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ABSTRACT 
In this paper, we investigate the use of canonical form functions 
to evolve human-interpretable expressions for symbolic 
regression problems. The approach is simple to apply, being 
mostly a grammar that fits into any grammar-based Genetic 
Programming (GP) system.  We demonstrate the approach, 
dubbed CAFFEINE, in producing highly predictive, interpretable 
expressions for six circuit modeling problems.  We investigate 
variations of CAFFEINE, including Grammatical Evolution vs. 
Whigham-style, grammar-defined introns, and smooth uniform 
crossover with smooth point mutation (SUX/SM).  The fastest 
CAFFEINE variant, SUX/SM, is only moderately slower than 
non-grammatical GP – a reasonable price to pay when the user 
wants immediately interpretable results. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search; I.2.6 [Artificial Intelligence]: Learning 

General Terms 
Algorithms 

Keywords 
Genetic programming, grammar, grammatical evolution 

1. INTRODUCTION 
The prediction problem encompasses many real-world 
applications including financial forecasting and weather 
prediction.  Because of the value, there is extensive research to 
find better approaches, e.g. with splines [7], neural networks [27], 
support vector machines [6], and of course genetic programming 

In contrast to prediction, in the problem of knowledge extraction, 
one aims to get insights from a dataset.  This might be as simple 
as visualizing raw data, but it is potentially far more valuable is to 
first process the data in some way.  For example, one might apply 
a dimensionality-reduction algorithm then view transformed data 
in three dimensions.  Or, one might use a tool to compute the 
relative impact of different variables on a target variable.  Even 
better would be to find insights in the relations among variables, 
e.g. by visualizing CART trees [2] or extracting rules from neural 
networks [29].  Ideally, one could find a functional relation from 
some variables to other variables, i.e. find a “whitebox” mapping 
from a dataset.  Though non-GP approaches to whitebox 
modeling exist, (e.g. [16]), the searching ability and flexibility of 
GP in SR mode make it ideally suited to the task. 

Or at least, that’s what GP should be suited for.  But as a recent 
paper complains, “[GP-evolved] expressions can get, as we have 
seen, quite complex, and it is often extremely difficult to 
understand them without a fair bit of interaction with a tool such 
as Mathematica” [13].  Fortunately, we can identify specific 
interpretability challenges: managing complexity, excessive 
compounding of nonlinear operators, finding good coefficient 
values, simultaneous overabundance and shortage of coefficients, 
non-compact polynomials and rationals, dimensional awareness, 
bounded ranges for expressions, and bounded ranges for 
operators.   

Some GP systems deal with these challenges quite well, most 
notably adaptive logic programming [10].  Unfortunately, its 
adoption is hindered because it is substantially more complex than 
off-the-shelf (grammar-based) GP systems. 

In this paper we present an approach that addresses most of the 
above challenges as well.  The key idea is to use CAnonical Form 
Function Expressions IN Evolution (i.e. CAFFEINE). This makes 
(GP) in symbolic regression (SR) mode [14].  For prediction, GP 

sits in a competitive, crowded field. 

it far easier for GP to place coefficients and manage complexity 
and nonlinearity.  It is simple to apply, as it is mostly a grammar 
that fits into any grammar-based GP system. The method will be 
illustrated for analog circuit performance modeling. 

This paper is organized as follows. In section 2, we review SR 
challenges, and related approaches.  In section 3 we describe 
CAFFEINE.  Section 4 demonstrates its application to knowledge 
extraction in analog design.  Section 5 investigates the relative 
performance of variants, including Grammatical Evolution vs. 
Whigham-style, grammar-defined introns, and smooth uniform 
crossover with smooth point mutation. Section 6 concludes. 
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2. CHALLENGES OF SR 
This section examines SR challenges and GP approaches (or lack 
of approaches) to handle each.  Most of them are specific to SR.  

