
Evolutionary Motion Design for Humanoid Robots

Toshihiko Yanase
Department of Frontier Informatics

The University of Tokyo
Chiba 277-8561, Japan

yanase@iba.k.u-tokyo.ac.jp

Hitoshi Iba
Department of Frontier Informatics

The University of Tokyo
Chiba 277-8561, Japan

iba@iba.k.u-tokyo.ac.jp

ABSTRACT
We propose a new approach to generating the motion of
humanoid robots intuitively by means of Interactive Evo-
lutionary Computation (IEC). In our system, novice users
are able to design effective motions through the subjective
evaluation of displayed individuals, even if they do not have
any technical knowledge. The motions evolved by the IEC
system are not necessarily stable nor feasible in real environ-
ments. Thus, appropriate adjustments are required to revise
the motions. For this purpose, we use a real-valued GA in
a dynamic simulator. We empirically show the effectiveness
of our approach by designing a kick motion for a humanoid
robot.

Categories and Subject Descriptors
I.2.9 [ARTIFICIAL INTELLIGENCE]: Robotics

General Terms
Algorithms, Experimentation

Keywords
Humanoid Robot, Motion Design, Multi-objective GA, Evo-
lutionary Robotics, Interactive Evolutionary Computation

1. INTRODUCTION
The purpose of our research is to achieve a method of

intuitive motion design that could be used by people who
have no specialized knowledge of robotics in order to oper-
ate humanoid robots. Currently, as a result of the research
conducted by Nishiwaki et al., stable walking of humanoid
robots can be generated in real time [1]. This method fo-
cuses primarily on walking, but it can easily be expanded
to include any type of motion which is conducted on the
same plane and with a level center of mass. Nakaoka et
al., using the method of walking motion generation devised
by Nishiwaki, succeeded in capturing the motions of people

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

dancing and enabling humanoid robots to mimic them [2].
In order to convert the motion expression obtained by cap-
turing those motions into movement that could be realized
by humanoid robots, they analyzed the primitive aspects
of the leg motions. This made it possible to specify the
primitive elements and the parameters, and to dynamically
reproduce the leg movements performed in dancing in a sta-
ble manner. However, designing motion using the method
devised by Nakaoka et al. requires a motion capturing sys-
tem. It also requires people who can express the motions to
be captured. Because of that, motion generation becomes a
large-scale undertaking.

On the other hand, various methods have been proposed
as intuitive methods for generating movements to be exe-
cuted by humanoid figures in 3D-CG (3D computer graph-
ics). These include the UTPoser method proposed by Ya-
mane et al. [3], which uses pins to fix links and drags
movable links, making it possible to generate any desired
pose. There is also the Interactive Evolutionary Computa-
tion (IEC) [4] method by Wakaki et al. [5], in which any
desired motion can be created simply by selecting a motion
displayed on the screen. In motion design for humanoid
robots, however, unlike in computer graphics, movements
need to be generated that are actually feasible under the
physical limitations imposed by the real world. For exam-
ple, there are limits to the joint angles that can be expressed
by humanoid robots, and when the robots come in contact
with the ground, the soles of their feet have to be horizontal
(we will explain the difficulties by examples in section 2.2).
In order to apply motion generated using computer graphics
with humanoid robots, this method has to be modified.

In our paper, the desired motion is designed using IEC as
an intuitive method of motion design for humanoid robots
and is aimed at people with no specialized knowledge of
robotics and with no large-scale equipment. The aim is to
achieve stable motions by following the desired ZMP (i.e.,
zero moment point, see Appendix A for the details). Because
the motion generated via IEC is not necessarily the optimum
motion, some form of optimization is necessary. Particularly
in cases where the motion involves contact with an object
that produces a reaction force, such as kicking a ball, op-
timization is necessary because of the reciprocity that oc-
curs between the distance the ball travels and the stability
of the robot. For instance, Wolff and Nordin proposed an
EC-based learning method in order to acquire stable biped
walking for a simulated humanoid robot[6]. However, this
method requires a specialized gait controller manually devel-
oped to produce the initial population. On the other hand,

1825

in our approach, we can create the initial population from
the motions generated via IEC.

