σ−1, c2σ) = pairCrossover(c2σ−1,c2σ);

};

};

);

The above procedure determines a crossover operator Cχ.
The operator Cχ defines a stochastic element in B(`1(℘))
which shall also be denoted as Cχ. The stochastic matrix
Cχ describes transition probabilities for entire populations.
Using the identification in line (8), we obtain similarly to
the proof of Proposition 3.2.1.2–4:

3.3.1. Proposition. Let χ ∈ [0, 1] and Cχ denote the
stochastic infinite matrix associated with the crossover op-
erator described above. Then we have:

1. Cχ =
Ns/2

σ=1((1 − χ)1 + χ C∗∗) where the identifica-

tion in line (8) is taken into account.

2. If p ∈ ℘, then <p,Cχp> ≥ (1 − χ)s/2.

3. If χ < 1/2, then Cχ is invertible. c

3.4. The mixing flow inequality. The next result is
one of the key ingredients in showing convergence to uni-
form populations by properly scaled genetic programming
systems. We follow here mainly the discussion in [19, Prop.
3.1.1]. However, the following result is new even in the ge-
netic algorithm context in that we do not suppose that the
crossover operator keeps uniform populations uniform. This
yields generalizations of all major results in [19], [20], [21].

7It quite obvious how to generalize the approach to crossover
presented in this paper to crossover operators that use three
or more creatures as input. Details such as the adaptation
of the steady-state flow inequality (cf. line (19)) and a cor-
responding proof are left to the reader.

3.4.1. Proposition. Let µ ∈ (0, 1] denote the mutation
rate for the stochastic multiple-spot mutation operator Mµ

defined in section 3.2. Let χ ∈ [0, 1) denote the crossover
rate for the stochastic crossover operator Cχ defined in sec-
tion 3.3. Let the mixing operator M(µ, χ) be given by either
M(µ, χ) = Cχ · Mµ or M(µ, χ) = Mµ · Cχ. Then we have:

1. βµ,χ = inf{||PUM(µ, χ)p||1 : p ∈ ℘ ∩ U} satisfies

(1 − χ)s/2(1 − µ)s ≤ βµ,χ < 1.

2. ||(1 − PU )M(µ, χ)v||1 ≤ 1 − βµ,χ + βµ,χ||(1 − PU )v||1

for every v ∈ S℘.

Proof: If p ∈ ℘ ∩ U , then changing a single spot in the
population under mutation makes p non-uniform. Using the
definition of the mutation operator, we see that the prob-
ability for this to happen is strictly positive. If crossover
is executed before or after mutation, the above situation is
retained with probability (1 − χ)s/2 > 0. Thus, βµ,χ < 1.
Combining, Propositions 3.2.1.3 and 3.3.1.2 yields βµ,χ ≥
(1 − χ)s/2(1 − µ)s. This completes the proof of statement
(1). To show statement (2), one mainly follows the argument
in the proof of [19, Prop. 3.1.1]. q.e.d.

3.5. Selection. The following brief discussion of selection
is mostly identical to the discussion of selection in [20, Sec.
2.6]. However, we present a slight generalization in the spirit
of [21].

We shall assume that there is a given non-constant (raw)
fitness function Φ : DΦ → R

+ where DΦ ⊂ C × ℘ is the set
of all pairs (c, p) such that c ∈ p. Suppose that Φ is non-zero
on every p ∈ ℘. As discussed in the introduction (section
1.1), we shall assume that a non-empty set Cmax ⊂ C exists
such that for any p ∈ ℘, c ∈ C \ Cmax and d ∈ Cmax:

c, d ∈ p ⇒ Φ(c, p) < Φ(d, p), (12)

i.e., the elements of Cmax behave strictly superior in every
population they reside in. The genetic programming system
is supposed to maximize Φ in the sense of finding an element
of Cmax.

Let Smax ⊂ S℘ be the convex hull of uniform populations
containing creatures from Cmax. Let Pmax be the projection
(i.e., {0, 1}-diagonal matrix) onto span

C
(Smax).

Based upon Φ, the fitness function f used in the genetic
programming system studied in this work can then, e.g., be
identical to Φ or can be rank based upon Φ in the sense of
[18, Sec. 7.3]. Such f satisfy the condition in line (12). In
addition to the above, suppose that

ρ2(f)=inf{f(c, p)−1 max{f(d, p) :d ∈ set(p)∩Cmax 6= ∅} :

p ∈ ℘, c ∈ set(p)\Cmax 6= ∅} > 1. (13)

ρ2(f) measures the strength of “second-to-best” creatures
c ∈ C \ Cmax in populations containing elements d ∈ Cmax.
One has ρ2(f) = s/(s − 1), if the fitness function f is given
by rank.

