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ABSTRACT
The paper presents an evaluation-relaxation scheme where a
fitness surrogate automatically adapts to the problem struc-
ture and the partial contributions of subsolutions to the fit-
ness of an individual are estimated efficiently and accurately.
In particular, the probabilistic model built by extended com-
pact genetic algorithm is used to infer the structural form
of the surrogate and a least squares method is used to esti-
mate the coefficients of the surrogate. Using the surrogate
avoids the need for expensive fitness evaluation for some of
the solutions, and thereby yields significant efficiency en-
hancement. Results show that a surrogate, which automati-
cally adapts to problem knowledge mined from probabilistic
models, yields substantial speedup (1.75–3.1) on a class of
boundedly-difficult additively-decomposable problems with
and without additive Gaussian noise. The speedup provided
by the surrogate increases with the number of substructures,
substructure complexity, and noise-to-signal ratio.

Categories and Subject Descriptors
G.1.2 [Numerical Analysis]: Approximation; G.1.6
[Numerical Analysis]: Optimization; I.2.8 [Artificial In-
telligence]: Problem Solving, Control Methods, and Search

General Terms
Algorithms

Keywords
Estimation of distribution algorithms, extended compact ge-
netic algorithms, fitness surrogates, efficiency enhancement,
evaluation relaxation, linear regression, speed-up
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1. INTRODUCTION
One of the promising areas in genetic and evolutionary

algorithms (GEAs) is the design and development of com-
petent genetic algorithms—GAs that solve hard problems
quickly, reliably, and accurately [9]. One such class of com-
petent genetic algorithms is estimation of distribution algo-
rithms (EDAs) [15, 18]—search methods that replace the
traditional variation operators of evolutionary algorithms
by building and sampling a probabilistic model of promis-
ing solutions. EDAs have been shown to successfully solve
boundedly difficult problems—both on a single and hierar-
chical level—oftentimes requiring polynomial (usually sub-
quadratic) number of function evaluations. However, even
sub-quadratic number of function evaluations can be daunt-
ing especially when the fitness evaluation involves complex
simulations, computations, and models. This is usually the
case with most real-world optimization problems. Therefore,
there is a premium on a variety of efficiency-enhancement
techniques to speedup EDAs.

One such efficiency-enhancement technique commonly
used in GEAs, and to a lesser extent in EDAs, is evalua-
tion relaxation. In evaluation relaxation, an accurate, but
expensive fitness function is replaced with a less accurate,
but computationally inexpensive surrogate function. How-
ever, surrogate functions are usually of fixed form and often
hand-designed based on the search problem. A key advan-
tage of EDAs is that the problem structure is automatically
learned in terms of a probabilistic model and we can incorpo-
rate this knowledge into the design of the surrogate function.
Initial studies [19, 26] on the design of surrogate functions
that incorporate knowledge of key variable interactions has
yielded substantial speedups not possible from näıve surro-
gate designs. However, the initial effort on incorporating
the probabilistic model into surrogate design used a simple
schema-theorem based method for fitting coefficients of the
surrogate function. While the previous method is accurate
on a class of deterministic additively separable problems, the
speedups don’t carry over to other class problems, specifi-
cally noisy and hierarchically-decomposable problems.

Once the structural form of the surrogate is inferred from
the probabilistic models, built by EDAs and other meth-
ods that automatically identify key variable interactions,
we can use various methods of system identification, esti-
mation, and regression to estimate the coefficients of the
resulting surrogate. That is what we do here. As a first
step, we use the models built by EDAs—specifically the ex-
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tended compact genetic algorithm (eCGA) [11]—to decide
on the structural form of the surrogate and use least-squares
method [7, 12, 14, 20] to estimate the coefficient values of
the surrogate function. In other words, the probabilistic
model of eCGA yields the functional form of the surrogate
function and the least-squares method yields the partial fit-
ness contributions of different subsolutions of the underlying
search problem. Moreover, the use of standard and well-
established estimation methods such as least squares and
recursive least squares will enable us to tap into a rich and
established area of estimation, regression and system iden-
tification theory and help in designing accurate surrogates
that yield maximal efficiency enhancement.

The paper is structured as follows. The next section pro-
vides an outline eCGA, followed by a brief review of past
work in evaluation relaxation in Section 3. In Section 4 we
provide the details of designing a surrogate whose form is
inferred from probabilistic models of EDAs, and whose co-
efficients are estimated using linear regression. In Section 5,
we develop facetwise models to understand the strengths and
limitations of the proposed evaluation-relaxation scheme
and also discuss key empirical results. Finally, we discuss
future work followed by summary and conclusions.

