
Canonical Form Functions as a Simple Means for Genetic
Programming to Evolve Human-Interpretable Functions

Trent McConaghy
K.U. Leuven

Kasteelpark Arenberg 10
B-3001 Leuven, Belgium

Trent.McConaghy
@esat.kuleuven.be

 Georges Gielen
K.U. Leuven

asteelpark Arenberg 10
B-3001 Leuven, Belgium

Georges.Gielen
@esat.kuleuven.be

ABSTRACT
In this paper, we investigate the use of canonical form functions
to evolve human-interpretable expressions for symbolic
regression problems. The approach is simple to apply, being
mostly a grammar that fits into any grammar-based Genetic
Programming (GP) system. We demonstrate the approach,
dubbed CAFFEINE, in producing highly predictive, interpretable
expressions for six circuit modeling problems. We investigate
variations of CAFFEINE, including Grammatical Evolution vs.
Whigham-style, grammar-defined introns, and smooth uniform
crossover with smooth point mutation (SUX/SM). The fastest
CAFFEINE variant, SUX/SM, is only moderately slower than
non-grammatical GP – a reasonable price to pay when the user
wants immediately interpretable results.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
Genetic programming, grammar, grammatical evolution

1. INTRODUCTION
The prediction problem encompasses many real-world
applications including financial forecasting and weather
prediction. Because of the value, there is extensive research to
find better approaches, e.g. with splines [7], neural networks [27],
support vector machines [6], and of course genetic programming

In contrast to prediction, in the problem of knowledge extraction,
one aims to get insights from a dataset. This might be as simple
as visualizing raw data, but it is potentially far more valuable is to
first process the data in some way. For example, one might apply
a dimensionality-reduction algorithm then view transformed data
in three dimensions. Or, one might use a tool to compute the
relative impact of different variables on a target variable. Even
better would be to find insights in the relations among variables,
e.g. by visualizing CART trees [2] or extracting rules from neural
networks [29]. Ideally, one could find a functional relation from
some variables to other variables, i.e. find a “whitebox” mapping
from a dataset. Though non-GP approaches to whitebox
modeling exist, (e.g. [16]), the searching ability and flexibility of
GP in SR mode make it ideally suited to the task.

Or at least, that’s what GP should be suited for. But as a recent
paper complains, “[GP-evolved] expressions can get, as we have
seen, quite complex, and it is often extremely difficult to
understand them without a fair bit of interaction with a tool such
as Mathematica” [13]. Fortunately, we can identify specific
interpretability challenges: managing complexity, excessive
compounding of nonlinear operators, finding good coefficient
values, simultaneous overabundance and shortage of coefficients,
non-compact polynomials and rationals, dimensional awareness,
bounded ranges for expressions, and bounded ranges for
operators.

Some GP systems deal with these challenges quite well, most
notably adaptive logic programming [10]. Unfortunately, its
adoption is hindered because it is substantially more complex than
off-the-shelf (grammar-based) GP systems.

In this paper we present an approach that addresses most of the
above challenges as well. The key idea is to use CAnonical Form
Function Expressions IN Evolution (i.e. CAFFEINE). This makes
(GP) in symbolic regression (SR) mode [14]. For prediction, GP

sits in a competitive, crowded field.

it far easier for GP to place coefficients and manage complexity
and nonlinearity. It is simple to apply, as it is mostly a grammar
that fits into any grammar-based GP system. The method will be
illustrated for analog circuit performance modeling.

This paper is organized as follows. In section 2, we review SR
challenges, and related approaches. In section 3 we describe
CAFFEINE. Section 4 demonstrates its application to knowledge
extraction in analog design. Section 5 investigates the relative
performance of variants, including Grammatical Evolution vs.
Whigham-style, grammar-defined introns, and smooth uniform
crossover with smooth point mutation. Section 6 concludes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO'06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007...$5.00.

855

2. CHALLENGES OF SR
This section examines SR challenges and GP approaches (or lack
of approaches) to handle each. Most of them are specific to SR.

Managing Complexity. Occam’s Razor is the guide here: the
simplest model that describes the data is usually the correct one.
Complexity is typically dependent on measures like tree depth and
node count. In GP, expression-simplification processes are of two
varieties: non-SR and SR-specific. Non-SR techniques include
(1) penalizing complex solutions (“parsimony pressure”), (2)
having complexity as a second objective and using a
multiobjective algorithm, (3) maximum tree depth [14], (4)
uniform operators such that depths never grow [26], and (5) other
“bloat control” methods, e.g. [25]. The SR-specific approach is to
do symbolic simplification, either automatically during or after
evolution with a symbolic math tool like Mathematica, or
manually after evolution.