In our research, we have used a dynamics simulator and
carried out optimization using a genetic algorithm (GA) of
the motions designed using IEC. Figure 1 shows an overview
of the experiment, which consists of two phases. In the
first, IEC is used to evolve robot behaviors: users evaluate
visually displayed robot motions that are generated with
kinematic and stability constraints. In the second phase,
GA is used to optimize the behavior obtained from phase 1,
by using the dynamic simulator.

Kicking motion

Dance

Design

Keyframe of the motion

Optimization

using IEC

using GA

Figure 1: The flow of the experiment

This paper describes how successfully EC is applied to
the generation of real motions for a humanoid robot. More
precisely, we empirically show the following points by several
experiments:

• IEC is effectively applied to designing the intuitive
motions of a humanoid or a group of humanoids,
e.g., kicking behavior and cooperative dance.

• GA can be used to stabilize the motions generated
by the above IEC-based method.

• The effectiveness of our approach is demonstrated
by testing the generated motions with a real
robot, i.e., HOAP-1.

The rest of this paper is organized as follows. In Section 2,
we describe the experimental environment and the difficul-
ties of generating humanoid’s motions. IEC-based method
is proposed to avoid these difficulties. Their experimental
results are shown in Section 3. Then, we explain how gen-
erated motions are optimized by means of GA in section
4. Thereafter, we discuss the results in Section 5 and give
conclusion in Section 6.

2. MOTION DESIGN FOR HUMANOID ROBOT

2.1 Humanoid Robot and its Simulator
In our research, we have used the HOAP-1 (Humanoid for

Open Architecture Platform) robot manufactured by Fujitsu
Automation, as shown in Figure 2. Motions were controlled
by specifying the joint angles of the 20 joints of the entire
body every 0.002 seconds. The characteristics of the HOAP-
1 are noted below: (1) Height: 483 [mm], Weight: 5.9 [kg]
(2) The internal interface between the hardware and soft-
ware is available for public use. (3) For movable parts, each
leg had six degrees of freedom and each arm had four degrees
of freedom, for a total of 20 degrees of freedom on the left
and right sides. (4) The robot had the following function-

alities:: a joint angle sensor, a 3-axis acceleration sensor, a
3-axis gyro sensor and a foot load sensor.

OpenHRP[7] is used as the dynamics simulator. It is a
software platform for humanoid robotics, and consists of a
dynamics simulator, view (camera) simulator, motion con-
trollers and motion planners of humanoid robots.

2.2 Difficulties of generating motions by using
3D-CG

When designing motions for a humanoid, it is essential
to consider the contact with other objects and the exter-
nal forces such as gravity so that the robots can move in
a real environment. On the other hand, in case of 3D-CG
humanoid figure, the motion design is more highly flexible,
because the real-world constraints do not necessarily apply.
Figure 3 shows the typical design result of a kicking motion
by means of 3D-CG, in which IEC was applied to generat-
ing keyframes of humanoid animations according to [5]. We
determined the motion of an avatar used in H-Anim in such
a way that the amount of rotation of the joints could be
obtained from the genes from IEC. In this design example,
we ignored gravity or forces of floor repulsion and fixed the
position of the waist links. In the figures, (a) shows the
keyframes of the designed kick motion. (b) gives the motion
sequence between the first and second key frames, whereas
(c) is the same motion sequence simulated considering the
gravities and the repulsion force. As can be seen from the
figures, the robot fell down when he raised his foot. This is
because of the ignorance of external forces such as gravity or
repulsion forces when designing motion by simulation. How-
ever, it is usually very difficult to include all the influences
of these external forces beforehand for simple simulation.
Therefore, the traditional 3D-CG technique has serious lim-
itation to the application of designing robot motions in a
real environment. The next section describes how IEC can
generate stable motions by using ZMP calculation.