2. EXTENDED COMPACT GENETIC
ALGORITHM

Estimation of distribution algorithms [15, 18] replace tra-
ditional variation operators of genetic algorithms by build-
ing a probabilistic model of promising solutions (that survive
selection) and sampling the corresponding probability distri-
bution to generate the offspring population. The extended
compact genetic algorithm (eCGA) [11] uses a product of
marginal distributions on a disjoint partition of variables of
the problem to model highly-fit individuals and sample new
ones. Each partition of variables corresponds to a linkage
group, so that important substructures can be effectively re-
combined as in a population-wise building block crossover.
In eCGA, new solutions are generated from the following
probability distribution

p(X) =

m�
i=1

p(XIi), (1)

where X = (X1, X2, . . . , X�) is a vector that contains all
the variables of the problem and Ii is the index set that
contains the index of the variables that belong to the ith

marginal distribution.
This kind of probability distribution belongs to a class

of probabilistic models known as marginal product models
(MPMs). For example, the following MPM, [1,3][2][4],
for a 4-bit problem represents that the 1st and 3rd variables
are linked, and the 2nd and 4th variables are independent.

In eCGA, both the structure and the parameters of the
model are searched and optimized to best fit the data
(promising solutions). A greedy MPM search, which is per-
formed every generation, starts with the simplest possible
model and sequentially searching for more complex ones.
That is, starting with a model that treats all variables as in-
dependent and then sequentially merging partitions of vari-
ables whenever a certain metric is improved. The merging
continues until the metric can no longer be improved [24].

The metric used in eCGA to score candidate models is the
minimum description length (MDL) metric [21], that penal-

izes both inaccurate and complex models, thereby leading to
an (sub)optimal distribution. According to the MDL prin-
ciple, good models are those under which the representation
of the distribution using the current structure, along with
the representation of the population compressed under that
distribution, is minimal. Numerically, the MPM complex-
ity is given by the sum of model complexity and compressed
population complexity. The model complexity quantifies the
model representation in terms of the number of bits required
to store all the marginal probabilities. The compressed pop-
ulation complexity quantifies the data compression in terms
of the entropy of the marginal distribution over all parti-
tions. Same as in other data compression algorithms, the
more biased the marginal distributions are, the more the
population can be compressed, which means a more effec-
tive representation of the non-linearities of the data.

Like traditional GAs, eCGA starts with an initial popu-
lation (usually randomly generated) that is evaluated and
submitted to a selection operator that gives preference to
high-quality solutions. The set of selected individuals is then
used to build the probabilistic model for the current gener-
ation. After the model structure is learned and its parame-
ters are estimated, the offspring population is generated by
randomly sampling subsets from the modeled individuals,
according to the probabilities of the subsets stored in the
MPM. After the offspring is evaluated, the replacement of
some (or all) parents by offspring individuals takes place,
which ends the eCGA main loop. The next generation pro-
ceeds again from the selection phase until some stopping
criteria is satisfied.

While eCGA—and other EDAs—are primarily used for
efficiently exchanging key sub-structures, they provide ad-
ditional information about the underlying search problem.
The probabilistic model of the population that express
(in)dependencies among decision variables of the problem is
a good source of information that can be exploited to further
enhance EDA performance. Examples of using information
from the probabilistic model for another purpose besides
mixing are fitness inheritance [26, 19], induction of global
neighborhoods for mutation operators [24], hybridization
and adaptive time continuation [16], sub-structural nich-
ing [23], and on-line [28] population size adaptation, or sim-
ply to assist the user in a better interpretation and under-
standing of the non-linearities of the problem. In this study,
we are interesting in exploiting the probabilistic model built
by eCGA in inferring the structural form of an inexpensive
surrogate function. Before proceeding with the description
of the proposed approach for surrogate design, we first pro-
vide a brief overview of past work on evaluation relaxation
in EDAs.

3. EVALUATION RELAXATION IN EDAS
In evaluation relaxation, an accurate, but computation-

ally expensive fitness function is replaced by a less accurate,
but inexpensive surrogate function, and thereby the total
number of costly fitness evaluations are reduced [2, 10, 13,
19, 22, 26, 27]. The low-cost, less-accurate fitness estimate
can either be (1) exogenous, as in the case of approximate
fitness functions [2, 13, 17], where, external means are used
to develop the fitness estimate, or (2) endogenous, as in the
case of fitness inheritance [27] where, some of the offspring
fitnesses are estimated based on fitness of parental solutions.