Excessive Compounding of Nonlinear Operators. GP gives
uniform treatment to operators, whether they are linear or
nonlinear. The result is that even a very small tree which would
pass GP-parsimony standards could be not interpretable by
humans. An example is tan(exp(sin(x))): three compounded
nonlinear operators is too much, and even two is questionable.
Maximum tree depth might handle this, but unfortunately it has to
still be large enough to handle other reasonable combinations of
expressions such as polynomials.

Finding Coefficient Values. Induced expressions might have
real-valued coefficients which must be determined during GP
search. Coefficients can be either the linear “weights” on each
basis function (along with the offset), or the nonlinear coefficients
inside basis functions. Linear weights can be handled by:
inclusion with nonlinear coefficients; linear regression [20]; or
using just one basis function and a simple correlation calculation
to sidestep linear regression until after evolution [12]. Nonlinear
coefficients can be handled by “ephemeral random constants”
[14]; by constant perturbation on a distribution, e.g. uniform [28]
or Gaussian [1]; via nonlinear optimization [30]; within a
constant-creation grammar such as digit concatenation [5]; or
even combining multiple strategies [5].

Log-Range of Coefficient Values. For some problems,
coefficient values should also be able to take on a wide range of
possible values that may vary by many orders of magnitude: large
positive numbers like 1.0e+10, small positive numbers like 1.0e-
10, zero, small negative numbers, and big negative numbers.
Some SR approaches handle it implicitly by allowing log() and/or
power() operators to act directly on the constants, or by choosing
from a discrete set of log-range variables. We have not been able
to identify an work that directly addresses log-valued constants
for continuous-valued numbers.

Coefficient values are just one side of the “coefficient coin”; GP
must also determine where in the expression to insert each
constant. Thus, in contrast to much research on coefficient
values, with the exception of the linear/nonlinear distinction, to
our knowledge there is little discussion of coefficient placement in
the GP literature. Unfortunately, this means that GP-evolved
equations can end up having too few constants in some places and
too many in others; i.e. shortages and overabundances.

Figure 1: Coefficients can be difficult to insert if not already

present, even if the behavioral change is small

Figure 2: An example of coefficient overabundance

Figure 3: It can take many nodes to get a simple polynomial or

rational expression. They can even cancel each other out.

Coefficient Shortages. Consider the expression f(x) = log(x),
which might appear in a typical SR run. It has four implicit
coefficients: f(x) = w0 + w1*log(w2 + w3*x) where w0 = 0.0, w1 =
1.0, w2 = 0.0, and w3 = 1.0. The first two coefficients w0 and w1
are linear; the others are nonlinear. As Figure 1 illustrates, GP
should be able to make small steps in the space of the function’s
behavior by having all relevant coefficients readily available. If
there is a coefficient shortage, tunability of the function is
compromised.

Coefficient Overabundance. Missing constants in some places is
one issue, and having too many in other places is another. The
GP system is evolving more parameters than it needs to. Figure 2
illustrates one of many examples.

Non-compact Polynomials and Rationals. In GP, it takes many
terms to build up a polynomial, and sometimes those terms cancel
each other out causing redundant terms, as Figure 3 shows. In the
literature, this is also handled implicitly as part of symbolic
simplification.

Dimensional Awareness. In real-world use, functions describe
something, and that “something” has units of measurement. Each
input variable, and the target variable, has its own unit, such as
“m/s” for a velocity variable. For a GP-evolved function to be
physically meaningful, the units have to align, e.g. only like units

f(x) = (x3/x1)*((x1*x1)*x3) = x1 * x3
2

x1 x1

*
x3

*

x3

*

x1

/

x1 x1

/

f(x) = 1

x1

4.8

*

1.1

+

f(x) = (4.8+1.1)*x1

 could be

 f(x) = 5.9*x1

log(x1)

x1

log

log(1.02*x1)

1.02

log

log(0.01+1.02*x1)

x1

*

1.02

log

x1

*

+
0.01

small
beh.
change

large
tree
change

856

can add, and the input variables must propagate through to the
output such that the correct output unit is hit. Most SR systems
ignore this, but the work of Keijzer is a notable exception: he
demonstrated one system that used dimensionless values, another
that biased evolution towards correct units, and a third system that
had correct-by-construction units [9][10]. He did note that if
there is a coefficient in front of an expression, that coefficient
could conceivably have “corrective” units such that the input units
translated properly into the output units. Interestingly, the
existence of coefficients everywhere (implicit or explicit) causes
implicit corrective unit transformations!