Figure 2: The
HOAP-1

(c)simulation(b)design(a)keyframes of
kick motion

Figure 3: Applying 3D-CG
method

3. MOTION DESIGN USING IEC

3.1 IEC-based motion design for a humanoid
robot

Figure 4 shows an overview of the motion design using
IEC. The system provides the user with the motions gen-
erated using IEC. The design is created by the user look-

1826

ing at these motions and evaluating them. Everything that
requires any specialized knowledge about humanoid robots,
such as kinematics calculation, is done internally by the sys-
tem, so the motions can be designed simply by having the
user look at the screen and evaluate the motions.

Presentation

Evaluation

Good!
Observation

Evolutionary Computation

Population

New population

Replace
Genetic
operation

User

Figure 4: The IEC algorithm

3.2 Expressing motion
In our experiment, we have used the keyframe animation

technique, which is often used with 3D-CG as a method of
expressing motion. With keyframe animation, motion is ex-
pressed as the combination of a pose and a timeframe, and
interpolation of the time between the poses is carried out
to produce the animation. In [5], Wakaki et al. created the
animation by creating the joint angle values for the entire
body of the humanoid figure using interactive GA or inter-
active GP. With humanoid robots, if the joint angle values
are set without taking the conditions of the support leg into
consideration, there is very little possibility of generating an
individual robot that will not fall down. With that in mind,
we propose a method for specifying poses and an interpola-
tion method, which together satisfy the conditions such that
the humanoid robot will not fall down.

3.3 Pose Definition
Let us consider the process of assigning numeric values

to poses in terms of keyframes. The weight of the robot
has to be supported, and also important is the question of
how to express the positions and attitudes of legs, because
they might bump into or interfere with each other. If the
poses likely to be taken by the humanoid robot are grouped
based on the relationship of the feet to the floor, there are
three cases to be considered: when both feet are in contact
with the floor, and when one foot (right or left) is on the
floor. If the position of the ankle of the support leg is deter-
mined, the state positions and attitudes that will keep the
humanoid robot from falling over are limited, so the position
and orientation of the ankle of the support leg should be set
as the reference for poses of the entire body.

The position for the landing point of the support leg, as
shown in Figure 5, is decided based on the polar coordinates
(r, θ) that use the support leg ankle position from the prior
keyframe as a reference. The orientation is determined by
the parameter φ. In order to prevent interference between
the feet, the origin of the coordinates is offset from the an-
kle position of the support leg by the amount of the waist
link, perpendicular to the orientation of the ankle. However,
because the size of r that can be realized by means of θ is
different, r is defined within a range solved by inverse kine-
matics. The ankle attitude is specified such that the sole of

the foot is horizontal. This parameter is effective in cases
when the support leg is changing, such as when shifting from
one leg on the ground to both feet on the ground, or from
the right foot on the ground to the left foot on the ground.

left foot right foot
next landing positionsupport foot

r

θ

φ

Figure 5: Specifying the ankle position of the sup-
port leg

The ankle of the swing leg is specified as shown in Figure
6. The position of the ankle is specified using a cylindrical
coordinate system (r, θ, h). In this coordinate system, the
origin is the position offset from the support leg ankle posi-
tion by the amount of the waist link, perpendicular to the
orientation of the ankle. Additionally, the ankle attitude is
specified based on the roll angle, pitch angle and yaw angle.
If the two feet are close together, or if the position of the
swing leg ankle is near the floor, the feet may bump into
each other in some cases, depending on the attitude of the
ankle. In a case such as this, we restricted the attitude of
the ankle to avoid collision. If both feet are in contact with
the ground, this parameter is invalid.

θ

r

h

Waist Link

Hip Joint

X

Ankle Joint

Knee Joint

Knee Joint

Hip Joint

Ankle Joint

Support Leg

Swing Leg

Figure 6: Specifying the position of the swing leg
ankle

For the arms, which do not have to support the weight of
the humanoid robot, we specified an arm joint angle with
a total of eight degrees of freedom for the left and right
arms together. For the waist link, we specified the height,
horizontal position and attitude.

The horizontal position is designated as the point on the
segment between both feet when a robot stands on both feet.
The attitude was provided by the roll angle, pitch angle and
yaw angle, using the support leg ankle link as a reference.
When both feet were in contact with the ground, the ankle
link of the right foot was used as a reference.