Managing Complexity.  Occam’s Razor is the guide here: the 
simplest model that describes the data is usually the correct one.  
Complexity is typically dependent on measures like tree depth and 
node count.  In GP, expression-simplification processes are of two 
varieties: non-SR and SR-specific.  Non-SR techniques include 
(1) penalizing complex solutions (“parsimony pressure”), (2) 
having complexity as a second objective and using a 
multiobjective algorithm, (3) maximum tree depth [14], (4) 
uniform operators such that depths never grow [26], and (5) other 
“bloat control” methods, e.g. [25].  The SR-specific approach is to 
do symbolic simplification, either automatically during or after 
evolution with a symbolic math tool like Mathematica, or 
manually after evolution.   

Excessive Compounding of Nonlinear Operators.  GP gives 
uniform treatment to operators, whether they are linear or 
nonlinear.  The result is that even a very small tree which would 
pass GP-parsimony standards could be not interpretable by 
humans.  An example is tan(exp(sin(x))): three compounded 
nonlinear operators is too much, and even two is questionable.  
Maximum tree depth might handle this, but unfortunately it has to 
still be large enough to handle other reasonable combinations of 
expressions such as polynomials. 

Finding Coefficient Values. Induced expressions might have 
real-valued coefficients which must be determined during GP 
search.  Coefficients can be either the linear “weights” on each 
basis function (along with the offset), or the nonlinear coefficients 
inside basis functions.  Linear weights can be handled by: 
inclusion with nonlinear coefficients; linear regression [20]; or 
using just one basis function and a simple correlation calculation 
to sidestep linear regression until after evolution [12].  Nonlinear 
coefficients can be handled by “ephemeral random constants” 
[14]; by constant perturbation on a distribution, e.g. uniform [28] 
or Gaussian [1]; via nonlinear optimization [30]; within a 
constant-creation grammar such as digit concatenation [5]; or 
even combining multiple strategies [5]. 

Log-Range of Coefficient Values.  For some problems, 
coefficient values should also be able to take on a wide range of 
possible values that may vary by many orders of magnitude: large 
positive numbers like 1.0e+10, small positive numbers like 1.0e-
10, zero, small negative numbers, and big negative numbers.  
Some SR approaches handle it implicitly by allowing log() and/or 
power() operators to act directly on the constants, or by choosing 
from a discrete set of log-range variables.  We have not been able 
to identify an work that directly addresses log-valued constants 
for continuous-valued numbers.  

Coefficient values are just one side of the “coefficient coin”; GP 
must also determine where in the expression to insert each 
constant.  Thus, in contrast to much research on coefficient 
values, with the exception of the linear/nonlinear distinction, to 
our knowledge there is little discussion of coefficient placement in 
the GP literature.  Unfortunately, this means that GP-evolved 
equations can end up having too few constants in some places and 
too many in others; i.e. shortages and overabundances.   

  
Figure 1: Coefficients can be difficult to insert if not already 

present, even if the behavioral change is small 
 

                   
Figure 2: An example of coefficient overabundance 

                    
Figure 3: It can take many nodes to get a simple polynomial or 

rational expression.  They can even cancel each other out. 
 

Coefficient Shortages.  Consider the expression f(x) = log(x), 
which might appear in a typical SR run.  It has four implicit 
coefficients: f(x) = w0 + w1*log(w2 + w3*x) where w0 = 0.0, w1 = 
1.0, w2 = 0.0, and w3 = 1.0.  The first two coefficients w0 and w1 
are linear; the others are nonlinear. As Figure 1 illustrates, GP 
should be able to make small steps in the space of the function’s 
behavior by having all relevant coefficients readily available.  If 
there is a coefficient shortage, tunability of the function is 
compromised.   

Coefficient Overabundance. Missing constants in some places is 
one issue, and having too many in other places is another.  The 
GP system is evolving more parameters than it needs to.  Figure 2 
illustrates one of many examples.   

Non-compact Polynomials and Rationals.  In GP, it takes many 
terms to build up a polynomial, and sometimes those terms cancel 
each other out causing redundant terms, as Figure 3 shows.  In the 
literature, this is also handled implicitly as part of symbolic 
simplification.   