Bounded Ranges for Expression Outputs. For a given problem,
each unit of measurement has a range of reasonableness. For
example, velocity of a car can safely be bounded between 0 and
500 km/h. An ideal function would never allow intermediate or
final expressions that go beyond unreasonable unit ranges. Most
GP research ignores this, though Keijzer handles this via interval
arithmetic in GP [10][11].

Bounded Ranges for Operators. Some mathematical operators
are only valid for specific ranges, e.g. ‘/’ can only have a nonzero
denominator, and log() needs a positive argument. GP research
typically handles this by “protected operators” [14] or simple
exception handling, though the safest and most elegant way is
probably interval arithmetic [10][11].

3. CAFFEINE
3.1 Canonical Form Functions
In this section we describe how we address each SR issue.
Canonical form functions will play a key role.
We follow the tenets of (a) ensuring maximum expressiveness per
node, and (b) making all individuals directly interpretable, i.e. not
needing to manipulate expressions to simplify.
Figure 4 shows the general structure of a CAFFEINE canonical-
form basis function. It has levels of expressions that alternate
between linear and nonlinear, “gated” by nonlinear functions.
The linear expressions are a sum of basis functions; each basis
function gets a weight, plus there is one overall offset. A basis
function is a combination of a polynomial/rational and/or one or
more nonlinear operators. Inside each nonlinear operator is the
next level of linear expressions. CAFFEINE places coefficients
only where they are needed, and nowhere else. This emerges as a
canonical form for functions.
An example is: f(x) = -10.3 + 3.1*x6 + 1.87 * x1 * log(-1.95 +
10.3 * (x2*x7)/(x5)). The value ‘-10.3’ is the top linear offset
coefficient wo; the ‘3.1’ and the ‘1.87’ are the coefficients of basis
functions for the top ‘weighted linear add’; the ‘x6’ is the lone
instance of top-level standalone ‘Poly/Ratl’; the ‘x1’ is a
‘Poly/Ratl’ that has a product with the nonlinear function log().
Inside the log() is another weighted linear add subfunction.
Each ‘Poly/Ratl’ can be described in terms of the exponent for
each input variable; therefore we achieve always-compact
polynomials and rationals.
Typical usage of CAFFEINE would restrict the number of
nonlinear operator layers to just one or two, which is a more
effective “maximum depth” constraint, therefore resolving the
issue of excessive compounding of nonlinear components. There
can also be a limit on the maximum number of linear basis

functions, easy to set because usually beyond 10 or so would be
too much for humans to interpret, and fewer is fine. Thanks to its
canonical form, all evolved functions are immediately
interpretable, with no symbolic manipulation needed.

Figure 4: Caffeine evolves functions of this canonical form.

Such constraints on CAFFEINE directly resolve excessive
complexity including bloat. Furthermore, they can be used in a
complementary fashion with other complexity-reducing tactics,
e.g. having a second objective of complexity.
The “only as needed” coefficient placement resolves coefficient
overabundance and shortage issues. A coefficient on everything
also means that they can be “dimensional transforms” to resolve
dimensional awareness.
In determining coefficient values, we distinguish between linear
and nonlinear coefficients. A CAFFEINE individual is a set of
basis functions which are linearly added. Each basis function is a
tree of grammatical derivations. Linear coefficients are found by
evaluating each tree across all input samples to get a matrix of
basis function outputs, then to apply least-squares regression with
that matrix and the target output vector to find the optimal linear
weights.
With each nonlinear coefficient in the genotype (i.e. ones that are
not found via linear regression), a real value will accompany it,
taking a value in the range[]2 * , 2 *B B− + . During interpretation
of the genome the value is transformed
into[] [] []1 , 1 1 , 10.0e B e B e B e B− + − − − +∪ ∪ . As for search for
the value, any SR strategy might work. In this paper, we use
mutation on a distribution, in particular a Cauchy distribution on
all values at once which cleanly combines aggressive local tuning
with the occasional large change [33].
To keep the approach simple, at this point we have not added the
ideal method (interval analysis) for bounding ranges for
expressions or operators. To handle bounded operators, we
merely have exception handling on expression evaluation.

3.2 CAFFEINE Implementation via a
Grammar
Here, we show how CAFFEINE can be implemented via an
context-free grammar (CFG), but extended slightly to specially
handle coefficients and Poly/Rationals.
Many SR systems have used CFGs [23], typically in a form like
the following (though usually with fewer nonlinear operators).
EXPR is the start symbol; possible expansions follow the =>
symbol and are separated by |’s. The W is a coefficient, and can be
implemented in one of many ways [5].