Table 1 shows a summary of the parameters used to decide
the poses. Maximum and minimum values were determined
for each parameter in advance, and these were handled by
being normalized at [0, 1]. Because stabilization was the
highest priority, the maximum and minimum values of the
elements were set lower than the limit values.

1827

Table 1: Pose parameters

Element name Degrees of freedom
(a) Type of pose 1
(b) Landing position and 3

direction of support leg
(c) Swing leg ankle-link position 3
(d) Swing leg ankle-link attitude 3
(e) Arm joint angle 8
(f) Waist-link height 1
(g) Waist-link horizontal position 1
(h) Waist-link attitude 3

3.4 Converting from a pose to motion
For the arms, which do not need to support the weight of

the robot, the joint angles were smoothly interpolated using
the natural cubic spline method. In converting the poses
to motion, the interpolation has to be carried out under the
condition that the calculation ZMP is not outside the actual
support polygon, as explained below.

The center of pressure of the floor reaction force in that
state is called the ZMP [8]. A ”support polygon”, as shown
in Figure 7, can be defined as a convex closure that is the
convex hull formed by the set of contact points of the robot
and the floor. The left part of Figure 7 shows the case in
which both feet are on the floor, and the right part shows
one foot in contact with the floor.

left foot

right foot

Support Polygon

left foot

right foot

Support Polygon

Figure 7: Support polygon

If the ZMP ends up being outside the actual support poly-
gon, however, the robot will fall down. With that in mind,
in order to prevent the robot from falling down in our exper-
iment, we can correct the provided poses when interpolating
them so that the ZMP resulting from the calculation of the
physical model would not be outside the support polygon.
The leg motions are derived according to the following se-
quence:

• Decide the landing position
• Derive the center of mass position by the desired ZMP
• Calculate the support leg joint angles

First, the landing position of the support leg is decided. This
derivation is based on (a) Type of pose and (b) Landing po-
sition and direction of the support leg . When the landing
position is decided, the support polygon is also calculated.
When one foot is on the floor (Figure 8), the desired ZMP is
taken as the center of mass position of the support polygon.
The waist-link height is the same as the one in the previ-
ous keyframe, and the waist-link attitude is upright. Next,
the ankle position and attitude of the swing leg are decided
based on (c) Swing leg ankle-link position and (d) Swing leg
ankle-link attitude.

When both feet are in contact with the floor (Figure 9),
the desired ZMP is decided based on (f) Waist-link height
and (g) Waist-link horizontal position. Next, the waist-link
attitude is derived from (h) Waist-link attitude. How to
decide the center of mass position and the support leg joint
angles from the desired ZMP is explained in more details in
the Appendix.

(c) Swing leg ankle-link position
(d) Swing leg ankle-link attitude

The center of mass position
of the support polygon

(b) Landing position and
 direction of support leg

The same as the previous
keyframe waist-link height

(e) Arm joint angle

Figure 8: Converting from a pose to motion: when
one foot is on the floor

(f) Waist-link height
(g) Waist-link horizontal position
(h) Waist-link attitude

(b)Landing position and
 direction of support leg

(e) Arm joint angle

Figure 9: Converting from a pose to motion: when
both feet are on the floor

3.5 Setting the evolution calculation
When carrying out motion design using IEC, it is conceiv-

able that the poses and times for all of the keyframes could
be searched for at one time, but the large number of degrees
of freedom in the joints of humanoid robots may make the
search range too huge. For this reason, we progressively gen-
erate each pose and time by IEC, according to the following
method.

The real-valued GA is used to optimize the 23 parameters
(shown in Table 1) of the pose of the final time. Thus,
GTYPE consists of 23 real values.

The motion calculation is carried out as follows:
1. A new keyframe is added to the motion, and the

pose is randomly generated.
2. The poses are converted to the motion.
3. The motion is shown to the user.
4. The user evaluates the individuals. The design is

terminated, if a sufficient pose is obtained.
5. The next-generation is created. Then, return to

step 2.

Figure 10 shows a snapshot of our IEC-based motion de-
sign system. The user looks at the motions displayed on
the screen and uses the slider under each pose to provide an
evaluation value. In the displayed motions, the calculated
joint angles have been played back using forward kinematics,
and are not the result of a dynamics simulation.