Next, we define power-law scaling of the fitness function.
Let the function g: N→R

+ be given by:

g(t) = B · log(t) for B ∈ R
+
∗ , t∈N. (14)

Now, set for (c, p) ∈ Df :

ft(c, p) = (f(c, p))g(t). (15)

In addition, let ft(c, p) = 0, if (c, p) ∈ (C × ℘) \ Df .
Finally, dynamically scaled fitness-proportional selection

is defined as follows: For p = (c1, c2, . . . , cs), q = (d1, d2, . . . ,
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ds) ∈ ℘ with cσ, dσ ∈ C, 1 ≤ σ ≤ s, let #(dσ, p) denote the
number of copies of dσ in the population p. In this situation,
the stochastic operator St ∈ B(`1(℘)) describing probabilis-
tic passage from p to q under dynamically scaled fitness-
proportional selection is given by

<q, Stp> =

(
Ps

σ=1 ft(cσ, p))−s ·
Qs

σ=1 #(dσ, p) ft(dσ, p). (16)

A procedural description to determine Stp corresponding to
a listing of selection(t,p) considered in the introduction
(pseudocode, section 1.1) can be found in [19, Def. 2.3.1].

3.5.1. Proposition. (Cf. [20, Prop. 2.6.1]). Let p and
q be populations as above and let the dynamically scaled
fitness selection operator St be defined as in equation (16).
Let θ = 1 − s−s+1. Then we have

1. If p is a uniform population, then Stp = p.

2. ||PUStp||1 ≥ 1 − θ.

3. If v ∈ S℘, then ||(1 − PU )Stv||1 ≤ θ · ||(1 − PU )v||1. c

Based upon the mixing flow inequality (Proposition 3.4.1.2)
and Proposition 3.5.1.3, one can prove a complete analogue
and generalization8 of [20, Thm. 3.1.1]. In particular, one
obtains:

3.5.2. Proposition. Let µ ∈ (0, 1] denote the mutation
rate for the stochastic multiple-spot mutation operator Mµ

defined in section 3.2. Let χ ∈ [0, 1) denote the crossover
rate for the stochastic crossover operator Cχ defined in sec-
tion 3.3. Let the mixing operator M(µ, χ) be given by ei-
ther M(µ, χ) = Cχ · Mµ or M(µ, χ) = Mµ · Cχ. Let the
selection operator St, t∈N, be defined as in line (16). Let
θ = 1− s−s+1. Let Γ be given by either Γ = St ·M(µ, χ) or
Γ = M(µ, χ) · St. Then we have:

1. Γ has a uniquely determined invariant eigenvector v ∈
S℘, cf. Proposition 3.2.1.1 and Lemma 2.2.1.2.

2. ||(1 − PU )v||1 ≤ (1 − βµ,χ)/(1 − βµ,χθ), cf. proof of

[20, Thm. 3.1.1]. c

4. CONVERGENCE TO GLOBAL OPTIMA

4.1. Weak ergodicity. Set µ(t) = t−1/s, t∈N. In ad-

dition, let χ(t) = µ(t)1/m, where m∈N is fixed such that
s/(2m)>1. Thus, we allow crossover to be annealed at a
slower rate than mutation provided that the population size
s is chosen large enough. Let

Gt=StCχ(t)Mµ(t). (17)

Alternatively, we can reverse the order of crossover and mu-
tation in the definition of Gt. In the discussion that follows,
both cases are handled simultaneously.

Applying Lemma 2.2.3, we obtain weak ergodicity of the
inhomogeneous Markov chain (Gt)t∈N and any similar chain
where the mutation rates are equal or larger than the µ(t)
set at the beginning of this section.

Using Lemma 2.2.1.2, let vt = Gtvt ∈ S℘ be the uniquely
determined invariant eigenvector of Gt in S℘.

8Here, in regard to an infinite set of creatures but also in
regard to more general crossover operators in the genetic
algorithm setting.

4.2. Convergence to uniform populations for the vt.

Since limt→∞ µ(t) = limt→∞ χ(t) = 0, Proposition 3.4.1.1
shows that limt→∞ βµ(t),χ(t) = 1. Now, Proposition 3.5.2.2
implies that

limt→∞(1 − PU )vt = 0. (18)

4.3. Convergence to global optimum for the vt.

Now, set the parameter B determining the scaling in the se-
lection operator St such that 1 < sB log(ρ2(f)) + 1/m. Let
Ω = (Cmax)

s. Let PΩ be the projection (i.e., {0, 1}-diagonal
matrix) onto span

C
(Ω). Let ω(t) = ||PΩvt||1. Using the rea-

soning in the proof of [19, Thm. 3.4.1], we obtain a steady-
state flow inequality for some K >0 as follows:

1−ω(t)
ω(t)

≤ K(µ(t)s/(2m)−1+µ(t)sB log(ρ2(f))+1/m−1) (19)

Line (19) shows that ω(t) converges to 1 as t→∞. Combin-
ing the latter fact with line (18), we obtain

limt→∞ d(vt,Smax) = limt→∞ d(Pmaxvt,Smax) = 0 (20)

where d(x,Smax) = min{||x − y||1 : y ∈ Smax} for x ∈ `1(℘).
Observe that the convergence in line (20) also holds for a
subsequence of the vt. This is employed in section 4.4.