Dimensional Awareness.  In real-world use, functions describe 
something, and that “something” has units of measurement.  Each 
input variable, and the target variable, has its own unit, such as 
“m/s” for a velocity variable.  For a GP-evolved function to be 
physically meaningful, the units have to align, e.g. only like units 

f(x) = (x3/x1)*((x1*x1)*x3) = x1 * x3
2 
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can add, and the input variables must propagate through to the 
output such that the correct output unit is hit.  Most SR systems 
ignore this, but the work of Keijzer is a notable exception: he 
demonstrated one system that used dimensionless values, another 
that biased evolution towards correct units, and a third system that 
had correct-by-construction units [9][10].  He did note that if 
there is a coefficient in front of an expression, that coefficient 
could conceivably have “corrective” units such that the input units 
translated properly into the output units.  Interestingly, the 
existence of coefficients everywhere (implicit or explicit) causes 
implicit corrective unit transformations! 

Bounded Ranges for Expression Outputs.  For a given problem, 
each unit of measurement has a range of reasonableness.  For 
example, velocity of a car can safely be bounded between 0 and 
500 km/h.  An ideal function would never allow intermediate or 
final expressions that go beyond unreasonable unit ranges.  Most 
GP research ignores this, though Keijzer handles this via interval 
arithmetic in GP [10][11]. 

Bounded Ranges for Operators.  Some mathematical operators 
are only valid for specific ranges, e.g. ‘/’ can only have a nonzero 
denominator, and log() needs a positive argument.  GP research 
typically handles this by “protected operators” [14] or simple 
exception handling, though the safest and most elegant way is 
probably interval arithmetic [10][11]. 

3. CAFFEINE 
3.1 Canonical Form Functions 
In this section we describe how we address each SR issue.  
Canonical form functions will play a key role. 
We follow the tenets of (a) ensuring maximum expressiveness per 
node, and (b) making all individuals directly interpretable, i.e. not 
needing to manipulate expressions to simplify. 
Figure 4 shows the general structure of a CAFFEINE canonical-
form basis function. It has levels of expressions that alternate 
between linear and nonlinear, “gated” by nonlinear functions.  
The linear expressions are a sum of basis functions; each basis 
function gets a weight, plus there is one overall offset.  A basis 
function is a combination of a polynomial/rational and/or one or 
more nonlinear operators.  Inside each nonlinear operator is the 
next level of linear expressions.  CAFFEINE places coefficients 
only where they are needed, and nowhere else.  This emerges as a 
canonical form for functions. 
An example is: f(x) = -10.3 + 3.1*x6 + 1.87 * x1 * log(-1.95 + 
10.3 * (x2*x7)/(x5)).  The value ‘-10.3’ is the top linear offset 
coefficient wo; the ‘3.1’ and the ‘1.87’ are the coefficients of basis 
functions for the top ‘weighted linear add’; the ‘x6’ is the lone 
instance of top-level standalone ‘Poly/Ratl’; the ‘x1’ is a 
‘Poly/Ratl’ that has a product with the nonlinear function log().  
Inside the log() is another weighted linear add subfunction. 
Each ‘Poly/Ratl’ can be described in terms of the exponent for 
each input variable; therefore we achieve always-compact 
polynomials and rationals. 
Typical usage of CAFFEINE would restrict the number of 
nonlinear operator layers to just one or two, which is a more 
effective “maximum depth” constraint, therefore resolving the 
issue of excessive compounding of nonlinear components.  There 
can also be a limit on the maximum number of linear basis 

functions, easy to set because usually beyond 10 or so would be 
too much for humans to interpret, and fewer is fine.  Thanks to its 
canonical form, all evolved functions are immediately 
interpretable, with no symbolic manipulation needed. 

 
Figure 4: Caffeine evolves functions of this canonical form. 

