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ABSTRACT
Action set selection in Markov Decision Processes (MDPs)
is an area of research that has received little attention. On
the other hand, the set of actions available to an MDP agent
can have a significant impact on the ability of the agent to
gain optimal rewards. Last year at GECCO’05, the first au-
tomated action set selection tool powered by genetic algo-
rithms was presented. The demonstration of its capabilities,
though intriguing, was limited to a single domain. In this
paper, we apply the tool to a more challenging problem of oil
sand image interpretation. In the new experiments, genetic
algorithms evolved a compact high-performance set of im-
age processing operators, decreasing interpretation time by
98% while improving image interpretation accuracy by 55%.
These results exceed the original performance and suggest
certain cross-domain portability of the approach.

Categories and Subject Descriptors
I.4.8 [Computing Methodologies]: Artificial Intelli-
gence—Learning

General Terms
Performance

Keywords
genetic algorithms, machine learning, heuristic search,
Markov decision process, adaptive image interpretation

1. INTRODUCTION

Many real-world problems involve the need for image data
analysis, with massive amounts of data to be processed in
a limited amount of time. Information extraction from vi-
sual data is a challenging and time-consuming task. One
example lies with oil sand mining operation which involves
crushing collected ore lumps as a pre-processing step to oil
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Figure 1: The oil sand ore segmentation task. Ore
lumps are shown on a conveyor belt (top), manually
segmented (bottom).

extraction. Size distribution of crushed ore fragments is a
critical indicator of pre-processing quality and a key to oil
extraction efficiency.

Size analysis techniques do exist (centrifugation, mechan-
ical sieving, sedimentation), but these methods typically in-
volve physical manipulation of the actual materials being
measured, whereas computer vision techniques operate with
real-time visual feed from a video camera inspecting ore
coming out of a crusher. The usual procedure is to seg-
ment images of ore fragments on the conveyor belt (e.g.,
Figure 1), and then measure sizes of the segmented areas.

In order to segment the oil sand ore automatically, an Ore
Size Analyst (OSA) system was created [20]. This system
used a fixed hand-selected set of vision operators, each with
a manually tuned fixed set of parameters. Not only was the
trial-and-error tuning process laborious and expensive, but
also the resulting performance did not generalize well onto
a broad spectrum of field conditions.

A new generation of image interpretation systems uti-
lizes automated machine learning techniques to attain a ro-
bust level of performance in the field [3]. They learn adap-
tive control policies to handle large variations in the input
data. The policies are reinforcement-learned [17] over an ex-
tensive generic set of image processing operators since im-
age interpretation is treated as a Markov Decision Process
(MDP) [1]. Reinforcement Learning (RL) is commonly used
within MDP settings wherein an agent is interacting with
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its environment, developing a world model and receiving re-
wards based on the results of its actions. In these settings,
the agent learns a control policy that tells it how to act in
the environment in an attempt to maximize its cumulative
reward. In the vision domain, actions are vision operators
that manipulate the image in the process of producing an
interpretation. The rewards are defined as accuracies of the
image interpretations produced.

An objective of Reinforcement Learning is fully au-
tonomous learning by the agent. One of the last vestiges of
human intervention is action set selection. Action set selec-
tion is important because a large set of actions can confuse
the agent and slow down its learning. On the other hand,
a small set of actions can provide the agent with too few
options to act optimally in the environment.

The number of possible action sets usually grows expo-
nentially with the number of distinct actions. In the past,
researchers were limited to selecting action sets manually
through a laborious process of trial and error. Last year
at GECCO’05 the first Genetic Algorithms powered tool,
called GAMM, for automated selection of action sets for
a reinforcement learning agent was presented [9]. It was
applied to an existing reinforcement learning vision system
called MLCV (Machine Learning for Computer Vision) [10]
in the domain of automated forestry image interpretation.
GAMM’s application to automated action set selection re-
sulted in 95% reduction of the system’s running time while
preserving the interpretation accuracy of the original action
set. This demonstration, though impressive, was limited to
only a single domain and left GAMM’s scalability and cross-
domain portability as open questions.

The primary contribution of this paper is a demonstration
of cross-domain portability of GAMM. We took the tool di-
rectly from the forestry domain [9] and applied it to a sub-
stantially different and arguably more challenging problem
of image interpretation of oil sand ore fragments [20]. In the
new domain GAMM exceeded its performance in the origi-
nal application and reduced the running time of the machine
learning computer vision system by 98% while improving its
image interpretation accuracy by 55%.

