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ABSTRACT 
In this paper, we propose the island model parallel memetic 
algorithm with diversity-based dynamic adaptive strategy (PMA-
DLS) for controlling the local search frequency and demonstrate 
its utility in solving complex combinatorial optimization 
problems, in particular large-scale quadratic assignment problems 
(QAPs). The empirical results show that PMA-DLS converges to 
competitive solutions at significantly lower computational cost 
when compared to the canonical MA and PMA. Furthermore, 
compared to our previous work on PMA using static adaptation 
strategy, it is found that the diversity-based dynamic adaptation 
strategy displays better robustness in terms of solution quality 
across the class of QAP problems considered without requiring 
extra effort in selecting suitable parameters. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search − Heuristic methods; G.1.6 [Mathematics 
of Computing]: Optimization − Global optimization  

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
combinatorial optimization, quadratic assignment problem, island 
model parallel memetic algorithm, population entropy 

1. INTRODUCTION 
One of the recent growing areas in Evolutionary Algorithm (EAs) 
research is Memetic Algorithms (MAs) [16]. MAs are population-
based meta-heuristic search methods inspired by Darwinian’s 
principles of natural evolution and Dawkins’ notion of a meme. A 
meme is defined as a unit of cultural evolution that is capable of 
local refinements [5]. Hence, a memetic model of adaptation 
exhibits the plasticity of individuals that a strictly genetic model 
fails to capture. Recent studies on MAs have revealed their 
successes on a wide variety of optimization problems [9, 13, 18, 

11, 21]. Some theoretical and empirical investigations on MAs 
can be found in [7, 9, 13, 18, 11, 21].  

A well known strength of evolutionary algorithms (EAs) is the 
ability to partition the population of individuals or islands of EA 
subpopulations among multiple computing nodes. Recent 
extensions of MAs to parallel MAs (PMAs) have been proposed 
in [23, 24]. It is worth noting that a crucial aspect of MAs or 
PMAs is in defining an optimum balance between the extent of 
exploration provided by the GA, against the level of exploitation 
posed by the local search procedure throughout the memetic 
search. However, in canonical MAs or PMAs, it is common 
practice for the local search procedure to be applied on every 
individual/chromosome in the GA population(s). This is a very 
computationally intensive and inefficient search process. At the 
same time, exhaustive local search may lead to ineffective search 
due to premature fall in diversity during the PMA search. Our 
previous work [25] has proposed a selective local search strategy 
(PMA-SLS). However, it is a static adaptive approach based on 
pre-defined Gaussian function, which is less robust and requires 
tedious parameters tuning. Here, we consider a diversity-based 
dynamic adaptive strategy (PMA-DLS) for controlling the local 
search frequency and demonstrate its utility in solving complex 
combinatorial optimization problems, in particular large-scale 
quadratic assignment problems (QAPs).  

The QAP is a class of NP-hard combinatorial optimization 
problems with many interesting practical applications. It was 
formulated by Koopmans and Beckmann [10] for location 
planning of economic activities. To formulate a QAP 
mathematically, consider n facilities to be assigned to n locations 
with minimum cost. The QAP can be described by two n × n 
matrices A = [ ]ija and B=[ ]ijb . The goal is to find a permutation 
π  of the set M={1,2,3,…,n}, which minimizes the objective 
function C(π ) as in Eq.(1). 
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In the above equation, matrix A can be interpreted as a distance 
matrix, i.e. ija denotes the distance between location i and 

location j. B is referred to as the flow matrix, i.e. ijb represents the 
flow of materials from facility i to facility j. We represent an 
assignment by the vectorπ . ( )iπ  is the location which facility i 
is assigned. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO’06, July 8–12, 2006, Seattle, Washington, USA. 
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00. 
 

575



Since QAP is NP-hard, only implicit enumeration approaches are 
known to solve them optimally. However, larger size problems 
(n>20) are generally considered to be intractable due to the poor 
scalability of the enumeration methods. From literature survey, 
many heuristic approaches have played an important role in 
algorithms capable of providing good solutions within tractable 
computational time, such as genetic algorithms (GA) [14, 15], 
memetic algorithms [17, 18].    