Such constraints on CAFFEINE directly resolve excessive 
complexity including bloat.  Furthermore, they can be used in a 
complementary fashion with other complexity-reducing tactics, 
e.g. having a second objective of complexity. 
The “only as needed” coefficient placement resolves coefficient 
overabundance and shortage issues.  A coefficient on everything 
also means that they can be “dimensional transforms” to resolve 
dimensional awareness. 
In determining coefficient values, we distinguish between linear 
and nonlinear coefficients.  A CAFFEINE individual is a set of 
basis functions which are linearly added.  Each basis function is a 
tree of grammatical derivations.  Linear coefficients  are found by 
evaluating each tree across all input samples to get a matrix of 
basis function outputs, then to apply least-squares regression with 
that matrix and the target output vector to find the optimal linear 
weights.   
With each nonlinear coefficient in the genotype (i.e. ones that are 
not found via linear regression), a real value will accompany it, 
taking a value in the range[ ]2 * , 2 *B B− + .  During interpretation 
of the genome the value is transformed 
into[ ] [ ] [ ]1 , 1 1 , 10.0e B e B e B e B− + − − − +∪ ∪ .  As for search for 
the value, any SR strategy might work.  In this paper, we use 
mutation on a distribution, in particular a Cauchy distribution on 
all values at once which cleanly combines aggressive local tuning 
with the occasional large change [33]. 
To keep the approach simple, at this point we have not added the 
ideal method (interval analysis) for bounding ranges for 
expressions or operators.  To handle bounded operators, we 
merely have exception handling on expression evaluation. 

3.2 CAFFEINE Implementation via a 
Grammar 
Here, we show how CAFFEINE can be implemented via an 
context-free grammar (CFG), but extended slightly to specially 
handle coefficients and Poly/Rationals. 
Many SR systems have used CFGs [23], typically in a form like 
the following (though usually with fewer nonlinear operators).  
EXPR is the start symbol; possible expansions follow the => 
symbol and are separated by |’s.  The W is a coefficient, and can be 
implemented in one of many ways [5]. 
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EXPR    => VAR | OP_1ARG ( EXPR ) |  

           OP_2ARG ( EXPR , EXPR )  

OP_2ARG => +  |   - | * | / |   POW | MAX | ... 
OP_1ARG => INV | LOG10 | SIN | ...  
VAR     => X1 | X2 | ... | Xn | W 

Importantly, there is no distinction in how the operators +, -, *, 
and / are used in comparison to the other operators, and variables 
and constants get directly plugged into expressions, giving rise to 
the SR issues given previously.  More advanced non-CFG 
grammars handle more constraints [10], but do not make those 
distinctions either.   
The CAFFEINE grammar is explicitly designed to create separate 
layers of linear and nonlinear functions and place coefficients and 
variables carefully: 
REPVC   => VC | REPVC * REPOP | REPOP 

REPOP   => REPOP * REPOP | OP_1ARG ( W + REPADD )| 

           OP_2ARG ( 2ARGS ) | ... 3OP, 4OP etc 

2ARGS   => W + REPADD, MAYBEW | MAYBEW, W + REPADD 

MAYBEW  => W | W + REPADD 

REPADD  => W * REPVC | REPADD + REPADD 

OP_2ARG => DIVIDE  | POW | MAX | ... 
OP_1ARG => INV | LOG10 | ... 

The start symbol is REPVC, which expands into one basis 
function (remember that an individual has several root-level basis 
functions).  Note the strong distinction among operators.  The root 
is a product of variables (REPVC) and / or nonlinear functions 
(REPOP).  Within each nonlinear function is REPADD, the 
weighted sum of next-level basis functions. 
A VC is a “variable combo”, intended to maintain a compact 
representation of polynomials/rationals.  Its expansion could have 
been implemented directly within the grammar; though in our 
baseline system we store a vector holding an integer value per 
design variable as the variable’s exponent.  An example vector is 

[1,0,-2,1], which means 2

1 4 3
( * ) ( )x x x .  This approach 

guarantees compactness and allows for special operators on the 
vector.  The operators we use are: one-point crossover, and 
randomly adding or subtracting to an exponent value. 

