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ABSTRACT
Positioning multiple sensors for acquisition of a a given en-
vironment is one of the fundamental research areas in var-
ious fields, such as military scouting, computer vision and
robotics. In this paper, we propose a framework for locating
an configuring a set of given sensors in a synthetically gener-
ated terrain with multiple objectives of maximization of vis-
ibility of the terrain, maximization of stealth of the sensors
and minimization of cost of the sensors. Because of their
utility-independent nature, these complementary and con-
flicting objectives are represented by a multiplicative global
utility function based on multi-attribute utility theory. In
addition to theoretic foundations, we also present how a
Genetic Algorithms can be applied to maximize the global
utility function for a given terrain.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search—Heuristic Methods; J.7 [Computers
in Other Systems]: Military

General Terms
Algorithms, Experimentation

Keywords
Sensor optimization, utility theory, genetic algorithms

1. INTRODUCTION
Searching and detection of targets form an important role

in the military operations. To detect a target, a search is
initiated using sensors. The repeated detection of a target
during several scans over several time intervals is the acqui-
sition phase, which is followed by identifying the type and
class of the detected target. As there are different types of
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sensors and they use different techniques to search and de-
tect the targets with different costs, sensor planning is one
of the key research area related with military scouting.

Acquisition of an environment by positioning and utilizing
of a given set of sensors is one of the fundamental research
issues in computer vision and robotics. Automatic selection
of sensor viewpoints to view multiple objects and regions
in a given 3-D scene is an important research area in com-
puter vision [10, 12]. Similarly, for an autonomous mobile
robot navigation, a robot is equipped with a set of sensors
which cooperate to detect the obstacles and the free space.
Sensor planning in robotics, which is the process of decid-
ing the types, configurations and tasks of the sensors, has
been studied with various techniques [8, 9, 11]. A coopera-
tive sensor planning system based on multi-attribute utility
theory was presented recently, which unifies research from
vision, sensor planning and multi-agent planning [4].

Our main motivation is to develop a framework for lo-
cating a set of given fixed number sensors and setting their
behavioral parameters (i.e., tilt, heading angle) in a virtually
generated landscape with multiple objectives on conflicting
attributes: the maximization of visibility of the given land-
scape, the maximization of the stealth and the minimization
of the cost of sensors used. These attributes are utility-
independent; and when the multi-attribute utility theory is
considered, a multiplicative function over these attributes
fits for the global utility function in our study. Therefore,
we target to maximize a global or unified utility function
that includes the utilities of visibility, stealth and cost. Al-
though a recent work [2] considers the sensor optimization in
a virtual environment with the objectives of maximizing the
visibility and stealth, it is not based on multi-attribute util-
ity theory and it does not consider the topographic study of
the given terrain. The global function presented in their pa-
per is limited by not considering probabilistic calculations of
visibility and stealth, and various types of sensor costs that
are presented in our study including financial, strategic and
placement costs.

As part of the sensor optimization problem, a set of lo-
cational and behavioral parameters of sensors should be set
appropriately, which generate a very large solution space.
As an example of 512 x 512 point landscape by assuming
that the heading angle is between 0 and 360 and tilt angle is
between 0 and 90, there are up to 360 x 90 x 512 x 512 pos-
sibilities for positioning a single sensor. Because of its huge
solution space, the enumerative or basic optimization meth-
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ods can not be applicable and effective for the multi-sensor
optimization problem presented in this paper.

Our framework is based on Genetic Algorithms (GA),
which is an evolutionary optimization method inspired by
the Darwinian evolutionary process present in nature. GA
is a generic method that can be applied to any problem if
the feasible solutions of the problem can be represented as
strings that correspond to genetic encoding of the solutions.
In this technique, good solutions are reached through appli-
cation of genetic operators on individuals in the generation.
Application of the operators and reproduction of individuals
within themselves allows the stronger individuals to survive
as the generations passed. In this paper, we present how
a GA-based technique can be applied for positioning a set
of sensors on a virtual landscape by optimizing the given
global utility function.