This paper presents an investigation on PMA-DLS for controlling 
the local search frequency in the PMA search.  In contrast to 
canonical MAs and PMAs, the diversity-based dynamic adaptive 
approaches control the number of individuals undergoing the local 
search procedure throughout the PMA evolutionary search 
process. PMA-DLS controls the local search frequency adaptively 
based on changes of population diversity during the PMA search. 
The numerical results indicate that PMA-DLS converge to 
competitive solutions at significantly lower computational cost 
when compared to the canonical MA and PMA. Furthermore, the 
diversity-based dynamic adaptation strategy is shown to be more 
robust in terms of solution quality on the class of QAP problems 
considered compared to our previous work [25]. However, 
previous static adaptation strategy would require effort in 
selecting appropriate parameters to suit the problems in hand. 

This paper is organized as follows. Section 2 provides a brief 
overview of the recent research activities on memetic algorithm. 
The proposed diversity-based dynamic adaptive approaches for 
controlling the local search frequency in the island model parallel 
memetic algorithm are described in Section 3. Section 4 presents 
the numerical results obtained from empirical study and provides 
a comprehensive quantitative/statistical comparison of PMA-
DLS, PMA-SLS and PMA in the context of large scale QAPs. 
The search performances of the various algorithms in terms of 
solution quality, computational time, and solution precision are 
also reported in the section. Finally, we conclude the paper in 
Section 5.  

2. RELATED WORK 
Memetic algorithm may be regarded as a marriage between a 
population-based global search and the local improvement made 
by each of the individuals. This has the potential to exploit the 
complementary advantages of EAs (generality, robustness, global 
search efficiency), and problem-specific local search (exploiting 
application-specific problem structure, rapid convergence toward 
local minima). In recent years, a number of independent 
researchers have addressed several issues relating to the trade-off 
between exploration and exploitation in MAs. In this section, we 
present a brief overview on some of the typical issues considered 
in the literature as follows: 

1) How often should local learning be applied, i.e., local search 
frequency? 

2) On which solutions should the local learning be applied? 
3) How long should the local learning be run, i.e., local search 

intensity? 
4) Which local learning procedure or local search or meme to 

use? 

One of the first issues pertinent to memetic algorithm design is 
considering how often the local search should be applied for, i.e., 
local search frequency? Hart [9] investigated the effect of local 
search frequency on MA search performance. Upon which, he 
investigated various configurations of the local search frequency 
at different stages of the MA search. Conversely, it was shown in 
K.W.C. Ku et al. [12] that it may be worthwhile to apply local 
search on every individual if the computational complexity of the 
local search is relatively low. Hart [9] also studied the issue on 
how to best select the individuals among the EA population that 
should undergo local search. In his work, fitness-based and 
distribution-based strategies were studied for adapting the 
probability of applying local search on the population of 
chromosomes in continuous parametric search problems. Land 
[13] extended his work to combinatorial optimization problems 
and introduced the concept of “sniff” for balancing genetic and 
local search or also known as the local/global ratio. In [7], 
Goldberg and Voessner provide a theoretical alternative for 
efficient global-local hybrid search and characterize the optimum 
local search time that maximizes the probability of achieving a 
solution of a specified accuracy. Recently, Bambha et al. [1] 
introduced a simulated heating technique for systematically 
integrating parameterized local search into evolutionary 
algorithms to achieve maximum solution quality under a fixed 
computational time budget.  

It is worth noting that the performance of MA search is also 
greatly affected by the choice of neighborhood structures. Fitness 
landscape analysis [17] provided a way for identifying the 
structure of a given problem and thus a selection of local search 
algorithms. Krasnogor [11] investigated how to change the size 
and the type of neighbourhood structures dynamically in the 
framework of multimeme memetic algorithms where each meme 
had a different neighbourhood structure, a different acceptance 
rule and different local search intensity. The choice of multiple 
local learning procedure or memes during a memetic algorithm 
search in the spirit of Lamarckian learning, otherwise, known as 
meta-Lamarckian learning, on continuous optimization problems 
was also considered in Ong et al. [21]. For a detail taxonomy and 
comparative study on adaptive choice of memes in memetic 
algorithms, the reader may refer to [22].  