3.3 A Baseline CAFFEINE SR System  
The baseline employs the direct tree-style grammar-based GP 
system of Whigham [32] following the CAFFEINE grammar.  So, 
evolutionary operators must respect the derivation rules of the 
grammar, i.e. only subtrees with the same root can be crossed 
over, and random generation of trees must follow the derivation 
rules. (Section 5 will compare to Grammatical Evolution [23].)  
Our main objective is to minimize root mean-squared error 
(RMSE), but as there is still value in a complexity bias (it just 
doesn’t have to do as much), we employ a multiobjective 
algorithm, NSGA-II [4], with a second objective of minimizing 
complexity.    “Complexity” is somewhat arbitrary but we make it 
dependent on the number of basis functions, the number of nodes 
in each tree, and the exponents of VCs: 

,
1 1

nvc( )
complexity( ) ( nnodes( ) vccost( ))

M f

b k j
j k

j
f w j vc

= =

= + +∑ ∑  (1) 

where wb is a constant to give a minimum cost to each basis 
function, nnodes(j)  is the number of tree nodes of basis function 
j, nvc(j) is number of VCs of basis function j, and 

dim 1

vccost (vc) abs(vc(dim))
d

vcw
=

= ∑ . 

We apply the usual Whigham-style crossover and mutation 
operators for trees.  In addition, the basis function operators 
include: creating a new individual by randomly choosing >0 basis 
function from each of 2 parents; deleting a random basis function; 
adding a randomly generated tree as a basis function;  copying a 
subtree from one individual to make a new basis function for 
another. Coefficient and VC operators are as described in sections 
3.1 and 3.2, respectively. 

3.4 CAFFEINE Search Biases 
The fact that the CAFFEINE search space is more structured than 
simpler-grammar SR means that we can get a better idea of where 
the biases might be. CAFFEINE functions can be viewed sum-of-
products (-of-sums-of-products-of…) expressions. While 
CAFFEINE could support product-of-sums, it currently does not, 
which means that CAFFEINE will have difficulty with functions 
better modeled as products of sums.  The constraints of 
CAFFEINE also remove redundancies within functional space, 
which could also impact its search ability.  Also, at this point we 
have been liberal in our choice of operators, but some might have 
damaging biases; a future challenge would be to identify each 
operator’s relative effectiveness.  Finally, CAFFEINE’s extra 
emphasis on coefficients also makes it more sensitive to how 
coefficients are handled.  In particular, the parameter mutation 
rate, and the chosen range of possible coefficient values could 
have large sensitivities. 

4. APPLICATION: KNOWLEDGE 
EXTRACTION IN ANALOG DESIGN 
This section summarizes the first application of CAFFEINE: 
knowledge extraction for analog circuits [17].   

 
Figure 5: A CMOS Operational Transconductance Amplifier, 

used to generate datasets for six SR problems 
A “symbolic model” of an analog circuit is merely an expression 
that maps circuit designables (like transistor widths and lengths, 
or circuit biases) to a circuit performance measure (like power 
consumption).  Fundamentally, such models increase a designer’s 
understanding of a circuit, which leads to better human decision-
making in circuit sizing, layout, verification, and topology design.  
Since well-designed analog circuits are crucial to the multibillion-
dollar semiconductor industry, automated approaches to symbolic 
model generation are of great interest.  Over the last two decades, 
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there has been active research on symbolic modeling.  However, 
no previous tool could create models of arbitrary nonlinear analog 
circuits with accuracy in line with the “gold standard” of circuit 
analysis: SPICE circuit simulators.   
Table 1: CAFFEINE-generated symbolic models of an analog 

circuit which gave <10% prediction error 

 

 
Figure 6: Across six analog circuit modeling problems, 

CAFFEINE-based GP has the best prediction compared to 
several state-of-the art approaches including neural networks 
[27], splines [7], and support vector machines [6].  The y-axis 

is prediction error summed across 6 problems. 