857

EXPR => VAR | OP_1ARG (EXPR) |

 OP_2ARG (EXPR , EXPR)

OP_2ARG => + | - | * | / | POW | MAX | ...
OP_1ARG => INV | LOG10 | SIN | ...
VAR => X1 | X2 | ... | Xn | W

Importantly, there is no distinction in how the operators +, -, *,
and / are used in comparison to the other operators, and variables
and constants get directly plugged into expressions, giving rise to
the SR issues given previously. More advanced non-CFG
grammars handle more constraints [10], but do not make those
distinctions either.
The CAFFEINE grammar is explicitly designed to create separate
layers of linear and nonlinear functions and place coefficients and
variables carefully:
REPVC => VC | REPVC * REPOP | REPOP

REPOP => REPOP * REPOP | OP_1ARG (W + REPADD)|

 OP_2ARG (2ARGS) | ... 3OP, 4OP etc

2ARGS => W + REPADD, MAYBEW | MAYBEW, W + REPADD

MAYBEW => W | W + REPADD

REPADD => W * REPVC | REPADD + REPADD

OP_2ARG => DIVIDE | POW | MAX | ...
OP_1ARG => INV | LOG10 | ...

The start symbol is REPVC, which expands into one basis
function (remember that an individual has several root-level basis
functions). Note the strong distinction among operators. The root
is a product of variables (REPVC) and / or nonlinear functions
(REPOP). Within each nonlinear function is REPADD, the
weighted sum of next-level basis functions.
A VC is a “variable combo”, intended to maintain a compact
representation of polynomials/rationals. Its expansion could have
been implemented directly within the grammar; though in our
baseline system we store a vector holding an integer value per
design variable as the variable’s exponent. An example vector is

[1,0,-2,1], which means 2

1 4 3
(*) ()x x x . This approach

guarantees compactness and allows for special operators on the
vector. The operators we use are: one-point crossover, and
randomly adding or subtracting to an exponent value.

3.3 A Baseline CAFFEINE SR System
The baseline employs the direct tree-style grammar-based GP
system of Whigham [32] following the CAFFEINE grammar. So,
evolutionary operators must respect the derivation rules of the
grammar, i.e. only subtrees with the same root can be crossed
over, and random generation of trees must follow the derivation
rules. (Section 5 will compare to Grammatical Evolution [23].)
Our main objective is to minimize root mean-squared error
(RMSE), but as there is still value in a complexity bias (it just
doesn’t have to do as much), we employ a multiobjective
algorithm, NSGA-II [4], with a second objective of minimizing
complexity. “Complexity” is somewhat arbitrary but we make it
dependent on the number of basis functions, the number of nodes
in each tree, and the exponents of VCs:

,
1 1

nvc()
complexity() (nnodes() vccost())

M f

b k j
j k

j
f w j vc

= =

= + +∑ ∑ (1)

where wb is a constant to give a minimum cost to each basis
function, nnodes(j) is the number of tree nodes of basis function
j, nvc(j) is number of VCs of basis function j, and

dim 1

vccost (vc) abs(vc(dim))
d

vcw
=

= ∑ .

We apply the usual Whigham-style crossover and mutation
operators for trees. In addition, the basis function operators
include: creating a new individual by randomly choosing >0 basis
function from each of 2 parents; deleting a random basis function;
adding a randomly generated tree as a basis function; copying a
subtree from one individual to make a new basis function for
another. Coefficient and VC operators are as described in sections
3.1 and 3.2, respectively.

3.4 CAFFEINE Search Biases
The fact that the CAFFEINE search space is more structured than
simpler-grammar SR means that we can get a better idea of where
the biases might be. CAFFEINE functions can be viewed sum-of-
products (-of-sums-of-products-of…) expressions. While
CAFFEINE could support product-of-sums, it currently does not,
which means that CAFFEINE will have difficulty with functions
better modeled as products of sums. The constraints of
CAFFEINE also remove redundancies within functional space,
which could also impact its search ability. Also, at this point we
have been liberal in our choice of operators, but some might have
damaging biases; a future challenge would be to identify each
operator’s relative effectiveness. Finally, CAFFEINE’s extra
emphasis on coefficients also makes it more sensitive to how
coefficients are handled. In particular, the parameter mutation
rate, and the chosen range of possible coefficient values could
have large sensitivities.

4. APPLICATION: KNOWLEDGE
EXTRACTION IN ANALOG DESIGN
This section summarizes the first application of CAFFEINE:
knowledge extraction for analog circuits [17].