Figure 10: Evaluation screen for IEC

1828

3.6 Evolved behaviors of a humanoid robot

Figure 11: Example of motion design: Kicking

Figure 11 shows the simulation result for a kicking mo-
tion. The elements that were searched for were only the
types of poses and the position of the right ankle, which
was the swing leg. All the other parameters were fixed.
Moving slowly, the robot was able to achieve a kicking mo-
tion without falling down, although the ball traveled only
a short distance. With the kicking motion, the robot came
in contact with the ball as well as with the floor, so there
was offset between the ZMP that was obtained through the
calculation using IEC and the actual ZMP. The stronger the
reaction force from the ball, the larger the offset became.

Figure 12: Example of motion design: A single
dance

Dancing together Single dance Pair dance

Figure 13: Example of motion design: Cooperative
dance

Another example is the cooperation dance of multiple
robots. The dance of each robot was created with the above-
mentioned method (see Figure 12). Although the robot

moved slowly, the dance, which included the elements of
a shift in the center of mass and a tilting of the upper body,
was carried out by the actual robots. With the simulator,
the generated motion was stable without adding any par-
ticular changes. With the actual robots, however, when the
dance was executed by the three HOAP-1 robots, one of the
robots was unstable when lifting its feet. When the mo-
tions were modified so that the feet were not lifted as high,
all three robots demonstrated the stable motion shown in
Figure 13. The learning process of cooperative behaviors
among humanoid robots is described in details in [9].

4. MOTION OPTIMIZATION USING A GA
In the previous section, motions were generated through

IEC according to the relation between the support foot and
ZMP. However, generated motions were not necessarily sta-
ble. This is because the precondition for the stability, i.e.,
supporting polygon or external forces, is dynamically chang-
ing, especially when a robot is in contact with some object
which is not a floor. In order to solve this difficulty, we em-
ploy real-valued GA for the sake of optimizing the generated
motions in terms of the stability. This section describes two
successful examples, i.e., optimizing a kicking motion and a
sitting motion.

4.1 Optimizing a sitting motion
In order for a humanoid robot to sit on a box from a

standing position, he has to move his gravity center from
his foot back to the contact place of the box and his waist
link. Thus, it is very difficult to design by using only IEC.

(a) (b)

Figure 14: Sitting motion: Initial Pose, Final Pose

Suppose that two keyframes shown in Figure 14 have been
generated from IEC. Figure 14(a) shows an initial standing
position, whereas a robot finally bends his hip and knee
joints at 90 degrees in Figure 14(b).

We use GTYPE encoding the following items:

• the angles of the hip joint, the knee joint and the
ankle joint for the intermediate position and the
final position

• the time step for the intermediate position

• the time step for the final position

The fitness value is derived in the following way:

fitness = exp(− sin(θmax))+exp(−Vmax)+2 exp(−r), (1)

where θmax, Vmax, r are defined as follows:

• Maximum lean of chest link during the motion
(θmax)

• Maximum velocity of chest link during the motion
(Vmax)

• Distance between waist link and surface of box (r)

The terms of exp(− sin(θmax)) and exp(−Vmax) are expres-
sion for evaluating the stability, whereas exp(−r) represents

1829

how successfully the task is achieved. In the above defini-
tion, exp(−r) is multiplied by two for the purpose of equal-
izing the two evaluation criteria.

Figure 15: Sitting motion: best individual

Figure 15 shows the evolved motion in a typical run. As
can be seen from the third and fourth snapshots, the robot
turns his angle joint and bends his body so that he can sit
while keeping his gravity center within the support poly-
gon. The fourth and fifth snapshots show the contact of
the corner of the waist parts with the box. In the fifth and
sixth snapshots, the robot moves its gravity center to the
box while turning round the corner of the waist parts, as a
result of which the robot can successfully achieve the sitting
task.