A variety of parallel memetic algorithm (PMA) models that 
extends from canonical PGA have also been recently studied in 
the literature. These include the blackboard parallel asynchronous 
memetic algorithm proposed [2], master/slave PMA [6] and the 
island model PMA [4]. The issue on which individuals should 
local learning be applied was also recently considered in the 
context of island model parallel memetic algorithm [4]. From a 
survey of the literature, insignificant efforts have considered 
balancing global and local search in the context of parallel MA. In 
particular, little work in the literature has studied the effect of 
local search frequency on the diversity of PMAs. Hence, we 
present a study on the negative impact of excessive local search in 
island model PMA in the subsequent sections. In the event, we 
proposed diversity-based dynamic adaptive strategy for 
controlling the local search frequency in island model parallel 
memetic algorithms. 
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3. DIVERSITY-BASED DYNAMIC 
ADAPTIVE STRATEGY FOR ISLAND 
MODEL PMA  
3.1 Canonical Island Model Parallel Memetic 
Algorithm (PMA) 
In this paper, we focus on Island Model Parallel Memetic 
Algorithm (PMA) for solving large-scale combinatorial 
optimization problems. The pseudo code of a canonical PMA is 
outlined in Fig. 3-1.  
In the first step, M subpopulations are randomly initialized. All 
individuals in the subpopulations then undergo the local search 
learning procedure in the spirit of Lamarckian learning. The local 
search procedure considered here is based on the k-gene exchange 
[23, 24, 14, 15]. Subsequently new subpopulations are created 
using the evolutionary operators, particularly, selection, mutation 
and crossover. For every P migration interval, K best performing 
individuals in each subpopulation migrate to its neighbouring 
subpopulation based on the one-way ring topology [24]. At the 
same time, it receives K individuals from a neighbouring 
subpopulation. The replacement scheme may be a random walk or 
alternatively, the worst performing K individuals are replaced 
with the K migrants from its neighbour. The entire procedure 
repeats until the stopping conditions are satisfied. 
It is common knowledge that good diversity represents a core 
advantage of using island model parallel memetic algorithm for 
solving global optimization problems. Here, we consider using the 
1) 2-island PMA and 2) 2-island PGA for solving the sko100b 
QAP benchmark optimization problem. Note that PGA represents 
a canonical parallel GA. In contrast to PMA, no form of local 
search is used throughout the PGA search. The diversity of each 
subpopulation may be measured by various means. A simple 
method is using entropy measure E:  

                                  
1

log( )
Q

j j
j

E p p
=

= −∑                                   (2) 

 
Fig. 3-1 Pseudo code of the canonical island model PMA 

Entropy measure of PMA and PGA on sko100b
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Fig. 3-2 Entropy measure for PMA and PGA on the sko100b 
QAP problem 

where j
j

S
p

N
=  and N is the population size for each 

subpopulation [8]. Q is the number of the mutually exclusive 
subsets S1, S2,…, SQ in each subpopulation. Each subset consists 
of individuals with the same fitness value. The number of 
individuals in each subset is |S1|，|S2|,…,|SQ|, respectively. Hence 
E indicates the degree of diversity in the subpopulation. For 
illustration, the diversity of each subpopulation in the 2-island 
PMA and PGA based on the entropy measure is depicted in Fig. 
3-2. 
From Fig. 3-2, it is worth highlighting the significant drop in the 
entropy measure of the PMA search in comparison to the PGA 
counterpart when searching on the sko100b benchmark problem. 
From these results, it appears that PMA loses search diversity 
much earlier than PGA due to possible excessive local searches. 
This significant drop in diversity for the PMA indicates the 
benefits of using local search in speeding up convergence rate of 
the search. However, it also implies the high risk of the PMA in 
losing search diversity prematurely as a result of the extensive 
local searches. This effect can also be observed to be more 
significant at the later stage of evolution search. To minimize the 
risk of premature convergence in the PMA, it is reasonable to ask 
whether the effects on performance might be reduced via adapting 
the local search frequency in the PMA search. Here, we present 
diversity-based dynamic adaptive strategy (PMA-DLS) for 
controlling the local search frequency in the PMA search.  