Figure 5: A CMOS Operational Transconductance Amplifier,

used to generate datasets for six SR problems
A “symbolic model” of an analog circuit is merely an expression
that maps circuit designables (like transistor widths and lengths,
or circuit biases) to a circuit performance measure (like power
consumption). Fundamentally, such models increase a designer’s
understanding of a circuit, which leads to better human decision-
making in circuit sizing, layout, verification, and topology design.
Since well-designed analog circuits are crucial to the multibillion-
dollar semiconductor industry, automated approaches to symbolic
model generation are of great interest. Over the last two decades,

858

there has been active research on symbolic modeling. However,
no previous tool could create models of arbitrary nonlinear analog
circuits with accuracy in line with the “gold standard” of circuit
analysis: SPICE circuit simulators.
Table 1: CAFFEINE-generated symbolic models of an analog

circuit which gave <10% prediction error

Figure 6: Across six analog circuit modeling problems,

CAFFEINE-based GP has the best prediction compared to
several state-of-the art approaches including neural networks
[27], splines [7], and support vector machines [6]. The y-axis

is prediction error summed across 6 problems.

In [17], the circuit of interest is as shown in Figure 5. The goal
was to discover expressions for each of six performance measures:
low-frequency gain (ALF), unity-gain frequency (fu), phase margin
(PM), input-referred offset voltage (voffset), and the positive and
negative slew rate (SRp, SRn). These measures each had 13
possible input variables, which were the designables of the circuit
(in this case, circuit biases). There were 243 training samples and
243 testing samples. Input samples were generated via Latin
Hypercube Sampling [21], and corresponding outputs were found
by circuit simulation to extract performance measures. No scaling
was used.
The baseline CAFFEINE described in section 3.3 was applied on
the datasets, to generate a set of models trading off error and

complexity. Table 1 shows some of the models generated for each
of these six symbolic modeling problems. Note how readily
interpretable they are, of significance especially because they were
not post-processed with any symbolic manipulation at all.
A good knowledge extractor should be able to predict well on
unseen data, so [18] compared (the baseline) CAFFEINE’s
prediction abilities to other well-known techniques. As shown in
Figure 6, CAFFEINE fared the best.

5. STUDY OF CAFFEINE VARIANTS
With promising results on the baseline, and convergence speed an
active area in GP research, it is natural to ask how fast
CAFFEINE variants might be. In this section, we test the effects
of Grammatical Evolution (GE) [23], of grammar-defined introns,
and of smooth, uniform crossover with smooth point mutation
(SUX/SM) [26]. We also compare to simple-grammar Whigham-
GP and simple-grammar GE.

5.1 CAFFEINE with Grammatical Evolution
Unlike Whigham-style GP which evolves trees, GE [23] uses
bitstrings which sequentially specify derivation rules. We
implemented GE using the standard operators of one-point
crossover, flip-bit mutation, and codon duplication. We inserted
minor modifications in order to have a more clean comparison to
the baseline system. First, each GE individual had one bitstring
for each basis function, and the linear weights were found via
linear regression. Secondly, for the coefficients, rather than one
of many possible GE-style approaches [5], we had a second list of
numbers, where there is one real-valued number to correspond
with each derivation rule. During evaluation, it follows a
CAFFEINE-style log-expansion. The mutation operator for these
values is also Cauchy mutation. Note that these real-valued
numbers only get expressed when their corresponding W is being
expressed. Third, VCs were implemented with the following
derivation rules. Like the system in section 5.3, we constrained to
a maximum two variable interactions, and biased to a variable
exponent of 1.0.
VC => POWVAR | POWVAR * POWVAR
POWVAR => VAR | VAR ^ POWEXP
VAR => x1 | x2 | ... | xn
POWEXP => -2 | -1 | -0.5 | 0.5 | 2

5.2 CAFFEINE with Grammar-Defined
Introns
In [23], the authors speculate that grammar-defined introns might
be useful to GE, so we test that for context of a CAFFEINE
system. CAFFEINE offers several opportunities to insert introns
because of good control over coefficient placement. The grammar
is modified as follows:
REPOP => REPOP * REPOP |
 OP_1ARG (W + REPADD) ^ OPEXP |
 OP_2ARG (2ARGS) ^ OPEXP
OPEXP => 0 | 1
REPADD=> W_OR_ZERO * EXPR | REPADD + REPADD
W_OR_ZERO => W | 0.0
Thus, CAFFEINE allows introns in two ways: turning off
nonlinear operators via power-of-zero, and turning off basis
functions by forcing their weight to zero. Such grammar-defined
introns can be part of Whigham-style or GE-style representation;
we test both.