Evaluation relaxation in GAs dates back to early, largely

420



empirical work of Grefenstette and Fitzpatrick [10] in im-
age registration where significant speedups were obtained
by reduced random sampling of the pixels of an image. Ap-
proximate models have since been used extensively to solve
complex optimization problems in many engineering appli-
cations such as aerospace and structural engineering [2, 6].
Following early empirical work design theories have since
been developed to understand the effect of approximate sur-
rogate functions on population sizing and convergence time
and to optimize speedups. See [22] and the references therein
for further details. While surrogates used in evolutionary al-
gorithms can be readily used with EDAs, the probabilistic
models of EDAs can be especially helpful in developing ac-
curate surrogates and thereby provide significant speedup
[19, 26] when compared to simple endogenous surrogates
[27]. Since our proposed method is closely related to the
endogenous probabilistic fitness estimation models of Sas-
try, Pelikan, and Goldberg [26], we briefly describe their
methodology in the following paragraphs.

Sastry, Pelikan, and Goldberg [26] and Pelikan and Sas-
try [19] proposed a fitness inheritance method for EDAs,
specifically for eCGA and the Bayesian optimization al-
gorithm (BOA) [18]. Similar to earlier fitness inheritance
study [27], all the individuals in the initial population were
evaluated using the expensive fitness function. Thereafter,
an offspring was evaluated either using a surrogate with a
user-specified inheritance probability pi, or using the ex-
pensive fitness function with a probability 1 − pi. However,
unlike fitness inheritance method of Smith et al [27], Sas-
try et al used the probabilistic models of eCGA to determine
the structural form of the surrogate. That is, the MPM used
in eCGA, which partitions the variables of the underlying
search problem into linkage groups, were used to determine
the variable interactions used in the surrogate. Therefore,
the process of learning a surrogate model was sub-divided
into estimating the fitness contributions of all possible subso-
lutions in every partition according to the linkage map that
is automatically and adaptively identified by the probabilis-
tic model of eCGA. Sastry et al used all evaluated parents
and offspring in estimating the partial contributions of the
subsolutions (or schemata) to the overall fitness of a candi-
date solution.

Specifically, they used schema theory basis for determin-
ing the relative and partial contribution of a schema to the
overall fitness. That is, Sastry et al defined fitness of a
schema h as the difference between the average fitness of
individuals that contain the schema and the average fitness
of the population:

f̂s(h) =
1

nh

�
{i|x(i)⊃h}

f(x(i)) − 1

M

M�
i=1

f(x(i)), (2)

where nh is the total number of individuals that contain the
schema h, x(i) is the ith evaluated individual and f(x(i))
its fitness, and M is the total number of individuals that
were evaluated. If a particular schema in not present in the
evaluated population, its fitness is arbitrarily set to zero.

Pelikan and Sastry [19] used a similar approach for de-
veloping a fitness inheritance method in BOA. Given the
differences of the probabilistic model evolved by BOA, the
methodology for modeling fitness is slightly different from
eCGA, but the key idea remains the same: Use the proba-
bilistic model to construct the form of the surrogate, and use

schema-theory basis for determining the partial fitness con-
tribution of subsolutions to the overall fitness. Both stud-
ies reported substantial speedup on a class of boundedly-
difficult additively-separable problems.

While the automatic and adaptive incorporation of prob-
lem knowledge in terms of the probabilistic models built by
EDAs and other linkage learners is very powerful, the es-
timation of the partial fitness contributions of solutions is
somewhat ad hoc. Moreover the schema-theory basis for
estimating these partial fitness contributions of schemata
works well only on certain class of search problems. For ex-
ample, the fitness inheritance method of Sastry et al [26]
fails to provide significant speedup on noisy problems, and
the method of Pelikan and Sastry [19] fails on hierarchically-
decomposable problems.

Therefore, we propose a method to enhance the robustness
and accuracy of the surrogate such that substantial speedups
are obtained even on problems where the earlier fitness in-
heritance methods fail. That is, we infer the structure of
the surrogate from the probabilistic models and then use
standard and robust techniques from system identification—
specifically, the least square method—to estimate value of
the coefficients (or the partial fitness contributions of sub-
solutions) of the resulting surrogate function. Details of the
surrogate design method is provided in the following section.