3.2 Diversity-based Dynamic Adaptive 
Strategy (PMA-DLS) 
In Fig. 3-2, it is noted that the population diversity degrades 
gradually with the evolving generation. Online entropy measure 
provides dynamic information about the stage of the evolutionary 
search process and the degree of diversity of each subpopulation. 
Since population diversity represents a crucial characteristic of 
the PMA, the approach considered here makes use of online 
entropy measure to adapting the local search frequency of the 
PMA, which is the diversity-based dynamic adaptive strategy or 
PMA-DLS in short. Hence, the dynamic local search 
frequency β  in PMA-DLS can be defined based on online 
entropy ratio given by 

BEGIN 
Initialize M subpopulations of size N each 
WHILE (termination condition not met) 
              FOR each subpopulation or island 
              Evaluate all individuals in the subpopulation 

               For each individual in the subpopulation 

 Apply local search to the individuals in the 
subpopulation. 

 Proceed with local improvement and replace the 
genotype in the subpopulation with the improved 
solution. 

End For 
Create a new population based on Selection, Mutation and 
Crossover. 

             END FOR 
             For every P migration interval 
                    Send K < N best individuals to a neighbouring 

subpopulation. 
 Receive K individuals from a neighbouring 

subpopulation. 
 Replace K individuals in the subpopulation. 
             END For             
END WHILE 
END 
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where )(genE and ( )E gen k− ( )gen k≥ are the population 
entropy measure at the genth and (gen-k)th generation, respectively. 

The PMA-DLS search thus begins by initializing all 
subpopulations randomly with a population size of ξ  
chromosomes, i.e., (0)φ ξ= . Subsequently, the number of 
chromosomes that undergo local learning is defined by equation 
(4) that changes based on diversity level of the subpopulations. 

                 
, 0
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gen

Min gen k gen gen
ξ

φ
φ β ξ
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           (4) 

4. EMPIRICAL STUDY  
For comparison purpose, PMA-DLS denotes the island model 
PMA with diversity-based dynamic adaptive strategy. PMA-SLS 
denotes our previous work [25], i.e., the island model PMA with 
the selective local search strategy. PMA-FLS refers to the island 
model PMA with fixed local search strategy where local search is 
applied only to individuals that have undergone modification by 
the evolutionary operators [23, 24]. PMA denotes the island 
model PMA with complete local search strategy. MA abbreviates 
canonical memetic algorithm. 
A grid-enabled solver [19, 20] is used to facilitate the 
implementation of the algorithms [23]. The algorithms were 
evaluated by averaging over 10 optimization runs. The 
configuration of the PMA control parameters is summarized in 
Table 4-1. The migration control parameters, stopping criterion 
and several other criteria have been defined to measure the 
performance as in [25].  
4.1 Results Comparison  PMA-DLS vs. 
PMA-SLS 
For the selective local search strategy in PMA-SLS [25] based on 
the Gaussian distribution function, the subpopulation size is a 
constant for certain number of islands in the PMA and μ  is set to 

zero. The other two parameters ),( ησ  were tuned in order to 
adjust the local search frequency for each generation gen. To 
decide on the appropriate configuration, significant effort was 
expended on parameters tuning in order to achieve a desirable 
level of performance. Various parameters setting for the Gaussian 
function were experimented to configure the PMA-SLS. For 
example, in Fig. 4-1, three Gaussian functions denoted as 1γ , 2γ  
and 3γ  with different parameters setting are shown. The 

Table 4-1 Parameters setting for the PMA 
MA parameters Multi-island PMA 

Population size 240 

Subpopulation size 240/M 
2 (M=2) Elite size 
1 (M≥3) 

Maximum number of generations 180 

Fitness scaling factor Sf 3 

Crossover probability Pc 0.8 

Mutation probability Pm 0.05 
Zerofit threshold constant Kz 5 
M: number of islands (processing nodes) 

Number of individuals applying local search
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Fig. 4-1 Gaussian functions for PMA-SLS 

corresponding number (Num) of individuals where local search is 
applied can be determined accordingly. Supposing that the 
number of island M  is 2, the subpopulation size equals 120. 
Population sampling for local search was carried out every 10 
generations. According to Fig. 4-1, application of 1γ , 2γ  and 