The rest of the paper is organized as follows: Section 2
introduces the the details of sensor and landscape character-
istics. In Section 3, we first present an overview to Multiple
Attribute Utility (MAU) theory, which is followed by our
multi-attribute utility function and its components. Sec-
tion 4 gives our GA-based framework for solving the sensor
optimization problem. Section 5 presents the experimental
study and the last section give the conclusion and the future
work.

2. BACKGROUND ON LANDSCAPE AND
SENSORS

Our sensor optimization framework is based on a synthet-
ically generated landscape. In this section, we first present
the landscape generation process which is followed by the at-
tributes of the landscape. Then, the details of topographic
study for a given landscape is presented; finally, the loca-
tional and behavioral attributes of sensors in our framework
are presented.

2.1 Landscape Generation
We developed a fractal landscape generator for creating

virtual landscapes to be used in our experiments, which is
based on the random mid-point displacement algorithm. In
this algorithm, an initial triangle or triangles with no al-
titudes are generated on the X-Z plane. After initial gen-
eration of triangles, corners of the triangles are displaced
toward Y-axis randomly. The amount of displacement is
proportional to the edge length of the triangle, which deter-
mines the characteristic of the landscape. A lower displace-
ment value generates a plain-like landscape and a higher
displacement value generates a mountainous landscape.

After the displacement, by connecting mid-point of each
edge of a triangle to all others, triangle is divided into four
smaller triangles. This process is repeated for the given
number of iterations for each triangle in the landscape. Fig-
ure 1 gives three landscapes generated with different number
of iterations, when the displacement is equal to 200.

2.2 Landscape Attributes
In our study, a generated landscape is represented by a set

of triangular polygons. For each polygon PGi, several at-
tributes are stored in the database; some of them are derived
from the generated landscape and some require additional
computation. In our framework, the major attributes of a
polygon PGi are:

Figure 1: Generated Landscapes with (a) two itera-
tions, (b) four iterations, and (c) six iterations

• Three vertices of the polygon PGi, (P i
1 , P i

2 , P i
3)

• Normal vector, Ni, which is required for the ray-tracing
operation in visibility and stealth calculations.

• Gravity center of the polygon, Gi. For each polygon,
gravity center is computed and stored in the database
to avoid excess computing during the program execu-
tion.

• Density of the polygon, Fi, which is in the range 0 ≤
Fi ≤ 1. It indicates whether the ray traversed from
an origin to its destination through the given polygon
is blocked by the polygon or not. If the polygon is in
a forest area, it has a density of 0.25. Similarly, the
density attribute can be used to set climate related
issues on visibility, such as fog, snow etc.

• Weight of the polygon, Wi, which indicates the im-
portance of the given polygon. A polygon with higher
weight value increases the goodness of solution if it is
seen by a sensor in that solution.

Every pixel on a polygon can act as an obstructer during
the calculation of visibility of a given sensor. Therefore, the
pixels of all polygons are kept in the database for obstruction
checking. A scanline algorithm determined all pixels of a
given polygon. Since the three corner points (P i

0 , P i
1 , P i

2) of
a polygon PGi are known, a line is set between any two
of these corners (say P i

1 , P i
3). For every pixel on this line,

another straight line is set between this pixel and P i
2 . Then,

all pixels on each of these newly generated lines are stored
in the database.
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2.3 Vehicle Characteristics
Here, the term vehicle stands for various kinds of mobile

opponent forces (tanks, trucks etc.) that exist in the given
terrain. Each vehicle is associated with a set of access capa-
bilities on a given landscape, which require the topographic
analysis for setting the contour lines of all polygons. First,
the polygons with the maximum and minimum altitudes are
determined and the difference of altitudes is divided by n, a
terrain specific parameter for the number of contour lines.
Setting the contour line of each polygon gives the elevation
map of the terrain, which is used for neighborhood analysis
and the computation of locational probability of each vehi-
cle of type k on each polygon i of the landscape, represented
as Ploc(k, i). Figure 2 gives an example landscape and its
corresponding elevation map when six contours are used.