4. FITNESS INHERITANCE IN ECGA
USING LEAST SQUARES FITTING

Similar to earlier fitness inheritance studies [19, 25, 26,
27], in the proposed method the fitness of all the candidate
solutions in the initial population are evaluated using the
expensive/accurate fitness function. Thereafter, in the sub-
sequent generations, the fitness of an individual is estimated
using the surrogate with probability pi, or is evaluated using
the fitness function with probability 1 − pi. Similar to the
surrogates used in [26], in the proposed method the surro-
gate is a polynomial whose order and terms are determined
by the probabilistic model and whose coefficients are deter-
mined using the evaluated individuals. However, unlike in
[26], we use a least squares fitting approach [4, 7, 12, 14, 20]
to estimate the coefficient values.

In order to estimate the coefficients of the surrogate, we
use both parental and offspring solutions that are evaluated
using the fitness function. That is, in the first generation,
we use all n evaluated parents and on an average n · (1− pi)
evaluated offspring to estimate the coefficients, where n is
the population size. In the subsequent generations, we use
on an average 2n · (1 − pi) evaluated solutions. We limited
ourselves to using only the parental and offspring solutions
only to keep the proposed method as close to that of Sas-
try et al [26] and therefore obtain a fair comparison between
the two methods. However, as mention in Section 6, one of
our future goals is to use all or majority of the evaluated
solutions to design the surrogate.

Similar to [26], individuals with exact fitness are used to
estimate the sub-structural fitnesses of the remaining in-
dividuals. These sub-structures that are defined by the
probabilistic model can be viewed and directly mapped into
schemata. The fitness associated with the different schemas
that match an individual is then combined to estimate this
fitness. In this study, schema or building-block fitness is de-
fined as the relative (to the average fitness of the population)
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fitness contribution to the overall fitness of an individual.
The proposed fitness inheritance method differs from [26] in
the way the schema fitness is estimated.

After the model is built the linkage groups are treated
as building-blocks partitions, thus all possible schemata un-
der this structure are considered. Considering the previous
MPM example (Section 2) for a 4-bit problem, whose model
is [1,3][2][4], the schemata for which the fitness is pre-
dicted are {0*0*, 0*1*, 1*0*, 1*1*, *0**, *1**, ***0, ***1}.
The total number of schemas is given by

N =

m�
i=1

2ki , (3)

where m is the number of BBs and ki is the size of the ith

BB (number of variables belonging to the BB).
The fitness values of the schemata are estimated as fol-

lows. Each individual used for learning is mapped into a
binary vector of size N , where each variable of the vector
uniquely identifies a given schema. That is, the vector is
instantiated by the following delta function

δ(x, hj) =

�
1, if x ⊃ hj

0, otherwise
(4)

where x is the individual to be converted and hj is the jth

schema. Basically, the vector will have value “1” for the
schemas that contain individual x and “0” otherwise. After
mapping M evaluated individuals using the above function,
the following matrix with dimension (M × N) is obtained:

A =

�
����

a1,1 a1,2 . . . a1,N

a2,1 a2,2 . . . a2,N

...
...

. . .
...

aM,1 aM,2 . . . aM,N

�
���	 , (5)

where ai,j = δ(x(i), hj), and x(i) denotes the ith individual
used for learning the surrogate fitness model. We note that
the rank of matrix A is N − m + 1.

Also, the relative (to the average) fitness of each evaluated
individual is kept in a vector with dimension (M × 1) as

f =

�
����

f(x(1)) − f̄

f(x(2)) − f̄
...

f(x(M)) − f̄

�
���	 , (6)

where f(x(i)) is the evaluated fitness of the ith individual
used for learning and f̄ is the average fitness of all M eval-
uated individuals (both from parent and offspring popula-
tion). The average fitness is then given by

f̄ =
1

M

M�
i=1

f(x(i)). (7)

Given that there are N different schema fitnesses to esti-
mate, the fitness coefficients associated with the N binary
variables can be displayed as vector of dimension (N × 1)

f̂s =

�
����

f̂s(h1)

f̂s(h2)
...

f̂s(hN )

�
���	 , (8)

where f̂s(hj) is the fitness of schema hj .
The task of estimating the relative fitness of each schema

can be stated as finding a vector f̂s that satisfies the equality:

Af̂s = f . (9)

In practice, this equality might not be entirely satisfied and
one must instead seek for minimizing the difference between
left and right terms of Equation 9. For that, it is used
a multi-dimensional least squares fitting approach. Thus,
under the least squares fitting principle the problem of es-
timating the fitness of schemata can now be reformulated
as finding the appropriate values for vector f̂s such that the
following squared error function χ2 is minimized:

χ2 =


Af̂s − f

�T 

Af̂s − f

�
. (10)

The solution to the above problem is a well-known result
from literature, therefore details on the resolution are not
provided and the interested reader should refer elsewhere [4,
7, 12, 14, 20]. The method used in this paper to per-
form multi-dimensional least squares fitting was provided
by GNU Scientific Library1 (GSL).