3γ will result in different local search frequency applied in the 
PMA. Based on the application of 1γ , 2γ  and 3γ , the 
corresponding PMA-SLS-1, PMA-SLS-2, and PMA-SLS-3 were 
derived. Meanwhile, PMA-DLS is more straightforward, with 
fewer parameters to set. Only parameter k is required for Equation 
(4). Here, k is set to 10. 
We first carried out experimental study to gauge the effect of the 
choice of Gaussian function on the performance of PMA-SLS. 
The results presented in Table 4-2 are based on comparison of 
PMA-SLS and PMA-DLS on one particular benchmark. This 
experiment shows that PMA-DLS could produce good solutions 
with 0.08% average gap, consuming 859.40 seconds of CPU time. 
In comparison, the 3 variants of PMA-SLS vary in terms of 
solution quality and CPU time. In terms of CPU time, PMA-SLS-
3 requires as much as 903.20 seconds while PMA-SLS-2 takes up 
563.80 seconds of CPU time. On solution quality, the average gap 
of the PMS-SLS with the three configurations falls into the range 
of 0.08% to 0.16%. This may be due to the different number of 
individuals undergoing local search in PMA-SLS, especially at 
the later stages of the evolution process. For example, the number 
of individuals whereby local search is applied in PMA-SLS-3 is 
much larger than that for PMA-SLS-2 (when gen>100). 
Consequently, PMA-SLS-3 produced better solution (0.08%) 
quality than PMA-SLS-2 (0.16%). However, PMA-SLS-3 takes 
up more computational time. Thus, it appears that 

1γ ( 500,200 == ησ ) produced the most competitive results in 
terms of solution quality and computational cost. 

4.2 Results Comparison  PMA-DLS vs. 
PMA 
To demonstrate the advantage of PMA-DLS, a specific 
comparison among PMA-DLS and PMA on the two-island model 
for the same benchmark, sko100b, is shown in Table 4-3. In Table 
4-3, PMA-DLS produces competitive solutions although the 
frequency of local search of PMA-DLS never exceed that of PMA 
which maintain the highest local search frequency throughout the 
evolution process. The diversity of each subpopulation for PMA-
DLS and PMA, measured by the entropy, was traced in our 
simulation and shown in Fig. 4-2. 
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Table 4-2 Comparison of PMA-DLS and PMA-SLS with 1γ , 2γ  and 3γ  

CPU time Generation TG Average Average gap Best Gap Success rate
sko100b 2-island PMA-SLS-1 875.20 113.60 168.40 154012.80 0.08% 153904 0.01% 0.00%
153890 PMA-SLS-2 563.80 134.10 174.70 154114.60 0.16% 153962 0.05% 0.00%

PMA-SLS-3 903.20 119.20 171.30 154016.60 0.08% 153904 0.01% 0.00%
PMA-DLS 859.40 125.30 169.00 154020.80 0.08% 153920 0.02% 0.00%

Table 4-3 Comparison between PMA-DLS and PMA 
sko100b 2-island CPU time Generation TG Solution Gap
153890 PMA 1461 81 151 153954 0.04%

PMA-DLS 761 64 134 153942 0.03%  

Comparison of diversity between PMA-DLS and PMA
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Fig. 4-2 Comparison of diversity between PMA-DLS and 
PMA 

According to Fig. 4-2, PMA-DLS can consistently maintain a 
good level of diversity as the evolution progresses. However, the 
diversity of PMA shows a significant drop in entropy, especially 
at the later stages, indicating that local search has a tendency to 
speed up convergence significantly. From an evolutionary process 
point of view, PMA results in poorer diversity due to excessive 
localized searches, especially at the later stage of evolution. On 
the other hand, PMA-DLS adjusts the local search frequency 
based on changes in population diversity. The number of 
individuals to apply local search is then adjusted dynamically, 
enabling PMA-DLS to maintain a consistent level of population 
diversity. This in turn enhances the capacity of PMA-DLS to 

produce good solutions. A significant observation from Table 4-3 
is that PMA-DLS and PMA achieved almost the same level of 
solution quality, with PMA incurring higher computational cost 
due to intensive local search. PMA-DLS therefore shows a 
potential for reducing computational time significantly with little 
or no lost of solution quality. This is mainly attributed to its 
capability to maintain a higher level of population diversity. 