Figure 2: (a) A Synthetically Generated Landscape,
and (b) Its Elevation Map with 6 Contours

In our model, each type of vehicle has different access
characteristics, such as different maximum slope of climbing;
therefore, a separate analysis is required to set each vehicle’s
locational access probabilities. The first and the main part
of the topographic analysis is to determine whether the poly-
gons of the terrain can be reachable from the first contour
line, i.e., the lowest altitude contour of the terrain. First,
polygons on the second contour line are examined whether
they are reachable from the neighborhood polygons either
on the first contour line or on the second contour line; then
this step is repeated for the remaining contour lines up to
the highest contour line. A partial function, Gi, keeps the
results of the first part; i.e., it returns 1 if polygon PGi can
be reached from a polygon located on the first contour line;
otherwise, it returns 0.

The second part determines the locational probability of
each vehicle of type k on each polygon i of the landscape,

Ploc(k, i), which is computed by the following equation

Ploc(k, i) = ln

„

e
Ck +

(e − eCk ) × (δv
k − δPG

i )

δv
k

«

× Gi (1)

where δv
k is the maximum slope that the vehicle of type k can

climb; δPG
i is the slope of the polygon i. Ck is a predefined

percentage value to represent the capability of the vehicle
for climbing its maximum slope. With this equation, prob-
ability values are decreased logarithmically with an increase
in the slope. As an example, if a vehicle’s maximum slope
is 40 degrees and if it can climb its maximum slope with a
60% capability, the locational probability of this vehicle on
every reachable polygon with a slope of less than or equal
to 40 degrees, is in the range of [0.4, 1.0].

2.4 Sensor Attributes
The visibility of a given landscape is done by a set of

sensors scattered across the landscape. In general, sensors
are classified as acoustic, chemical, electromagnetic and op-
tical [6]. The acoustic sensors are generally used to detect
underwater objects. The chemical sensing devices are used
to sense and detect the opponents and moving vehicles; and
the electromagnetic sensors (such as radar, infrared etc.) are
used for detection of surface and air targets.

In our work, to simplify the experiments, we consider sen-
sors of the same class with multiple types. Here, the term
sensor stands for a device that is used to observe the land-
scape which is represented with two sets of attributes: loca-
tional attributes and behavioral attributes.

2.4.1 Locational Attributes.
The locational attributes of a sensor Si are:

• Sensor position (PGSi
). It is the position of the sen-

sor Si in the landscape in terms of landscape polygon
number on which this sensor is located.

• Heading angle (αi). It is the angle between the looking
direction of the sensor carrier and X axis, which is
between 0 and 360 degrees.

• Tilt angle (βi). It is the angle between sensor and its
carrier which is in the range of 0 and 90 degrees.

2.4.2 Behavioral Attributes.
The behavioral attributes of a sensor Si are:

• Type of the sensor (Typei). It is a number used for
referencing a sensor with specific viewing parameters.

• Depth of view (∆i). It specifies the the range of visi-
bility for the given sensor.

• Viewing angle (Θi). The viewing angle indicates the
wideness of viewing area of the sensor.

• Cost of the sensor (CostF (i)). It is the financial cost
of the sensor which depends on the sensing ability of
a sensor; i.e. a sensor with a high depth of view and a
large viewing angle will be more expensive. Formally,
it is defined with a function h, CostF (i) = h(∆i, Θi).
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3. MULTI-ATTRIBUTE UTILITY FUNCTION
FOR SENSOR OPTIMIZATION PROB-
LEM

Our formulation of sensor optimization depends on three
conflicting and complementary objectives: maximization of
visibility of the given terrain, minimization of visibility of
sensors to the opponent objects and minimization of the to-
tal cost of the sensors. It is based on Multi-Attribute Utility
(MAU) theory, which is one of the major analytical tools as-
sociated with the field of decision analysis [3]. A MAU anal-
ysis of alternatives explicitly identifies the measures that are
used to evaluate the alternatives, and helps to identify those
alternatives that perform well on a majority of these mea-
sures, with a special emphasis on the measures that are con-
sidered to be relatively more important [1]. The first step
in a MAU analysis is to determine performance measures
and their estimated values with respect to each alternative.
Next, for each performance measure a single-attribute utility
function is assessed that scales performance between 0 and 1.
A MAU function determines how the performance on each
measure affects overall performance a set of assessed weights
or measures of relative importance. To determine whether a
decision maker’s preferences satisfy the correct conditions so
that we may use the multiplicative utility function to cap-
ture her preferences as global utility function, the attributes
must be utility-independent [7]. The global utility in our
formulation is computed as a multiplicative function over
the given three attributes. Formally, the global function to
maximize, U(A, S, P ), of scanning an area A using a set S

of sensors which are located on a set P of polygons (i.e. the
sensor Si located on the polygon Pk), is represented with
the following formulation:

U(A, S, P ) = wv Uv(A, S, P ) + ws Us(S, P ) + wc Uc(S, P ) +

wv ws Uv(A, S, P )Us(S, P ) +

wv wc Uv(A,S, P ) Uc(S, P ) +

ws wc Us(S, P ) Uc(S, P ) +

wv ws wc Uv(A, S, P )Us(S,P ) Uc(S, P ) (2)

where Uv(A, S, P ) is the utility of visibility of area A by the
set of sensors S located on the set of positions P; Us(S, P ) is
the utility of stealth of the set of sensors S and Uc(S, P ) is the
utility of the cost of the sensors. In this equation, wv, ws, wc

are the weights (coefficients) of visibility, stealth and cost
utility functions, respectively, where 0 ≤ wv, ws, wc ≤ 1
and wv + ws + wc = 1. These weights are set based on
experimentations on a given terrain by considering various
military scouting missions. The following subsections briefly
describe how the values of the three utility functions are
determined.

3.1 Computing the Utility of Visibility
The value of utility of visibility is derived by the calcula-

tions of the amount of visibility of the given terrain, which
is computed by adding the visibility of all polygons on the
given terrain. Here, some of these polygons can be reachable
by an object (which is an opponent vehicle); other polygons
may not be reached because of the geographic characteris-
tics of these polygons. Formally, the utility of visibility of
area A by the set of sensor S (located at set of positions P)

is computed using the Equation 3.

Uv(A,S, P ) =
X

PGi ∈A

V
m

s (S, P, PGi) × WPGi
(3)

Here, WPGi
is the weight of the polygon PGi computed by

using the information generated from the topographic study,
which is given at Section 2.3 in detail. In our study, the
weight of a polygon depends on the the accessibility of each
object to this polygon and the value of information about
the given vehicle. We propose the following expression to
evaluate the weight of the polygon PGi:

WPGi
=

P

k
Ploc(k, i) × V OIk

P

k
V OIk

(4)

where V OIk is the value of information about the object of
type k. Important or strategic objects have higher VOI val-
ues. In this equation, Ploc(k, i) is the locational probability
of each object or vehicle of type k on each polygon i, which
is evaluated using the Equation 1.

In Equation 3, V m
s (S, P, PGi) is the maximum visibility

of a given polygon PGi using the set of sensors S, which
is set by the visibility of polygon PGi from an individual
sensor Sj which has the maximum value. Formally,

V
m

s (S, P, PGi) = max
Sj∈S

{Vs(Sj , Pk, PGi)} (5)

where sensor Sj is located on position Pk. The visibility
of the polygon PGi from the sensor Sj , Vs(Sj , Pk, PGi), is
calculated using basic illumination techniques in computer
graphics foundations [5]. Sensors are considered as spot light
source and the visibility of a polygon from a sensor depends
on the distance between polygon and sensor, the angle be-
tween viewing direction of the sensor and the surface normal
of the polygon. In our approach, a field of view cone is built
for each sensor by using the sensor‘s depth of view and view-
ing angle attributes.

Assume that θ
j
i is the angle between the normal of the

polygon PGi and the viewing direction of the sensor Sj .
Among the polygons in the field of cone, each polygon whose
θ

j
i is not in the range [0..90] or [270..360] is determined and

eliminated from the set. Then the visibility computations
are done for the remaining polygons in the field of cone.
Here, cos θ determines whether the face of a polygon is look-
ing toward the sensor or not. Since landscape is a solid
object, only a polygon with the normal vector that looks
toward to the sensor can be seen by sensor.