After obtaining the estimates for schema fitnesses, the
estimation of an individual’s fitness is a straightforward
process that consists in summing the average fitness of the
population to the fitness of each schema that contains the
individual being considered. The estimated fitness of an in-
dividual x is then given by

finh(x) = f̄ +

N�
j=1

δ(x, hj)f̂s(hj), (11)

where f̂s(hj) is given by the jth element of vector f̂s.
It can be shown that the surrogate obtained by using

a structure inferred from a perfect model and the coeffi-
cients via least squares is identical to that obtained using
a Walsh basis [8] of the accurate fitness function. This
clearly suggests that given an accurate probabilistic model,
we can obtain a surrogate that accurately estimates the
fitness of untested solutions. We note that while eCGA
can only discover non-overlapping substructures, the pro-
posed surrogate design method can be readily used with
other model-building GAs including BOA. The surrogates
inferred from both BOA and DSMGA are also in the form of
polynomials—usually with more terms than those obtained
in eCGA—which are linear in terms of unknown coefficients.
We have conducted limited tests on problems with over-
lapping substructures and the surrogates developed using
representative models accurately estimate the fitnesses of
untested solutions.

In the following section we discuss the results obtained
by the proposed evaluation-relaxation scheme on a class of
boundedly-difficult additively-decomposable problems with
and without additive Gaussian noise.

5. RESULTS AND DISCUSSIONS
We begin with a description of the test problems used in

this study, followed by details of the experimental proce-
dure, population-sizing requirements, and limits on pi. We
then present the speedups provided by a surrogate that au-
tomatically adapts to the structure of the search problem.

1http://www.gnu.org/software/gsl/
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5.1 Test Problems
Two different problems are used to test the proposed

method: OneMax and m − k Trap functions. In OneMax
the fitness is given by the sum of ones in a binary string:

fOneMax(X) =
��

i=1

Xi. (12)

This is a simple linear function with the optimum in the
solution with all ones. Therefore, there is no need of linkage
learning to be able to solve this problem. While the opti-
mization of the OneMax problem is easy, the probabilistic
models built by EDAs such as eCGA and BOA, however,
are known to be only partially correct and include spurious
linkages. Therefore, the results of the evaluation-relaxation
scheme on the OneMax problem will indicate if the effect of
using partially correct linkage mapping on the accuracy of
the surrogate is significant. In this paper a OneMax function
with size � = 50 is used.

The second function considered is a concatenated m − k
deceptive trap problem [1, 5], where the accurate identifica-
tion and exchange of BBs are critical to EDA success:

fmk(X) =

m−1�
i=0

fTrap(xki, xki+1, . . . , xki+k−1), (13)

where m is the number of concatenated k-bit deceptive trap
functions. The k-bit trap function is defined as follows:

ftrap(u) =

�
1 if u = k

(1 − d) ∗


1 − u

k−1

�
otherwise

(14)

where u is the number of ones in the string, k is the size of the
trap function, and d is the fitness signal between the global
optimum and the deceptive optimum (d = 1/k is used). In
our experiments we use Trap functions with size k = {4, 5},
and concatenate 10 copies of each function (m = 10).

To test the proposed evaluation-relaxation method on
noisy problems, we use 10−4 trap function with the additive
Gaussian noise with zero mean and two different noise-to-

signal ratios:
σ2

N

(σf /d)2
= {0.01, 0.1}, where σ2

N is the noise

variance. The empirical results obtained in this study are
averaged over 50 independent runs. The stopping criteria
used in each run is to obtain a solution with at least m − 1
building-blocks solved, that is, the optimal solution with an
error of α = 1/m. Tournament selection without replace-
ment was used with size s = 8.

5.2 Population Sizing and Limits on pi

In the following paragraphs, we describe the population-
sizing requirements of the surrogate model, and the optimal
value of pi that yields maximum speedup. Sastry et al [26]
modeled the error in the fitness estimation by the surrogate
as an additive Gaussian noise and predicted that the mini-
mum population size required by eCGA to successfully solve
additively-decomposable problems. The minimum popula-
tion size varies with pi as

n = n0(1 + pi), (15)

where n0 is the minimum population size required to cor-
rectly identify the linkage groups used when the surrogate
is not used (pi = 0). The empirical values of no for the test
problems used in this study are shown in Table 1 [24]. In this

Table 1: Population size, n0, used for different prob-
lems with size � (m × k), when fitness inheritance is
not used (pi = 0).