We attempted to make the paper as self-contained as pos-
sible and organized it as follows. We first describe the oil
sand ore image domain in section 2. Next, in section 3 we
outline previous research in image interpretation, before de-
scribing the MLCV system used to interpret oil sand ore
images in section 4. This is followed by a description of the
GAMM tool in section 5. After overviewing related research
in feature selection in section 6, we present empirical results
in section 7. Concluding remarks are provided in section 8.

2. OIL SAND ORE IMAGE
INTERPRETATION

Proper measurement of crushed ore fragments leads to im-
proved performance of the subsequent oil extraction process,
as adjustments can be made to machinery based upon the
size distribution of the ore. An example of a segmented oil
sand ore image is shown in Figure 1.

Ore segmentation is an outdoor year-around 24-hour op-
eration. This adds numerous complications to the image
segmentation process, since the ore may be covered in snow,
wet from rain, and lit by natural or artificial light. In ad-
dition to these obstacles, the ore itself may be of different
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Figure 2: Training data for the forestry domain
(left) and for the oil sand ore domain (right).

types, depending upon the depth at which it is mined. Thus,
in order to be robust, a computer vision system segmenting
ore images ought to be adaptive to wide variations in the
input images.

Previously, the MLCV system was successfully applied to
the forestry domain [9]. The oil sand ore domain is more
challenging for several reasons. First, the images lack color
information, rendering color operators used in the forestry
domain, such as color histogram intersection, color correla-
tion and red-green-blue (RGB) segmentation inapplicable.
Consequently, the authors of [20] used the following image
processing operators in the oil sand ore domain: bilateral
noise removal, contrast enhancement, threshold, and mor-
phological segmentation. In this study we use the following
image interpretation operators: Gaussian filter, threshold
and morphological segmentation. Figure 2 shows typical in-
put images and their segmentations for both domains.

A second difference between the forestry and oil sand ore
domains is that the pixel-level scoring function used in the
former domain [9, 10] does not provide a meaningful mea-
sure of interpretation performance on oil sand ore image. It
is more important to obtain an accurate size distribution of
the ore fragments than it is to properly label each object
pixel. Thus, we adopt a sum of individual intersection over
union metric of [20], where interpretation accuracy within
each fragment is measured. Figure 3 illustrates the differ-
ence. At the top, A and B show the original image, and
the ground-truth (i.e., desired) interpretation respectively.
The interpretations on the bottom (C and D) correctly la-
bel about the same number of pixels. Thus, the pixel-level
intersection-over-union score of [10] would be approximately
the same for both interpretations. In terms of the frag-
ment size distribution, interpretation C is noticeably more
accurate than D as the latter mistakenly conglomerates sev-
eral ore pieces. This is accounted for by the per-fragment
intersection-over-union metric of [20] which scores C at 0.43
and D at 0.17 (scores range between 0 and 1). Figure 4
shows distributions of fragment sizes for the ground truth
(interpretation B), interpretation C, and interpretation D
from Figure 3. The distribution is over the cumulative per-

1698



A B

C D

Figure 3: MLCV in the oil sand ore domain uses
a scoring metric that penalizes interpretations for
combining individual fragments of ore. Top: A and
B are the original image and the ground-truth inter-
pretation, respectively. Bottom: C and D are two
distinct interpretations of A. Interpretation C re-
ceives a higher score than interpretation D because
the distribution of ore fragment sizes measured from
C is closer to the ground-truth distribution than the
distribution measured from D.

centage passing, which represents the percentage of identi-
fied ore fragments smaller than a given diameter. This is
a commonly used plot in the mining industry to test inter-
pretation quality. Interpretation C’s segmentation matches
that of the ground truth much more closely than that of
interpretation D.

3. RELATED RESEARCH IN
AUTOMATED IMAGE
INTERPRETATION

Genetic programming has been applied directly to the im-
age interpretations process [5]. Howard and Roberts use a
two-step genetic program to recognize boats in Synthetic
Aperture Radar (SAR) images, as well as ground vehicles in
Infrared Linescan Imagery (IRLS). The first step lies with
evolving a program that attempts to discriminate object pix-
els from a small collection of non-object pixels. The fittest
detector evolved is then applied to the whole image, result-
ing in many false positives. In the second stage, another
round of genetic programming is applied, and pixels are la-
beled as object pixels only if both the first and second stage
detectors label them as the object. The evolved programs
are based on pixel and local neighborhood statistics.