Perf. Symbolic Model

ALF -10.3 + 7.08e-5 / id1
+1.87 * ln(-1.95e+9 + 1.00e+10 / (vsg1*vsg3)

 +1.42e+9*(vds2*vsd5) /
(vsg1*vgs2*vsg5*id2))

fu 10^(5.68 - 0.03 * vsg1 / vds2 – 55.43 * id1+ 5.63e-6 /
id1)

PM 90.5 + 190.6 * id1 / vsg1 + 22.2 * id2 / vds2

voffset - 2.00e-3

SRp 2.36e+7 + 1.95e+4 * id2 / id1 - 104.69 / id2 + 2.15e+9 *
id2 + 4.63e+8 * id1

SRn - 5.72e+7 - 2.50e+11 * (id1*id2) / vgs2 + 5.53e+6 * vds2
/ vgs2 + 109.72 / id1

859

Figure 7: Each subplot shows the average (over 30 runs) of training RMSE vs. generation, for many symbolic regression variants.

Each subplot is for a different circuit modeling problem.

5.3 CAFFEINE with Smooth, Uniform
Crossover and Smooth Point Mutation
In [26], significant speedup in GP was achieved by leveraging
SUX/SM for improved mixing of building blocks. That approach
was applied to a logic synthesis problem, but it was not easy to
apply to general GP problems, as one needs to align operators,
handle different depths, and handle functions of different arity.
Nevertheless, [19] showed that the structure of CAFFEINE lends
itself well to uniform crossover. The trick is to pre-assign a fixed
number of additions or multiplications for each level in the

function structure, but allow them to be turned off by introns.
This results in a fixed-size tree, allowing for ready application of
SUX/SM operators. In [19] this variation performed very well
compared to the baseline; that system is compared here too.

5.4 Experimental Setup
We test on the circuit application of section 4. Recall that there
are six modeling problems; each problem has 13 input variables
and 243 samples. For speed comparisons, it is simpler to just
optimize on the single objective of training error, and compare
that. Thus, all experiments in this section are for just single-

860

objective EAs. The aim is to build models with <5% training
error; at which point the EA run is considered successful and
stopped. Operators allowed were: x , log10(x), 1/x, abs(x), x2,
10x, max(x1,x2), min(x1,x2). Maximum number of basis functions
= 7, population size 200, stop when 500 generations or target
error hit, varcombo exponents in [-2,-1,-0.5,0,0.5,1,2], and
weights in []1 10, 1 10e e− + − − ∪ []0 ∪ []1 10, 1 10e e− + . Maximum
tree depth was 7, therefore allowing just one layer of nonlinear
operators. For non-GE approaches, all operators had equal
probability, except parameter mutation was 5x more likely. GE
settings were in line with [23] as much as possible: each basis
function genotype could have 1 to 10 integers, each in the range
{0,2,…,255}; one-point crossover had a probability 90/135,
parameter mutation 30/135, and the rest had equal probability
among the remaining 15/135. Thirty runs were done for each
approach on each problem.

5.5 Experimental Results
Remember that the benefit of CAFFEINE-style constraints is for
the resulting function to be interpretable (such as those shown in
section 4). To remind the reader of how ugly simple-GP-evolved
expressions can be, here is a typical basis function found in the
best individual of a simple-grammar ALF run:
- 1.40 * (vsg1 + max(vsg5, max(max(max(vsg5, max(
vsg3 + vgs2, min(vsg3, abs(1/vds2))) - log10(vsd5)),
min(ib2, abs(sqrt(abs(id1))))) - log10(vsd5), max(id2,
min(vsg3, abs(sqrt(abs(log10(id2)))))) + log10(vsd5))
- min(vsg3, abs(sqrt(abs(id1)))) - log10(vsd5)))

In contrast, the CAFFEINE-style functions all had the same
readily interpretable “look”, thanks to the canonical forms that
they were constrained to (see Table 1). This is the case no matter
which CAFFEINE variant is used, whether it uses Whigham-style
or GE, introns or not, or SUX/SM. So, the choice of using
CAFFEINE can be largely orthogonal to other choices regarding
the search algorithm.
We had two baseline non-CAFFEINE algorithms, one using a
Whigham style of handling the grammar and one using GE style.
Interestingly, these two baseline approaches were at opposite ends
of the performance spectrum, with all CAFFEINE approaches in
between.
Our primary question is to see if convergence can still be
reasonable under the extra search space constraints imposed by
CAFFEINE, compared to a simple grammar. Figure 7 shows
convergence over time for each variant and each problem. To
answer our primary question, we compare the best CAFFEINE
variant, SUX/SM, with the best simple-grammar variant, Simple
& Whigham. In 5 of 6 cases, CAFFEINE seemed to have the
same rate of convergence, though with a time lag of about 20 – 50
generations. The remaining case was ALF, which posed the most
difficulty for all approaches, though less so for Simple &
Whigham.
We are also interested in performance differences between
Whigham-style and GE representations. There are three
comparisons to make, each with a Whigham and a GE variant:
CAFFEINE, CAFFEINE & introns, and simple grammar. In all
three comparisons, GE does worse than its Whigham-style
counterpart. This is most notable on the simple grammar; which
we surmise is because that grammar needs more symbols than