In [17], the circuit of interest is as shown in Figure 5.  The goal 
was to discover expressions for each of six performance measures: 
low-frequency gain (ALF), unity-gain frequency (fu), phase margin 
(PM), input-referred offset voltage (voffset), and the positive and 
negative slew rate (SRp, SRn).  These measures each had 13 
possible input variables, which were the designables of the circuit 
(in this case, circuit biases).  There were 243 training samples and 
243 testing samples.  Input samples were generated via Latin 
Hypercube Sampling [21], and corresponding outputs were found 
by circuit simulation to extract performance measures.  No scaling 
was used.  
The baseline CAFFEINE described in section 3.3 was applied on 
the datasets, to generate a set of models trading off error and 

complexity.  Table 1 shows some of the models generated for each 
of these six symbolic modeling problems.  Note how readily 
interpretable they are, of significance especially because they were 
not post-processed with any symbolic manipulation at all. 
A good knowledge extractor should be able to predict well on 
unseen data, so [18] compared (the baseline) CAFFEINE’s 
prediction abilities to other well-known techniques.  As shown in 
Figure 6, CAFFEINE fared the best.  

5. STUDY OF CAFFEINE VARIANTS 
With promising results on the baseline, and convergence speed an 
active area in GP research, it is natural to ask how fast 
CAFFEINE variants might be.  In this section, we test the effects 
of Grammatical Evolution (GE) [23], of grammar-defined introns, 
and of smooth, uniform crossover with smooth point mutation 
(SUX/SM) [26].  We also compare to simple-grammar Whigham-
GP and simple-grammar GE.  

5.1 CAFFEINE with Grammatical Evolution 
Unlike Whigham-style GP which evolves trees, GE [23] uses 
bitstrings which sequentially specify derivation rules.  We 
implemented GE using the standard operators of one-point 
crossover, flip-bit mutation, and codon duplication.  We inserted 
minor modifications in order to have a more clean comparison to 
the baseline system.  First, each GE individual had one bitstring 
for each basis function, and the linear weights were found via 
linear regression.  Secondly, for the coefficients, rather than one 
of many possible GE-style approaches [5], we had a second list of 
numbers, where there is one real-valued number to correspond 
with each derivation rule.  During evaluation, it follows a 
CAFFEINE-style log-expansion.  The mutation operator for these 
values is also Cauchy mutation.  Note that these real-valued 
numbers only get expressed when their corresponding W is being 
expressed.  Third, VCs were implemented with the following 
derivation rules.  Like the system in section 5.3, we constrained to 
a maximum two variable interactions, and biased to a variable 
exponent of 1.0. 
VC     => POWVAR | POWVAR * POWVAR 
POWVAR => VAR | VAR ^ POWEXP 
VAR    => x1 | x2 | ... | xn  
POWEXP => -2 | -1 | -0.5 | 0.5 | 2  
 

5.2 CAFFEINE with Grammar-Defined 
Introns 
In [23], the authors speculate that grammar-defined introns might 
be useful to GE, so we test that for context of a CAFFEINE 
system.  CAFFEINE offers several opportunities to insert introns 
because of good control over coefficient placement.  The grammar 
is modified as follows: 
REPOP => REPOP * REPOP |  
         OP_1ARG ( W + REPADD ) ^ OPEXP | 
         OP_2ARG ( 2ARGS ) ^ OPEXP 
OPEXP => 0 | 1 
REPADD=> W_OR_ZERO * EXPR | REPADD + REPADD 
W_OR_ZERO => W | 0.0 
Thus, CAFFEINE allows introns in two ways: turning off 
nonlinear operators via power-of-zero, and turning off basis 
functions by forcing their weight to zero.  Such grammar-defined 
introns can be part of Whigham-style or GE-style representation; 
we test both.   