A separate line from the sensor to each pixel on the base
circle of the view cone is constructed and the pixels on the
constructed line are examined and their corresponding poly-
gons are determined. The first pixel on each line, i.e., the
closest one to the sensor, is marked visible and all other pix-
els on the same line are marked obstructed. Consequently,
the percentage of the pixels on a given polygon that are seen
by the given sensor is computed.

When these parameters are combined, the visibility of a
polygon PGi from a sensor Sj located at Pk is computed
with the following equation:

Vs(Sj , Pk, PGi) =
cosθ

j
i

δ
j
i

× Fi ×
pixels seen

total pixels on PGi

(6)

where δ
j
i is the distance between sensor and the center of

the given polygon, which is in terms of number of pixels.
It should be noted that δ

j
i ≤ ∆j , where ∆j is the depth of
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view of the sensor Sj . In this equation, Fi is the density of
polygon, which is in the range 0 ≤ Fi ≤ 1. This visibility
computation of a polygon is repeated for each sensor and the
maximum visibility value for the given polygon is considered
for the calculating the overall visibility of the landscape (see
Equations 3 and 5).

3.2 Determining the Utility of Stealth
The computation of maintaining stealth for a given set of

sensors requires two phases: scattering phase and calcula-
tion phase. In the first phase, a predefined number of ob-
jects (i.e. opponent vehicles) of different types are scattered
across the terrain randomly. These vehicles are assumed
to carry sensors; and it is also assumed that the sensors
on these vehicles have the same behavioral attributes (i.e.,
viewing angle, depth of view etc.) of the best sensor in our
system.

Figure 3 summarizes the steps of scattering m vehicles.
The main idea is to use the locational probabilities of vehi-
cles of different types for scattering them on polygons of the
given terrain, which is derived from the topographic study.
In other words a vehicle of type k is located on a randomly
selected polygon PGi, if the vehicle can reach to the polygon
PGi from a polygon at the first contour line.

1. for j = 1 to m do

2. k ← select the type of vehicle Ej randomly.

3. i ← select a polygon randomly.

4. g ← random(0, 1)

5. if g ≤ Ploc(k, i) then,

6. locate the vehicle Ej on polygon PGi

7. else goto Step 2.

Figure 3: The Scattering Phase

After scattering, the calculation phase computes the util-
ity of stealth for the given scenario by considering the fixed
sensor locations and the vehicle locations which are set at
the scattering phase. Formally, the utility of maintaining
stealth for a given scenario x, where the set of sensors S are
located at set of positions P , is computed with the following
equation:

U
x
s (S,P ) = 1−

P

Si ∈S V m
e (E,P, PGSi

) × CostSTR(Si) × WSi
P

WSi

(7)
where V m

e (E, P, PGSi
) is the maximum visibility of the sen-

sor Si (located on polygon PGSi
) from the set of opponent

vehicles E which are located on set of positions P . As in
the sensor visibility, it is computed by:

V
m

e (E, P, PGSi
) = max

Ej∈E
{Ve(Ej , Pk, PGSi

)} (8)

where opponent vehicle Ej is located on position Pk. The
visibility of the sensor Si from the opponent vehicle Ej ,
Ve(Ej, Pk, PGi), is the dual of Vs(Sj , Pk, PGi); and it is
computed with the same equation, Equation 6. To compute
the stealth value, sensor visibility value is multiplied with -1
and subtracted from 1, in Equation 7.

In Equation 7, the visibility of each sensor Si is multiplied
by its strategic cost, CostSTR(Si) and its weight, WSi

. It
is due to the fact that a powerful sensor can be located

at a non-strategic location or a less powerful sensor can be
located on a strategic location on the terrain. Here, the
weight of the sensor is computed by multiplying its financial
cost with a coefficient q, which is WSi

= q × CostF (Si).
The strategic cost of the sensor Si, i.e. the cost of being

discovered by an opponent vehicle, is equal to the average
visibility of the given terrain using the sensor Si. When |PG|
shows the number of polygons on the terrain, the strategic
cost is computed with the following equation:

Cost
STR(Si) =

P

PGi ∈PG
Vs(Si, Pk, PGi)

|PG|
(9)

The process of scattering and computation phases is re-
peated for a predefined number of scenarios. The mean value
of utilities for the given scenarios determines the overall util-
ity of stealth. If r gives the number of different scenarios,
the overall utility of maintaining stealth is computed by:

Us(S, P ) =

Pr

x=1
Ux

s (S, P )

r
. (10)

3.3 Computing the Utility of Cost
In our study, the term cost for a given sensor is consid-

ered with the three different meanings: a) the financial cost
of sensor, (b) the cost of placement of the given sensor to its
location and (c) the strategic cost of the sensor being discov-
ered by an opponent observer. The last one was considered
as part of the utility of the stealth: others are considered as
part of the utility of the cost.