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Z

X

GA
Linear Interpolation

Figure 16: Sitting motion: Position of waist link

Figure 16 plots the waist position in x and z coordinates
for the best evolved individual and the linear interpola-
tion method. The linear interpolation is commonly used
in robotics for the sake of interpolating poses, e.g., Sony
SDR-4X[10]. Initial position corresponds to the upper right
corner, whereas final position is on the lower left corner.
Dots are plotted every 0.2 second so that the slower the
moving velocity, the narrower the interval between the two
dots.

Note that the slope of the best individual’s curve is de-
creasing, which means that robot motions are changing grad-
ually from vertically to horizontally. In the left corner, the
slope is suddenly changed. This is the branching point when
the robot moves its weight from the support polygon of its
foot back to the box surface. The vertical distance of the
waist link at that time was less than 5mm for the best indi-
vidual, whereas it was about 20mm for the linear interpola-
tion. The intervals between two dots is relatively wider for

the linear interpolation, which means the motion velocity is
faster. On the other hand, the narrow intervals of the best
individual reflect the slow motions, which can be observed
in the fifth and sixth snapshots in Figure 15.

4.2 Optimizing a kicking motion
The kicking motion created using IEC in the previous sec-

tion was carried out slowly, so that the ball did not travel a
great distance.

In order to increase the distance traveled by the ball, the
speed at which the tip of the foot is moving at the instant it
contacts the ball has to be increased. However, the following
elements, which reduce the stability, also increase as the
speed of the tip of the foot increases:

• The reaction force from the ball

• The raising moment of the foot

Thus, we try to increase the distance traveled by the ball
by using the real-valued GA to search for the poses in a
keyframe and the pose times as explained below. The four
keyframes of the kicking motion created using IEC, shown
in Figure 11, were provided as the initial conditions. Three
new keyframes were also added, in which the right foot was
in the intermediate position of each pose, so searching was
done with a total of seven keyframes. In this experiment, in
order to obtain smooth motions, we have interpolated the
intervals between keyframes using the natural cubic spline
method.

Using real-valued GA, we searched for swinging of the
arms in the forward and backward directions, raising of the
right foot, and swinging of the upper body in the forward
and backward directions. The GTYPE used in our experi-
ment has the eight real elements shown in Table 2 for each
keyframe. Because the operation targeted five keyframes,
excluding the first and last keyframes, and the time of the
last keyframe, a total of 41 real-value parameters were opti-
mized.

For the position of the ankle link, global coordinates (x, y,
z) were used as the GTYPE elements. Because of the usage
of global coordinates, the positions specified for the ankle
link are sometimes unlikely to be feasible, but in those cases
a lethal gene results.

Table 2: Elements of GTYPE

Element name Degrees of freedom
Time 1
Waist-link attitude 2
Arm joint angle 2
Ankle-link position 3

For each individual, a dynamics simulation was carried
out using OpenHRP, and the results were used to evaluate
the robot. The fitness value was provided using the following
equation:

fitness = e−Vmax + (1 − e−r), (2)

where the maximum value for the chest-link velocity (Vmax)
and the ball travel distance (r) were used as the evaluation.
Vmax is the penalty in relation to the instability of the mo-
tion, and should be as small as possible. The fitness value
for any robot that fell down was set to be 0.

Figure 17 shows the fitness transition for the best indi-
vidual with generations. A significant increase is observed

1830

in the distance traveled by the ball from the 10th to the
20th generation, with an accompanying increase in the fit-
ness value. The stability decreased soon after that. Then,
the stability subsequently recovered.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120

fit
ne

ss

generation

fitness
distance(1- exp(-r))

velocity(exp(-Vmax))

Figure 17: Fitness transition for the kicking motion

Figure 18: Best individual at the initial generation

Figure 19: Best individual after 120 generations

Figure 18 shows the best individual at the initial gener-
ation (ball travel distance = 0.17 m). Figure 19 shows the
best individual after 120 generations (ball travel distance =
2.91 m). The numbers of Figure 18 and Figure 19 show the
times (sec.) of keyframes.