Perf. Symbolic Model 

ALF -10.3 + 7.08e-5 / id1  
+1.87 * ln(-1.95e+9  + 1.00e+10 / (vsg1*vsg3) 

              +1.42e+9*(vds2*vsd5) / 
(vsg1*vgs2*vsg5*id2)) 

fu 10^( 5.68 - 0.03 * vsg1 / vds2 – 55.43 * id1+ 5.63e-6 / 
id1) 

PM 90.5 + 190.6 * id1 / vsg1  +  22.2 * id2 / vds2 

voffset - 2.00e-3 

SRp 2.36e+7 + 1.95e+4 * id2 / id1 - 104.69 / id2 + 2.15e+9 * 
id2 + 4.63e+8 * id1 

SRn - 5.72e+7 - 2.50e+11 * (id1*id2) / vgs2 + 5.53e+6 * vds2 
/ vgs2 + 109.72 / id1 
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Figure 7: Each subplot shows the average (over 30 runs) of training RMSE vs. generation, for many symbolic regression variants.  

Each subplot is for a different circuit modeling problem. 

5.3 CAFFEINE with Smooth, Uniform 
Crossover and Smooth Point Mutation 
In [26], significant speedup in GP was achieved by leveraging 
SUX/SM for improved mixing of building blocks.  That approach 
was applied to a logic synthesis problem, but it was not easy to 
apply to general GP problems, as one needs to align operators, 
handle different depths, and handle functions of different arity.  
Nevertheless, [19] showed that the structure of CAFFEINE lends 
itself well to uniform crossover.  The trick is to pre-assign a fixed 
number of additions or multiplications for each level in the 

function structure, but allow them to be turned off by introns.  
This results in a fixed-size tree, allowing for ready application of 
SUX/SM operators.  In [19] this variation performed very well 
compared to the baseline; that system is compared here too. 

5.4 Experimental Setup 
We test on the circuit application of section 4.  Recall that there 
are six modeling problems; each problem has 13 input variables 
and 243 samples.  For speed comparisons, it is simpler to just 
optimize on the single objective of training error, and compare 
that.  Thus, all experiments in this section are for just single-
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objective EAs.  The aim is to build models with <5% training 
error; at which point the EA run is considered successful and 
stopped.  Operators allowed were: x , log10(x), 1/x, abs(x), x2, 
10x, max(x1,x2), min(x1,x2).  Maximum number of basis functions 
= 7, population size 200, stop when 500 generations or target 
error hit, varcombo exponents in [-2,-1,-0.5,0,0.5,1,2], and 
weights in [ ]1 10, 1 10e e− + − − ∪ [ ]0 ∪ [ ]1 10, 1 10e e− + .  Maximum 
tree depth was 7, therefore allowing just one layer of nonlinear 
operators.  For non-GE approaches, all operators had equal 
probability, except parameter mutation was 5x more likely.  GE 
settings were in line with [23] as much as possible: each basis 
function genotype could have 1 to 10 integers, each in the range 
{0,2,…,255}; one-point crossover had a probability 90/135, 
parameter mutation 30/135, and the rest had equal probability 
among the remaining 15/135.  Thirty runs were done for each 
approach on each problem.  

5.5 Experimental Results 
Remember that the benefit of CAFFEINE-style constraints is for 
the resulting function to be interpretable (such as those shown in 
section 4).  To remind the reader of how ugly simple-GP-evolved 
expressions can be, here is a typical basis function found in the 
best individual of a simple-grammar ALF run: 
- 1.40 * ( vsg1 + max( vsg5, max( max( max( vsg5, max( 
vsg3 + vgs2, min( vsg3, abs( 1/vds2 ) ) ) - log10(vsd5) ), 
min( ib2, abs( sqrt( abs(id1) ) ) ) ) - log10(vsd5), max( id2, 
min( vsg3, abs( sqrt( abs( log10(id2) ) ) ) ) ) + log10(vsd5) ) 
- min( vsg3, abs( sqrt( abs(id1) ) ) ) - log10(vsd5) ) ) 
 