Problem � n0

OneMax 50 135
Trap, k = 4 40 1550
Trap, k = 5 50 4150

Trap, k = 4,
σ2

N

(σf /d)2
= 0.01 40 1914

Trap, k = 4,
σ2

N

(σf /d)2
= 0.1 40 4430

study, we use the population size according to Equation 15.
Now the question remains as to what the optimal value of

pi—or the probability of using the surrogate—would be that
yields maximum speedup? From Section 4 we know that the
rank of matrix A is N − m + 1. For additively separable
problems with m building blocks of size k each, the rank of
A is


2k − 1

� · m + 1. Therefore the minimum number of
equations required to use the least-squares method should
be greater than rank(A). That is, the minimum number of
individuals required for estimating the coefficients is

M ≥ (2k − 1)m + 1. (16)

Note that since we evaluate on an average n(1− pi) parents
and n(1− pi) offspring, M̄ = 2n(1− pi). Using this relation
and rearranging for n, the minimal population size required
to perform least squares fitting is given by

n ≥

2k − 1

� · m + 1

2(1 − pi)
. (17)

To obtain an upper bound for the proportion of inheritance
pi we use the relation from Equation 15 and solving Equa-
tion 17 for pi, we obtain

pi ≤
�

1 − (2k − 1)m + 1

2n0
. (18)

Using the approximation (2k − 1)m + 1 ≈ 2km and the
following population-sizing model for n0 [24]:

n0 = c02
km1.5 σ2

BB

d2
, (19)

where c0 is a problem-dependent constant, σ2
BB is the fit-

ness variance of a BB partition (or substructure), and d is
the signal difference between the two most competing BBs,
Equation 18 can now be rewritten as

pi ≤
�

1 − 1

c1
√

m
, (20)

where c1 = 2c0
σ2

BB
d2 . Equation 20—which is depicted in

Figure 1 for m − k deceptive trap problems with k = 4,
and 5—suggests that as the number of building blocks of
the search problem increases, the maximum probability of
estimating the fitness of an individual using the surrogate
asymptotically reaches 1. The maximum pi for k = 5 is
slightly higher than that for k = 4 because the term c1 is
loosely dependent on k and increases linearly with k. Calcu-
lating the upper bounds for 10−4 and 10−5 deceptive trap
using Equation 20, we obtain pi = 0.972 and pi = 0.979, re-
spectively. Empirically, we obtain the optimal pi that yields
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Figure 1: Theoretical curves for the upper bound
of proportion of inheritance (pi) that can be used
for the trap function with k = {4, 5}. The upper
bounds for 10− 4 and 10− 5 deceptive trap functions
as predicted by theory is pi = 0.972 and pi = 0.979,
respectively. Empirically, we obtain pi = 0.972, and
pi = 0.978, which are in close agreement with the
predicted values.

maximum speedup to be pi = 0.972 and pi = 0.978 for 10−4
and 10 − 5 deceptive trap functions, respectively. As a side
note, the model proposed by Sastry et al [26] did not pre-
dict an upper limit on pi. That is, while the model suggests
pi = 1 to be the optimal value, empirical results clearly sug-
gested an upper bound on pi, for both eCGA and BOA,
beyond which the speedup reduced [26, 19]. Interestingly,
using Equation 20, we can predict the upper limit of pi, us-
ing the appropriate values of c1 not only for eCGA but also
for BOA, which agrees with empirical results.

5.3 Speedup
To determine the speedup obtained by the proposed

evaluation-relaxation scheme, we compute the total num-
ber of expensive/accurate fitness evaluations performed to
successfully solve at least m− 1 building blocks for different
values of pi. As mentioned earlier we scale the population
size according to Equation 15 and empirically we find that
the convergence time is constant with respect to pi. The
speedup of the evaluation-relaxation scheme is given by the
ratio of number of function evaluations required when the
surrogate is not used to that required when it is used:

η =
nfe(pi)

nfe,0
, (21)

Since all the solutions of the initial population are evaluated
and subsequently on an average n(1−pi) solutions are evalu-
ated. Therefore, the total number of evaluations performed
is given by n+n · tc · (1− pi). Substituting this relation and
Equation 15 in Equation 21, we get

η =
1

1 − p2
i + 1

tc
pi(1 + pi)