4.3 Full Comparison of Results and Analysis 
Tables 4-4 to 4-7 summarize the empirical results of testing on a 
diverse set of large scale QAP benchmarks. The benchmark 
problems considered in the present study are classes of synthetic 
problems randomly generated or created to study the robustness 
of algorithms for solving QAPs [3]. The values in the first column 
of Tables 4-4 to 4-7 are the best-known values of the respective 
benchmark problems. Tables 4-4 and 4-5 present a detailed 
comparison study on sko100b and tai100b benchmarks, 
respectively. Tables 4-6 and 4-7 show the simulation results on 
the other two classes QAPs, namely, tai100a and sko100* 
respectively. 

An inspection of the experimental results indicates that PMA-
DLS can significantly improve the efficiency in solving large 
scale QAPs. The higher success rate of PMA-DLS also indicates 
improved solution quality due to the higher level of diversity 
maintained during the evolution process. Furthermore, PMA-DLS 
can reduce the computational time significantly with little or no 
lost in solution quality compared to PMA. The comparison among 
PMA-SLS, PMA-DLS, PMA and PMA-FLS on sko100b 
benchmark is shown in Fig. 4-3. 

Table 4-4 Results of testing on sko100b benchmark 
CPU time Generation TG Average Average gap Best Gap Success rate

sko100b MA 3096.50 127.30 160.50 153955.60 0.04% 153890 0.00% 20.00%
153890 2-island PMA-DLS 859.40 125.30 169.00 154020.80 0.08% 153920 0.02% 0.00%

PMA-SLS 875.20 113.60 168.40 154012.80 0.08% 153904 0.01% 0.00%
PMA-FLS[6] 266.80 182.70 252.70 154494.20 0.39% 154160 0.18% 0.00%

PMA 1350.00 94.70 145.90 153950.40 0.04% 153890 0.00% 20.00%
4-island PMA-DLS 885.70 131.40 170.00 153977.40 0.06% 153900 0.01% 0.00%

PMA-SLS 898.00 137.10 178.10 153990.80 0.07% 153902 0.01% 0.00%
PMA-FLS[7] 174.50 282.50 352.50 154213.80 0.21% 153952 0.04% 0.00%

PMA 1445.90 122.20 174.60 153952.20 0.04% 153898 0.01% 0.00%
6-island PMA-DLS 413.80 126.80 164.20 153951.20 0.04% 153890 0.00% 20.00%

PMA-SLS 429.40 130.20 168.20 153985.00 0.07% 153890 0.00% 10.00%
PMA-FLS[7] 148.80 213.30 283.30 154254.60 0.24% 154074 0.12% 0.00%

PMA 694.30 104.80 154.50 153925.40 0.02% 153890 0.00% 20.00%  
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Table 4-5 Results of testing on tai100b benchmark 

CPU time Generation TG Average Average gap Best Gap Success rate
tai100b 2-island PMA-DLS 694.70 94.70 124.30 1186119285.20 0.01% 1185996137 0.00% 50.00%

1185996137 PMA-SLS 782.40 106.70 134.00 1186275856.50 0.02% 1185996137 0.00% 40.00%
PMA-FLS[6] 186.90 175.30 245.30 1188882832.20 0.24% 1186007112 0.00% 0.00%

4-island PMA-DLS 633.40 105.00 122.00 1186121434.00 0.01% 1185996137 0.00% 80.00%
PMA-SLS 647.50 92.60 102.30 1186007361.40 0.00% 1185996137 0.00% 80.00%

PMA-FLS[7] 178.10 268.80 332.00 1187539521.00 0.13% 1186007112 0.00% 0.00%
6-island PMA-DLS 342.40 65.20 107.20 1186132401.50 0.01% 1185996137 0.00% 70.00%

PMA-SLS 356.60 88.30 104.90 1186058956.40 0.01% 1185996137 0.00% 70.00%
PMA-FLS[7] 160.10 233.70 296.70 1187892570.00 0.16% 1185996137 0.00% 10.00%  

Table 4-6 Results of testing on tai100a benchmark 
CPU time Generation TG Average Average gap Best Gap Success rate

tai100a 2-island PMA-DLS 866.20 127.90 161.80 21442193.71 1.50% 21379594 1.18% 0.00%
21125314 PMA-SLS 860.00 127.20 164.60 21458262.60 1.58% 21382118 1.22% 0.00%

PMA-FLS[6] 222.80 238.50 308.50 21464686.20 1.61% 21335594 1.00% 0.00%
4-island PMA-DLS 889.20 156.20 180.00 21380930.80 1.21% 21362016 1.12% 0.00%