4.3.1. Remark. In regard to obtaining line (19), one may
copy the proof of [19, Thm. 3.4.1] almost verbatim with the
following two exceptions.

First, one disregards the selector-mask J in the proof of
[19, Thm. 3.4.1], i.e., one uses J = [1, s] ∩ N, #(J) = s.

Second, the only non-trivial change in the proof of [19,
Thm. 3.4.1] is to replace the arguments in the discussion of
Part 2b, Cases 1–2. In fact, let p ∈ Ω be fixed,

Ω+ = {q ∈ ℘ : set(q) ∩ Cmax 6= ∅},

qc ∈ ℘ \ Ω+, and q+ ∈ Ω+ \ Ω. In the genetic algorithm case,
it is sufficient to estimate the order of the mutation rate
µ(t) in finitely many matrix coefficients for mixing, i.e., one
considers

<qc,M(µ(t), χ(t))p> , and <q+,M(µ(t), χ(t))p> .

In the genetic programming system case, one has to estimate
the order of µ(t) in the sums of the above coefficients over
infinitely many qc and q+ respectively. This can be achieved
using arguments similar to the techniques shown in Remark
3.2.2. c

4.4. Approaching the global optimum. Finally, set
the time-increment function as

Θ(t) = ceiling(µ−s
o t log(log(t + 2))). (21)

The switching times t∗τ , τ∈N, for the time-variable t in
the genetic programming system as described in the intro-
duction (pseudocode, section 1.1) are then given by t∗1 = 1
(corresponding to initialization) and t∗τ+1 = Θ(t∗τ ) + t∗τ . For

T∈N define HT =
Q1

τ=T G
Θ(t∗

τ
)

t∗
τ

. Using Lemma 2.2.1.1 it is

easy to show, that the accumulated contraction factor of

G
Θ(t)
t is bounded by 1/ log(t+2). Let wT = HT wo for some

fixed initial probability distribution wo ∈ S℘. wT is the prob-
ability distribution over the possible states of the dynami-
cally scaled genetic programming system after completion of
T while-loops in the pseudocode listed in section 1.1. Con-
sequently, wT describes “the state” of the algorithm at that
time. Then we have:

||wT − vt∗
T
||= ||G

Θ(t∗
T

)

t∗
T

(wT−1−vt∗
T
)||≤2/ log(t∗T + 2). (22)

The latter converges to 0 as T→∞. This shows that the
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wT converge in time towards the convex set of probability
distributions over uniform populations that contain globally
optimal creatures.

4.5. Conjecture. The authors conjecture that not only
weak but strong ergodicity for the inhomogeneous Markov
chain (Gt)t∈N defined in line (17) holds. The proof of such
a result would likely use [8, p. 160: Thm. V.4.3], [19, Thm.
3.3.2] or a similar theorem. In case this conjecture is true,
one could set Θ(t) = 1 in the discussion above, i.e., one could
dispense with the inner for-loop in the pseudocode listed
in the introduction (section 1.1). In addition, a method
of showing strong ergodicity for (Gt)t∈N should also yield
strong ergodicity for the algorithm described here which in-
cludes the for-loop. Thus, not only the wT but the states
for any time would converge towards the convex set of prob-
ability distributions over uniform populations that contain
globally optimal creatures.

5. CONCLUSION
We have obtained an all-purpose, dynamically scaled genetic
programming system for which a global optimization theo-

rem holds. The global optimization theorem can be stated
by saying that at selected, predetermined and computable
times, the combined probability for the dynamically scaled
genetic programming system to be in some uniform pop-
ulation containing copies of a single optimal creature ap-
proaches 1 over the course of the algorithm regardless of the
initial population.

The proposed algorithm is similar to the setting of the
simulated annealing algorithm [1]. It is realistic in that the
population-size and consequently evaluation-time for the fit-
ness function stay relatively small. Explicit annealing sched-
ules for crossover/mutation and exponentiation schedules for
the fitness-function scaling are given such that the proposed
algorithm, in fact, can be easily implemented.

Our analysis has, in addition, uncovered a number of
new techniques which allow for significant improvements of
known results, in particular, results on global optimization
for dynamically scaled genetic algorithms as discussed in
[19], [20] and [21].
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