≤ 1

1 − p2
i

(22)

Note that in developing the facetwise model for the speedup,
as in previous studies, we neglected the computational cost
of the surrogate. We plot the speedup obtained by using
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Figure 2: The speedup obtained by using the
evaluation-relaxation scheme for OneMax, 10-4 and
10-5 deceptive trap functions. The results are aver-
aged over 50 independent runs. The speedups ob-
tained by the proposed evaluation-relaxation scheme
is comparable to those obtained through the endoge-
nous fitness estimation models of Sastry et al [26].

the surrogate as a function of pi for the 50-bit OneMax, 10-
4 and 10-5 trap problems in Figure 2. As predicted by the
model (Equation 22), the speedup increases with pi till a
certain point which is bounded by Equation 20. As mention
in the previous section, beyond a maximum value of pi, the
number of evaluated individuals is not enough to satisfy the
minimum requirements of the least-squares method. At this
value of pi, the proposed evaluation-relaxation scheme yields
maximum speedup. That is, for OneMax we obtain a max-
imum speedup of 1.73 at pi = 0.75, for 10-4 trap we obtain
a maximum speedup of 1.87 at pi = 0.972, and for 10-5 trap
we obtain a maximum speedup of 1.9 at pi = 0.978. More-
over, the speedups obtained are similar to those reported by
Sastry et al [26]. Using Equations 22 and 20, we can obtain
an upper bound on the maximum speedup:

η∗ ≤ c1

1 + c2

√
m (23)

where c2 is related to the convergence time: c2 ≈ 2c1/ct,
and ct is a constant related to the selection intensity and BB
size. The above facetwise model suggests that the maximum
speedup obtained by using the surrogate increases with the
number of subsolutions which is very promising.

Following promising results of the proposed evaluation-
relaxation scheme on deterministic problems, we also tested
the use of surrogate on additively-decomposable problems
with additive Gaussian noise. The speedup obtained for
10-4 trap problem with additive Gaussian noise as a func-
tion pi at two different noise-to-signal ratio are presented
in Figure 3. Similar to the deterministic noise, the speedup
increases with pi and reaches a maximum value predicted by
Equation 20. We also note that while the endogenous fit-
ness inheritance method of Sastry et al [26] fails to provide
adequate speedup on noisy problems, the surrogate design
using probabilistic models and linear estimation methods
yields significant speedup for noisy problems as well. For the
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Figure 3: Function evaluation ratio and speedup ob-
tained for 4-bit Trap function with exogenous noise,

σ2
N

(σf /d)2
= {0.01, 0.1}. The results are averaged over 50

independent runs.

noisy 10-4 trap problem the maximum speedup obtained is
2.1 at pi = 0.976 for noise-to-signal ratio of 0.01 and 3.1 at
pi = 0.989 for noise-to-signal ratio of 0.1. Indeed with the
proposed method the speedup increases with the noise-to-
signal ratio. With increasing noise, higher population sizes
are required to successfully solve the problem, and as pre-
dicted by the facetwise models (Equations 20, and 22), the
fitness for a higher proportion of the population can be esti-
mated using the surrogate and would yield a higher speedup.

6. FUTURE WORK
The results of this study are very promising and warrants

additional research in multiple avenues, some of which we
have already begun:

Maximize usage of available data for learning and
designing the surrogate. In this paper, we only used
evaluated parents and offspring—in order to compare the
performance of the proposed method with those reported in
[26]—to learn the coefficients of the surrogate. However, as
the time progresses, we accumulate more evaluations which
can be readily used for learning the surrogate. Therefore,
we are currently investigating different strategies for using
data such as using all evaluated solutions, or using only
recently evaluated solutions that yields maximum speedup.

Use recursive least squares (RLS). In this paper, the
structural form of the surrogate and the coefficients are
learned from scratch every generation. However, a more
efficient way for learning and updating the coefficients of
the surrogate would be using the recursive least squares
(RLS) method [3, 12, 20]. With RLS we can accumulate
the knowledge gained in the surrogate over time without
explicitly storing all evaluated solutions. For non-stationary
problems, RLS with some forgetting factor can be used,
where more attention is paid to recent data and less
relevance is given to old data. However, the structure of

the surrogate, inferred from the probabilistic model built
every generation, can change quite significantly over time.
This might be a potential stumbling block for using RLS.