PMA-SLS 889.60 140.20 170.90 21420954.60 1.40% 21352956 1.08% 0.00%
6-island PMA-DLS 433.60 146.40 180.00 21368255.10 1.15% 21237278 0.53% 0.00%

PMA-SLS 451.40 152.50 180.00 21373508.00 1.17% 21270370 0.69% 0.00%  
Table 4-7 Results of testing on sko100*benchmarks 

CPU time Generation TG Average Average gap Best Gap Success rate
sko100a 2-island PMA-DLS 852.80 118.80 164.50 152156.10 0.11% 152069 0.03% 0.00%
152002 PMA-SLS 883.60 133.80 175.10 152188.20 0.12% 152042 0.03% 0.00%

PMA-FLS[6] 194.00 203.40 273.40 152322.80 0.21% 152122 0.08% 0.00%
4-island PMA-DLS 855.30 132.40 171.60 152104.10 0.07% 152059 0.04% 0.00%

PMA-SLS 885.20 142.40 176.80 152119.00 0.08% 152058 0.04% 0.00%
6-island PMA-DLS 416.60 131.60 170.80 152126.20 0.08% 152044 0.03% 0.00%

PMA-SLS 431.90 138.90 176.90 152109.40 0.07% 152067 0.04% 0.00%
sko100c 2-island PMA-DLS 847.30 120.60 167.90 147928.60 0.05% 147862 0.00% 10.00%
147862 PMA-SLS 939.30 121.80 168.40 147934.80 0.05% 147862 0.00% 10.00%

PMA-FLS[6] 184.40 205.80 275.80 148140.40 0.18% 148050 0.13% 0.00%
4-island PMA-DLS 826.30 112.20 163.00 147894.00 0.02% 147862 0.00% 20.00%

PMA-SLS 845.90 111.40 160.50 147908.20 0.03% 147862 0.00% 10.00%
6-island PMA-DLS 401.20 124.20 173.00 147887.20 0.02% 147868 0.00% 30.00%

PMA-SLS 416.80 106.40 151.80 147885.60 0.02% 147862 0.00% 20.00%
sko100d 2-island PMA-DLS 869.60 136.10 170.80 149742.20 0.11% 149656 0.05% 0.00%
149576 PMA-SLS 883.00 111.00 166.90 149803.60 0.15% 149618 0.03% 0.00%

PMA-FLS[6] 232.10 259.90 327.40 150036.80 0.31% 149732 0.10% 0.00%
4-island PMA-DLS 813.50 137.00 177.20 149729.20 0.10% 149648 0.05% 0.00%

PMA-SLS 881.20 146.70 180.00 149752.00 0.12% 149630 0.04% 0.00%
6-island PMA-DLS 429.00 134.20 168.40 149707.60 0.09% 149620 0.03% 0.00%

PMA-SLS 436.80 135.80 173.80 149699.40 0.08% 149578 0.00% 0.00%
sko100e 2-island PMA-DLS 809.40 111.30 148.00 149198.20 0.03% 149150 0.00% 30.00%
149150 PMA-SLS 845.40 121.00 166.70 149205.80 0.04% 149150 0.00% 10.00%

PMA-FLS[6] 235.50 252.90 322.90 149642.20 0.33% 149198 0.03% 0.00%
4-island PMA-DLS 864.80 119.80 173.60 149188.80 0.03% 149150 0.00% 10.00%

PMA-SLS 898.50 114.30 164.50 149202.60 0.04% 149150 0.00% 10.00%
6-island PMA-DLS 425.00 107.80 144.80 149183.60 0.02% 149150 0.00% 40.00%

PMA-SLS 452.10 113.70 156.90 149179.20 0.02% 149150 0.00% 30.00%
sko100f 2-island PMA-DLS 825.70 98.90 155.20 149218.03 0.12% 149096 0.04% 0.00%
149036 PMA-SLS 888.40 104.60 153.70 149232.80 0.13% 149126 0.06% 0.00%

PMA-FLS[6] 206.50 214.80 284.80 149496.60 0.31% 149228 0.13% 0.00%
4-island PMA-DLS 813.90 130.20 173.40 149144.20 0.07% 149036 0.00% 20.00%