The initial generation largely comprised motions without
much variety that were performed at the same overall pace.
The 120th generation, on the other hand, included varied
motions that had the best individual slowly raising its foot
upward from 0 seconds to 2.5 seconds and then slowly re-
turning its foot to the floor from 3.0 seconds to 4.4 seconds,
followed by rapid motions such as swinging its foot from 2.5
to 3.0 seconds. Because of this, the travel distance expanded
from 0.19 m to 2.91 m, or by approximately 17 times.

initial
generation

120th
generation

(sec)

ch
es

t-l
in

k
ve

lo
ci

ty

 (m
/s

)

time

0

-0.2

0.2

right foot landing(120th generation)Initial Pose

right foot contacts the ball(120th generation)All joint angles are 0

80 4-2

Figure 20: Variation of chest-link velocity

Figure 20 shows the chest-link velocity of x-axis. After the
120th generation, the robot learned to swing his leg so fast
that the chest-link velocity was increased after the contact
with the ball.Especially, the increase became large when the

robot landed his foot on the floor. This is considered as a
side effect of the fast swing. However, the robot never fell
down because of the obtained motion that canceled the mo-
ment by having the right hand swing down as the right foot
swung forward, which is something that humans do(from 1.2
to 3.5 seconds in Figure 19).

5. DISCUSSION

5.1 Optimization using Multi-objective GA
In Section4, GA was successfully applied to optimizing the

humanoid motions. However, the task is essentially multi-
objective optimization. For instance, in case of kicking, we
have to consider the trade-off between the stability of the
robot and the ball distance. Therefore, we have apply Multi-
objective GA (MOGA)[11] with two fitness, i.e., the chest-
link velocity (Vmax) and the ball travel distance (r). We
empirically derive the velocity when the robot falls down
and set the value as the velocity limitation of the chest link
(Vlimit). Rank-based fitness assignment method and niche-
formation method are employed to determine the fitness for
maximizing Vlimit − Vmax and r. Roulette selection is also
used according to the fitness values.

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0 0.5 1 1.5 2 2.5 3 3.5

ch
es

t-l
in

k
ve

lo
ci

ty
 (m

/s
)

ball travel distance (m)

MOGA
GA

(V
lim

it
- V

m
ax

)

Figure 21: Fitness values of best individuals for Sim-
ple GA and Pareto-optimal individuals for MOGA

Figure 21 shows the performance difference between sim-
ple GA and MOGA, in which 30 individuals were evolved
for 50 generations.Best individuals at every generation are
shown as the ”×” dots for simple GA, whereas Pareto-
optimal individuals are plotted as ”+” dots for MOGA. As
can be seen from the figure, the chest-link velocity is smaller
for MOGA when the robot tries to kick a ball at the same
travel distance. This shows that MOGA, if applied effec-
tively, is more suitable for designing humanoid motions. We
will work on this topic, i.e., the extension of MOGA to a
more complex task, for future research.

5.2 Future research
Currently, because the stability is not compensated us-

ing the controller of the actual robots, the motion range is
restricted by the instability of the motion caused by the dif-
ferences between the individuals. A future issue will be to
compensate the stability using the actual robots, and thus
to expand the range of motions that are feasible for the ac-
tual robots. In optimizing the kicks, the torque was not
limited in the present experiment, so the results could not
be applied to the actual robots without modification. In the

1831

future, our goal will be to apply these results to the actual
robots, taking elements such as torque limits and angular
velocity limits into consideration.

6. CONCLUSION
Through IEC, we proposed a motion design method for

humanoid robots which does not need any specialized robotics
knowledge, such as kinematics or dynamics. As an exam-
ple, the designed dance motions were confirmed using the
actual robots, and kicking motions were confirmed using a
dynamics simulator. At the same time, however, in order
to realize motions that deviate from the presuppositions of
the physical model, the motions used with IEC were evolved
using a GA.

In case of designing a sitting motion, it was possible to
find the stable behavior by searching for a space of joint an-
gle trajectories. A kicking motion was set as a task, and the
distance traveled by the ball was improved on a dynamics
simulator. In addition, since the task is a multi-objective
optimization, we empirically found MOGA successfully ap-
plicable to designing the motion.

Also, the ball travel distance and the stability, which we
used as standards for evaluation, have a tradeoff relationship
with each other. In order to determine the optimum solution
based on these two competing target functions, we would
like to carry out optimization using a somewhat larger real-
valued GA. Our future works include the application to more
complicated tasks in consideration of physical constraints.