CAFFEINE to be as expressive, and GE is known to have issues
with building block disruption. In fairness, we only used
canonical GE of [23]; recent GE techniques aim to address
disruption [24]. Also, how we handled coefficients with
CAFFEINE & GE may have been detrimental.
As for the effect of grammar-defined introns: they never helped,
tending to slow convergence by about 10%. The cost of explicit
introns is “some extra coding segments” and the potential payoff
is adding extra genotype diversity to escape local optima. At our
population of 200, the cost / benefit was not positive, but it is
possible that the balance may tip at smaller population sizes ([31]
had benefit from introns at tiny population sizes). There are also
potentially better ways to include introns into the search.
The SUX/SM CAFFEINE variant had a sizeable performance
advantage over other CAFFEINE variants. This is not surprising,
as it is grounded in GP theory to have improved mixing of
building blocks. It is also important to note that the SUX/SM
strategy is not available to simple-grammar SR; it was the
particular structure of CAFFEINE that enabled it.

6. CONCLUSION
GP can evolve functions, making it ideally suited for knowledge
extraction from datasets. Unfortunately, there is no technique in
the literature that both (a) ensures that such evolved expressions
are human-interpretable and (b) is simple to apply. This paper
presented a technique called CAFFEINE that meets both goals, by
constraining the search to a space of canonical form functions.
These constraints can readily be embedded in a grammar-based
GP system, or even implicitly.
We demonstrated CAFFEINE in the real-world knowledge
extraction problem of analog circuit analysis, and also show that it
out-predicts other state-of-the-art techniques like support vector
machines.
We explored variants of CAFFEINE and compared them in terms
of convergence ability for six test problems. We found that the
fastest CAFFEINE variant is moderately slower than a simple (i.e.
far less constrained) symbolic regression grammar which evolves
very hard-to-interpret expressions. The fastest variant uses
smooth, uniform crossover with smooth mutation. Thus, if raw
speed is the only goal, we would not recommend CAFFEINE.
But if interpretability of expressions is a concern, especially
during evolution, then CAFFEINE would be useful.
We also found that Whigham-style variants did better than
Grammatical-Evolution variants, and that grammar-defined
introns did not help.
CAFFEINE can readily fit into machine-code GP [22], for an
attractive combination of high speed and interpretable results.
Other directions include using newer GE variants such as piGE
[24], or combining CAFFEINE with ALP / interval arithmetic
[10][11].

7. REFERENCES
[1] P.J. Angeline, Two Self-Adaptive Crossover Operators for

Genetic Programming, Advances in Genetic Programming 2,
MIT Press, Chapter 5, pp. 90-115.

[2] W. Banzhaf, Genotype-Phenotype Mapping and Neutral
Variation – A Case Study in Genetic Programming, PPSN
III, 1994, pp. 322-332.

861

[3] L. Breiman et al. Classification and Regression Trees.
Chapman & Hall, New York, 1984.

[4] K. Deb et al, A Fast Elitist Non-dominated Sorting Genetic
Algorithm for Multi-objective Optimization: NSGA-II, Proc.
PPSN VI, Sept. 2000, pp. 849-858.

[5] I. Dempsey, M. O’Neill, and A. Brabazon, Meta-Grammar
Constant Creation with Grammatical Evolution by
Grammatical Evolution, GECCO 2005, 2005.

[6] H. Drucker et al., Support vector regression machines, Adv.
in Neural Information Proc. Sys. 9, 1997, pp. 155-161.

[7] J.H. Friedman, Multivariate Adaptive Regression Splines,
Annals of Statistics 19, March 1991, pp. 1-141.

[8] C. G. Johnson, Artificial Immune System Programming for
Symbolic Regression, EuroGP 2003, Essex, UK, 2003.

[9] M. Keijzer, V. Babovic, Dimensionally Aware Genetic
Programming, GECCO 1999, vol. 2, 1999.

[10] M. Keijzer. Scientific Discovery using Genetic
Programming. PhD Thesis, Water & Environment and the
Dept. for Mathematical Modelling, T.U. Denmark, 2001.

[11] M. Keijzer, Improving Symbolic Regression with Interval
Arithmetic and Linear Scaling, EuroGP 2003, LNCS 2610,
2003, pp. 71-83.