PMA-SLS 872.10 126.10 166.70 149150.40 0.08% 149036 0.00% 10.00%
6-island PMA-DLS 423.20 151.40 180.00 149145.20 0.07% 149092 0.04% 0.00%

PMA-SLS 451.70 136.10 172.30 149205.40 0.11% 149078 0.03% 0.00%
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Fig. 4-3 Comparison among PMA-SLS, PMA-DLS, PMA and 
PMA-FLS on sko100b benchmark 

The plot in Fig. 4-3(b) shows that PMA-DLS, PMA-SLS and 
PMA improve the solution quality significantly compared to 
PMA-FLS. It is noted that the maximum number of generations 
for PMA-FLS was set at 500. Instead, the maximum number of 
generations for PMA-DLS, PMA-SLS and PMA was set to 180. 
This is indicative of the powerful search capability and quick 
convergence speed of the PMA. As for the computational time 
shown in Fig. 4-3(a), the greater reliance on local search makes 
PMA more time-consuming than the PMA-FLS. However, with 
the island model paradigm of the parallel memetic algorithm, 
distributed computing technology can help to reduce the 
computational time significantly. Furthermore, the diversity-based 
dynamic adaptive local search strategy used in PMA-DLS 
improves the efficiency of the PMA remarkably. 

Similar to the sko100b benchmark, the effect of multiple islands 
processing for the tai100b benchmark shows that PMA-DLS can 
achieve much better solution quality with comparable 
computational time. It is also observed that the tai100b QAP 
benchmark shows a much higher Success rate, indicating that the 
PMA-DLS has greater success in locating the global optimum. 
This implies that the PMA-DLS is capable of locating the best-
known solution more frequently than the PMA-FLS. In addition, 
the results in Table 4-6 show that PMA-DLS are even more 
superior compared to PMA-FLS, even for the seemingly difficult 
class of benchmarks, tai100a. Remarkable improvement in terms 
of solution quality was observed. 

4.4 Comparison with Other Results  
When judged against existing results available in the literature, it 
is noted that the results for PMA-DLS of several instances is 

much better than that of the MAs developed by other authors. For 
example, our results of tai100b for PMA-DLS are much better 
than that shown in [17]. The Average gap of tai100b was reported 
as 0.026%, with the Success rate being less than 50%. On the 
other hand, Average gap achieved by our PMA-DLS (0.01%) is 
much better, and the Success rate is very commendable, being as 
high as 80%. Furthermore, it is worth nothing that the PMA-DLS 
are also capable of attaining search quality that is significantly 
better than that obtained in [18] on the sko100a problem. As 
shown in Table 4-7, on the sko100a benchmark, the Average gap 
obtained in [18] was 0.096%, while we were able to reduce this 
value to 0.07%. 

5. CONCLUSION 
This paper proposes a diversity-based dynamic adaptive strategy 
in the island model parallel memetic algorithm with adaptive local 
search frequency. Based on the comparison between PMA-SLS 
and PMA-DLS, there are three advantages of PMA-DLS which 
determines the number of individuals undergoing local search 
based on online dynamic population diversity. First, the number 
of individuals to be selected for local search is made dynamic and 
adaptive to online fluctuation of population diversity. This 
diversity-adaptive approach avoids premature convergence 
resulting from fast decreasing population diversity, as well as 
reduces computational cost. In addition, for the island model 
PMA, the diversity-based dynamic adaptive local search is able to 
adjust the number of individuals for local search according to the 
different diversity fluctuation tendency in each island. Secondly, 
the PMA-DLS adjusts the local search frequency online, avoiding 
the laborious task of parameters tuning of PMA-SLS. For PMA-
SLS, the Gaussian function used to decide on the local search 
frequency was problem specific. It was configured through trial-
and-error experimentation without generalization or analysis of 
the characteristics of the PMA with respect to population 
diversity, an important characteristic indicative of the population 
convergence level. Therefore, PMA-DLS is desirable to produce 
more robust solution quality. Thirdly, an intrinsic characteristic of 
PMA-DLS is the Markovian property, in deciding the frequency 
of applying local search. Equation (4) computes the number of 
chromosomes that undergo local learning in the current generation 
based on the previous k generations and the current generation. 
This property is consistent with the theoretical foundation of 
various evolutionary algorithms, such as genetic algorithms and 
memetic algorithms. 
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