Test on problems with overlapping subsolutions and
high epistasis. In our experiments we have considered
non-overlapping BBs, however, many problems can have
different BBs that share common components or have
high epistasis. We have performed limited tests, with
success, to verify if we can learn an accurate surrogate for
problems with overlapping subsolutions and high epistasis.
Therefore, we will investigate the speedup obtained through
the surrogate in BOA and DSMGA which can both capture
overlapping substructures.

Test on hierarchical problems. An important class of
nearly decomposable problems is hierarchical problems, in
which the variable interactions are present at more than
a single level. We are in the process of implementing the
evaluation-relaxation scheme with the hierarchical BOA
[18] and studying the performance of the surrogate on
boundedly-difficult hierarchically-decomposable problems.

Apply to real-world optimization problems. The main
motivation to incorporate fitness inheritance in GAs is to re-
duce the number of fitness evaluations for problems where
fitness evaluation is expensive. Therefore, experiments on
real-world problems with costly evaluations should be per-
formed to validate the proposed approach as an applied ef-
ficiency enhancement technique.

7. SUMMARY & CONCLUSIONS
In this paper, we propose an evaluation-relaxation scheme

where a surrogate function is designed to incorporate prob-
lem knowledge mined by EDAs and potentially other linkage
learning methods to estimate the fitness of some solutions
in the population. The structural form of the surrogate is
inferred from the probabilistic model built by the extended
compact genetic algorithm and a least squares method is
used to accurately estimate the coefficient values of the sur-
rogate function. Results show that the proposed method-
ology yields substantial speedup—1.75–3.1—on a class of
deterministic and noisy additively decomposable problems.

We also developed facetwise models to predict an upper
bound on the probability of estimating the fitness using the
surrogate as opposed to evaluating using the expensive fit-
ness function. The models suggest that the optimal prob-
ability asymptotically reaches 1 as the number of building
blocks increases. In other words, as the number of BBs in-
crease, we can use the surrogate for estimating fitness of
almost entire population and evaluate very few individuals.
We also developed a simple model for predicting the upper
bound on the speedup which suggests that the maximum
speedup increases as

√
m, where m is the number of BBs.

That is, we find—both from the model and from empirical
results—that by using the surrogate, the speedup increases
with the number of substructures, substructure complexity,
and the noise-to-signal ratio.

While the fitness function of the test problems used in
this study are not at all expensive, the results neverthe-
less clearly show that the proposed evaluation-relaxation
scheme is highly promising and that we can expect consid-
erable speedups with real-world problems—especially those
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bounded by the test problems. The accuracy and efficiency
of the surrogate design can be enhanced in a number of
ways by using concepts from rich areas such as system iden-
tification, estimation, and regression. More importantly, the
proposed scheme is an effective combine of competence and
efficiency-enhancement and is a primary part of principled
efficiency-enhancement techniques that promise supermulti-
plicative speedups.
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[4] Å. Björk. Numerical method for least squares
problems. SIAM, Philadelphia, PA, 1996.

[5] K. Deb and D. E. Goldberg. Analyzing deception in
trap functions. Foundations of Genetic Algorithms,
2:93–108, 1992. (Also IlliGAL Report No. 91009).

[6] J. E. Dennis and V. Torczon. Managing approximate
models in optimization. In N. M. Alexandrov and
M. Y. Hussaini, editors, Multidisciplinary Design
Optimization: State-of-the-Art, pages 330–347,
Philadelphia, PA, 1997. SIAM.

[7] N. R. Draper and H. Smith. Applied regression
analysis. John Wiley & Sons, New York, USA, 1966.

[8] D. E. Goldberg. Genetic algorithms and Walsh
functions: Part I, a gentle introduction. Complex
Systems, 3:129–152, 1989.

[9] D. E. Goldberg. Design of innovation: Lessons from
and for competent genetic algorithms. Kluwer
Academic Publishers, Boston, MA, 2002.

[10] J. J. Grefenstette and J. M. Fitzpatrick. Genetic
search with approximate function evaluations.
Proceedings of the International Conference on
Genetic Algorithms and Their Applications, pages
112–120, 1985.

[11] G. Harik. Linkage learning via probabilistic modeling
in the ECGA. IlliGAL Report No. 99010, University
of Illinois at Urbana-Champaign, Urbana, IL, 1999.

[12] S. Haykin. Adaptive filter theory. Prentice Hall, 1996.

[13] Y. Jin. A comprehensive survey of fitness

approximation in evolutionary computation. Soft
Computing Journal, 9(1):3–12, 2005.

[14] T. Kailath, A. H. Sayed, and B. Hassibi. Linear
estimation. Prentice-Hall, Upper Saddle River, NJ,
2000.
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