[12] M. Keijzer, Scaled Symbolic Regression, Genetic
Programming and Evolvable Machines, 5(3), Sept. 2004, pp.
259-269.

[13] E. Kirshenbaum, H.J. Suermondt, Using Genetic
Programming to Obtain a Closed-Form Approximation to a
Recursive Function, GECCO 2004, 2004, pp. 543-556.

[14] J.R. Koza. Genetic Programming. MIT Press, 1992.
[15] W.B. Langdon, R. Poli. Foundations of Genetic

Programming. Springer, 2002.
[16] P. Langley et al. Scientific Discovery, Computational

Explorations of the Creative Process. The MIT Press, 1987.
[17] T. McConaghy, T. Eeckelaert, and G. Gielen, CAFFEINE:

Template-free Symbolic Model Generation of Analog
Circuits via Canonical Form Functions and Genetic
Programming, Design Automation and Test Europe, 2005.

[18] T. McConaghy, G. Gielen, Analysis of Simulation-Driven
Numerical Performance Modeling Techniques for
Application to Analog Circuit Optimization, Proc.
International Symposium on Circuits and Systems, 2005.

[19] T. McConaghy, G. Gielen, Double-Strength CAFFEINE:
Fast Template-Free Symbolic Modeling of Analog Circuits

via Implicit Canonical Form functions and Explicit Introns,
Design Automation and Test Europe, Mar 2006 (in press).

[20] B. McKay et al., Non-linear Continuum Regression Using
Genetic Programming, in GECCO 1999 (2), pp. 1106-1111.

[21] M.D. McKay, R.J. Beckman, and W.J. Conover, A
Comparison of Three Methods for Selecting Values of Input
Variables in the Analysis of Output From a Computer Code,
Technometrics, 21(2), 1979, pp. 239-245.

[22] P. Nordin, A Compiling Genetic Programming System that
Directly Manipulates the Machine Code, Advances in
Genetic Programming I, MIT Press, 1994, pp.311-331.

[23] M. O’Neill, C. Ryan. Grammatical Evolution: Evolutionary
Automatic Programming in an Arbitrary Language. Kluwer,
2003.

[24] M. O’Neill et al, Pi Grammatical Evolution, GECCO 2004,
LNCS 3103, 2004, pp. 617-629.

[25] Panait, L., Luke, S., Alternative Bloat Control Methods,
GECCO 2004, LNCS 3103, 2004, pp. 630-641.

[26] R. Poli, J. Page, W. B. Langdon, Smooth Uniform
Crossover, Sub-Machine Code GP and Demes, GECCO
1999, vol 2, July 1999, pp. 1162-1169.

[27] D.E. Rumelhart et al., Learning Internal Representations by
Error Propagation. Parallel Distributed Processing Vol I,
MIT Press, 1986.

[28] G. Spencer, Automatic Generation of Programs for Crawling
and Walking, Advances in Genetic Programming, MIT
Press, Chapter 15, pp. 335-353.

[29] A.B. Tickle et. al, Lessons from Past, Current Issues and
Future Research Directions in Extracting the Knowledge
Embedded in Artificial Neural Networks, Neural Hybrid
Systems, Springer Verlag, 1999.

[30] A. Topchy, W.F. Punch, Faster Genetic Programming Based
on Local Gradient Search of Numeric Leaf Values, GECCO
2001, 2001, pp. 155-162.

[31] V. Vassilev, J. Miller, The Advantages of Landscape
Neutrality in Digital Circuit Evolution, ICES 2000, pp. 252-
263.

[32] P. A. Whigham, Grammatically-based Genetic Programming,
Proc. Workshop on GP: From Theory to Real-World
Applications, Tahoe City, CA, 1995.

[33] X. Yao, Y. Liu, G. Lin, Evolutionary Programming Made
Faster, IEEE Trans. Ev. Comp. 3(2), July 1999, pp. 82-102.

862

	INTRODUCTION
	CHALLENGES OF SR
	CAFFEINE
	Canonical Form Functions
	CAFFEINE Implementation via a Grammar
	A Baseline CAFFEINE SR System
	CAFFEINE Search Biases

	APPLICATION: KNOWLEDGE EXTRACTION IN ANALOG DESIGN
	STUDY OF CAFFEINE VARIANTS
	CAFFEINE with Grammatical Evolution
	CAFFEINE with Grammar-Defined Introns
	CAFFEINE with Smooth, Uniform Crossover and Smooth Point Mutation
	Experimental Setup
	Experimental Results

	CONCLUSION
	REFERENCES