In contrast, the CAFFEINE-style functions all had the same 
readily interpretable “look”, thanks to the canonical forms that 
they were constrained to (see Table 1).  This is the case no matter 
which CAFFEINE variant is used, whether it uses Whigham-style 
or GE, introns or not, or SUX/SM.  So, the choice of using 
CAFFEINE can be largely orthogonal to other choices regarding 
the search algorithm. 
We had two baseline non-CAFFEINE algorithms, one using a 
Whigham style of handling the grammar and one using GE style.  
Interestingly, these two baseline approaches were at opposite ends 
of the performance spectrum, with all CAFFEINE approaches in 
between. 
Our primary question is to see if convergence can still be 
reasonable under the extra search space constraints imposed by 
CAFFEINE, compared to a simple grammar.  Figure 7 shows 
convergence over time for each variant and each problem. To 
answer our primary question, we compare the best CAFFEINE 
variant, SUX/SM, with the best simple-grammar variant, Simple 
& Whigham.  In 5 of 6 cases, CAFFEINE seemed to have the 
same rate of convergence, though with a time lag of about 20 – 50 
generations.  The remaining case was ALF, which posed the most 
difficulty for all approaches, though less so for Simple & 
Whigham. 
We are also interested in performance differences between 
Whigham-style and GE representations.  There are three 
comparisons to make, each with a Whigham and a GE variant: 
CAFFEINE, CAFFEINE & introns, and simple grammar.  In all 
three comparisons, GE does worse than its Whigham-style 
counterpart.  This is most notable on the simple grammar; which 
we surmise is because that grammar needs more symbols than 

CAFFEINE to be as expressive, and GE is known to have issues 
with building block disruption.  In fairness, we only used 
canonical GE of [23]; recent GE techniques aim to address 
disruption [24].  Also, how we handled coefficients with 
CAFFEINE & GE may have been detrimental.  
As for the effect of grammar-defined introns: they never helped, 
tending to slow convergence by about 10%.  The cost of explicit 
introns is “some extra coding segments” and the potential payoff 
is adding extra genotype diversity to escape local optima.  At our 
population of 200, the cost / benefit was not positive, but it is 
possible that the balance may tip at smaller population sizes ([31] 
had benefit from introns at tiny population sizes).  There are also 
potentially better ways to include introns into the search. 
The SUX/SM CAFFEINE variant had a sizeable performance 
advantage over other CAFFEINE variants.  This is not surprising, 
as it is grounded in GP theory to have improved mixing of 
building blocks.  It is also important to note that the SUX/SM 
strategy is not available to simple-grammar SR; it was the 
particular structure of CAFFEINE that enabled it. 

6. CONCLUSION 
GP can evolve functions, making it ideally suited for knowledge 
extraction from datasets.  Unfortunately, there is no technique in 
the literature that both (a) ensures that such evolved expressions 
are human-interpretable and (b) is simple to apply.  This paper 
presented a technique called CAFFEINE that meets both goals, by 
constraining the search to a space of canonical form functions.  
These constraints can readily be embedded in a grammar-based 
GP system, or even implicitly.      
We demonstrated CAFFEINE in the real-world knowledge 
extraction problem of analog circuit analysis, and also show that it 
out-predicts other state-of-the-art techniques like support vector 
machines. 
We explored variants of CAFFEINE and compared them in terms 
of convergence ability for six test problems.  We found that the 
fastest CAFFEINE variant is moderately slower than a simple (i.e. 
far less constrained) symbolic regression grammar which evolves 
very hard-to-interpret expressions.  The fastest variant uses 
smooth, uniform crossover with smooth mutation.  Thus, if raw 
speed is the only goal, we would not recommend CAFFEINE.  
But if interpretability of expressions is a concern, especially 
during evolution, then CAFFEINE would be useful.  
We also found that Whigham-style variants did better than 
Grammatical-Evolution variants, and that grammar-defined 
introns did not help.  
CAFFEINE can readily fit into machine-code GP [22], for an 
attractive combination of high speed and interpretable results. 
Other directions include using newer GE variants such as piGE 
[24], or combining CAFFEINE with ALP / interval arithmetic 
[10][11]. 
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