The utility of cost for a set of sensors S placed on a set of
locations P is formally defined as

Uc(S, P ) =

P

Si ∈ S
Ploc(i, k) × CostF (Si)

P

Si ∈S
CostF (Si)

(11)

where Ploc(i, k) is the locational probability of sensor Si on
the given polygon PGk. Here, instead of locational cost,
we use locational probabilities. As in the stealth case, the
minimization of utility of cost is converted to the maximiza-
tion form. To compute the locational probability of a given
sensor, the Equation 1 is considered by assuming that each
sensor is on the carrier which has the same access capabili-
ties with the best opponent vehicle given in the experiments.

4. GA FORMULATION OF THE SENSOR
OPTIMIZATION PROBLEM

This section summarizes our GA formulation for the sen-
sor optimization problem. An individual or a solution con-
sists of a set of fixed number of sensors with their attributes.
In our string representation, each sensor has values for its
location (in terms of the polygon number where the sensor
is located), its heading and tilt angles, and the type of the
sensor (see Figure 4). If an experimentation is restricted
with the fixed number of sensors of the same given type,
then the type field is not considered. We consider binary
representation for each sensor attribute. In our current im-
plementation, fitness proportional roulette-wheel sampling
is considered in a generational-GA approach.

Since our global utility function (given in Equation 2) is in
the form of maximization, it is used as the fitness function,
without any adjustment. In Equation 2, since all three util-
ity values (visibility, stealth and cost) and the coefficients
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Heading  Angle   Tilt  Angle   Polygon  No Sensor  TypeHeading  Angle   Tilt  Angle   Polygon  No Sensor  Type

SENSOR     1 SENSOR     2 

Figure 4: The String Representation for the Problem of Two Sensors

are in the range of [0..1] and wv + ws + wc = 1, the fitness
function will be in the range of [0..1].

4.1 Operators

4.1.1 Crossover Operator
There are three different strategies considered for crossover

operator, which differ according to where the crossover op-
erator is applied.

• TYPE 1: In this version, sensors of parents are con-
sidered as blocks (i.e., each sensor is preserved); and
an n-point crossover operator is applied on sensors. In
other words, a generated offspring consists of sensors
from parents by keeping original sensor attributes in
their parents.

• TYPE 2: In this type, we consider attributes as blocks,
i.e., attributes of sensors are preserved. Then, a bi-
nary string is generated with the length of (number of
sensors * number of sensor attributes). This string is
used to implement uniform crossover by treating each
attribute independently and making a random choice
as to which parent it should be inherited from.

• TYPE 3: Single point crossover operation is performed
on a selected attribute and the same crossover point is
considered for all sensor pairs. The generated attribute
values of offsprings are different than the attribute val-
ues of parents.

After the crossover operation, offsprings’ attributes should
be in their limits; therefore a validity check on each attribute
is performed. An additional check is done for the “polygon
number” attribute. The new location (say polygon PGk)
should be reachable for the sensor. Formally, Pz,k ≥ ε, where
Pz,k is the locational probability of the vehicle z (which
carries sensors) on polygon PGk should be greater than a
predefined threshold value, ε. If it is not true for any of
the offsprings, the crossover operator is applied for the next
crossover position (by considering circular representation).
If it does not generate a reachable location for the sensor in
the three consecutive trials, the parents are discarded and
new parents are selected from the current population. In
our experiments, although initial population is generated
randomly, the validity check on all attributes and the check
for reachability are also performed for building the initial
population.