7. REFERENCES
[1] K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, and

H. Inoue. Online generation of humanoid walking
motion based on a fast generation method of motion
pattern that follows desired zmp. Proceedings of the
2002 IEEE/RSJ Intl. Conference on Intelligent Robots
and Systems, EPFL, Lausanne, Switzerland, pages
2684–2689, 2002.

[2] S. Nakaoka, A. Nakazawa, K. Yokoi, and K. Ikeuchi.
Leg motion primitives for a humanoid robot to imitate
human dances. Sixth International Conference on
Humans and Computers(HS2003), August 2003.

[3] K. Yamane and Y. Nakamura. Synergetic cg
choreography through constraining and deconstraining
at will. Proceedings of International Conference on
Robotics and Automation, pages 855–862, May 2002.

[4] H. Takagi. Interactive evolutionary computation -
cooperation of computational intelligence and human
kansei. Proceeding of 5th International Conference on
Soft Computing and Information/Intelligent Systems,
pages 41–50, Oct 1998.

[5] H. Wakaki and H. Iba. Motion design of a 3d-cg
avatar using interactive evolutionary computation. In
2002 IEEE international Conference on Systems, Man
and Cybernetics (SMC’02). IEEE Press, 2002.

[6] K. Wolff and P. Nordin. Learning biped locomotion
from first principles on a simulated Humanoid Robot
using Linear Genetic Programming. GECCO, pages
495–506, 2003.

[7] F. Kanehiro, H. Hirukawa, and S. Kajita. Open
architecture humanoid robotics platform. The
International Journal of Robotics Research,
23(2):155–165, Oct 2004.

[8] M.Vukobratovic and J.Stepanenko. On the stability of
anthropomorphic systems. Mathematical Biosciences,
15:1–37, 1972.

[9] Y. Inoue, T. Tohge, and H. Iba. Learning to acquire
autonomous behavior - cooperation by humanoid
robots. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO2004), pages
590–602, 2004.

[10] Y. Kuroki, B. Blank, T. Mikami, P. Mayeux,
A. Miyamoto, R. Playter, K. Nagasaka, M. Raibert,
M. Nagano, and J. Yamaguchi. Motion creating
system for a small biped entertainment robot. In
Proceedings of the 2003 IEEE/RSJ Intl. Conference
on Intelligent Robots and Systems, pages 1394–1399,
2003.

[11] C. M. Fonseca and P. J. Fleming. Genetic algorithms
for multiobjective optimization: formulation,
discussion and generalization. In Genetic Algorithms:
Proceedings of the Fifth International Conference,
pages 416–423. Morgan Kaufmann, 1993.

APPENDIX

A. DYNAMIC BALANCE
In order to determine the center of mass trajectory that

will satisfy the desired ZMP trajectory, as in the motion gen-
eration method used by Nakaoka et al. [2], our method uses
the fast generation method of motion pattern that follows
the desired ZMP proposed by Nishiwaki et al. [1].

On a discrete system, supposing all the segments are re-
stricted to be translated horizontally in the same distance,
the following equation is acquired:

xzmp(ti) =
−hx(ti+1) + (2h + g�t2)x(ti) − hx(ti−1)

g�t2
(3)

where xzmp is a difference between a calculated ZMP and
a desired ZMP, x is a translation distance of center of mass
to realize the desired ZMP, ti is time at frame i, h is height
of center of mass, �t is time per one frame. This equa-
tion is about x-axis, and similar equation applies to y-axis.
This equation is expressed by information from 3 consecu-
tive frames. These kinds of equations are solved as tridi-
agonal simultaneous linear equations. This method cannot
figure out a result which completely follows the desired ZMP
trajectory in one calculation because the constraint that all
the segments translate parallel in the same distance is ac-
tually impossible. However, by iterating the calculation, a
converged result is acquired.

After that, the waist-link position is calculated from the
center of mass position. The support leg joint angles are
decided using inverse kinematics so that the relationship be-
tween the waist-link position and ankle position is satisfied.

1832