4.1.2 Mutation
For the given individual, one of its sensors is chosen ran-

domly and mutation is applied on the selected attribute of
the sensor. There are five different types of mutation per-
formed in the experiments: location, heading angle, tilt an-
gle, type, and random. First four are the four attributes of
the sensors; and the last one selects the mutation location
anywhere on the string. As in the crossover case, the valid-
ity check on all attributes and reachability check on location
attribute are performed after the mutation.

4.1.3 Local Search Extension
In our work, we consider to improve the sensor’s visibility

by scanning all possible neighborhood directions. In this
approach, firstly, the initial visibility of a sensor is calculated
by using the polygon number, type, tilt angle (which had
been determined before) and the initial value of the heading
angle. Then, the heading angle is increased by the amount
of sensor’s viewing angle, starting from 0 to 360 degrees.
Thus, the local search method scans the circumference of
sensor and finds the better visibility.

5. EXPERIMENTAL STUDY
In this section, we present the results of computational

experiments to evaluate the effectiveness of our GA-based
method for sensor optimization. The GA-based algorithm
was coded in C programming language and the landscape
generator was implemented in Delphi programming language.
The computational experiments of these algorithms were
performed by an Intel Pentium IV 1.6 GHz PC running the
Linux operating system. The comparison metrics are the
utility of visibility, the utility of stealth and the utility of
the cost of the sensors.

Figure 5: A randomly generated landscape with 4
iterations and a displacement factor of 300

We consider the synthetically generated landscape given
in Figure 5 as the reference problem in the experiments.
In this section, two separate experiments are performed to
demonstrate the effect of number of observation points (i.e.,
the sensors) and the effect of number of opponents over the
utility terms given in the multi-attribute utility function.
It should be noted that number of sensors or number of
opponents are varied by keeping the fixed values for other
experimental and control parameters. Specifically, popula-
tion size is set to 30 and the opponent distribution number
is set to 4. The weight values of visibility, stealth and cost
are set with the values 0.6, 0.3, and 0.1, respectively. The
”TYPE 3” crossover operator and local search extension for
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setting the heading angle are considered in the experiments
presented in this section.
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Figure 6: Change in Utility of Visibility with Differ-
ent Number of Sensors
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Figure 7: Change in Utility of Stealth with Different
Number of Sensors
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Figure 8: Change in Utility of Cost with Different
Number of Sensors

In our first experiment, we vary the number of opponents
(either 32 or 48) while fixing the number of sensors to 64.
As can be seen from Figures 6-8, both the utility of the
visibility and the utility of the cost increase whereas the
utility of the stealth decreases as expected, with an increase
in the number of generations. This observation is valid for
different number of opponents.
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Figure 9: Change in Utility of Visibility with Differ-
ent Number of Opponents
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Figure 10: Change in Utility of Stealth with Differ-
ent Number of Opponents
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Figure 11: Change in Utility of Cost with Different
Number of Opponents
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In our second experiment set, we vary the number of sen-
sors (either 64 or 96) while fixing the number of opponents
to 32. As can be seen from Figures 9- 11, the utility of the
visibility and the utility of the cost increase whereas the util-
ity of the stealth decreases with the number of generations
considered.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a sensor planning system that

unifies research from active vision with sensor planning, de-
cision theory, and genetic algorithms. Calculating sensor
utility factors for several vehicles over a large area is com-
putationally very expensive. So, directing and limiting the
search and calculations involved in sensor planning is the
main part of our extensions.

In our experiments, the initial population is set randomly
and we only consider the validity of the attribute values and
reachability of sensors on the selected locations. Initial pop-
ulation highly affects the characteristic of the convergence
of the solution. We are planning to generate the initial pop-
ulation according to the landscape features. Additionally,
local search strategy can be made more effective by chang-
ing the search mechanism. Another major extension is to
add the moving capability for both sensors and opponent ve-
hicles, which require their initial positions and the moving
directions.

Our GA-based solution for the sensor optimization prob-
lem is a computationally-intensive application; and it is planned
to implement its parallel version using message-passing li-
braries and to execute it on a cluster of machines. Genetic
Algorithms can be easily parallelizable and several mod-
els in parallel genetic algorithms are suitable for the multi-
attribute optimizations.
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