The detector evolved by the genetic programming ap-
proach is effective in recognizing both the boats and ground
vehicles in their experimental settings. This is an example of
direct application of genetic programming to image interpre-
tation. The GAMM tool is not designed to interpret images,
but instead to choose action sets for MDP agents. Its ap-
plication in this paper is to choosing sets of vision operators
for a vision system, but it can be applied to non-vision MDP
systems such as terrain navigation.

There have been a variety of methods applied to forestry
image interpretation. Example-based image models involve
matching templates of trees to areas of an image [11]. This
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Figure 4: Cumulative percent passing plots of three
interpretations. Interpretation C is closer to the
ground truth than interpretation D.

requires a large database of different tree crowns, since aerial
images will have various tree species and sizes, as well as
different illumination and terrain slant.

Model-based methods involve less image feature process-
ing than other methods and use elementary image features
to hypothesize large numbers of regions to match with 3D
CAD tree models. The STCI system [13] uses a tree crown
matching technique much like the example-based method,
but derives its template mathematically, modeling the sum-
mit of the tree crown as an generalized ellipsoid of revolu-
tion. Ray-tracing techniques are used to complete the tree
crown template [8]. Much like the example-based meth-
ods, model-based methods require many different templates.
Both methods also have difficulty dealing with dense over-
lapping foliage, changes in terrain and irregularities in tree
crown shape. In addition to this, both involve much devel-
opment time and take advantage of domain specifics.

MLCV has been shown to be robust to noise in the train-
ing data, illumination, and camera angle variations [10]. It
requires little human time to port from one vision domain
to another [20], and does not require domain expertise. We
describe MLCV in detail in the next section.

4. ADAPTIVE IMAGE INTERPRETATION

In order to evaluate action set selection, we experimented
with the Machine Learning for Vision (MLCV) system [20],
in an attempt to optimize the set of vision operators (viewed
as MDP actions in MLCV) with respect to balancing image
interpretation accuracy and interpretation time. In order
to make the paper self-contained, we describe the MLCV
system below.

MLCV is the evolution of computer vision systems
called Multi-Resolution Adaptive Object Recognition (MR
ADORE) [10] and Adaptive Object Recognition (ADORE)
[2]. MLCV models image interpretation as a Markov Deci-
sion Process. Namely, vision operators are the MDP actions,
and images (or parts of images) are the MDP states. Oper-
ators are applied to images to produce further images, until
an image interpretation is produced.

MLCV operates in two stages. In the training stage all
valid limited-length operator sequences are expanded, which
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Figure 5: During MLCV’s training stage, all valid
fixed-length sequences of image processing opera-
tors are applied to a training image. The result-
ing interpretations are then scored with respect to
a user-supplied ground truth. The scores are used
to learn a state-action value function.

is called a full expansion. Figure 5 illustrates the process.
Rewards are then computed by comparing the resulting in-
terpretations to the user-supplied ground-truth. Off-policy
reinforcement learning with roll-outs is used to learn a value
function to be used for MLCV operation of novel input im-
ages. Specifically, rewards are backed-up along the operator
sequences using dynamic programming, producing a state-
action value function Q : S × A → R, computed for the
actual expanded states S′ ⊂ S and actions A′ ⊂ A. The
value of Q(s, a) is the expected cumulative reward if action
a is taken in state s, and optimal choices are made thereafter
until an interpretation is produced. The Q-notation comes
from Watkins’ Q-learning [21].

During the online stage, MLCV greedily uses its machine-
learned state-action value function (Q) to select vision op-
erators while interpreting a novel image. It then outputs
to the user what it predicts to be the best interpretation
(i.e., the one with the highest expected reward). Figure 6
illustrates the process.

5. AUTOMATED ACTION SET
SELECTION

Performance of an MDP-based reinforcement learning
agent depends on its choice of actions. Too many actions
can confuse the agent, presenting it with too many (infe-
rior) choices during learning and acting. Too few actions
can hinder the agent by limiting its options, thus not allow-
ing it to perform optimally in its environment. In order to
automate the action set selection process in MDPs, a tool
called Genetic Algorithms with Meta-Models (GAMM) was
developed [9]. For reader’s convenience, we summarize the
key elements of GAMM below.

GAMM begins by providing an MDP agent with random
subsets of the full action set. The agent then acts and learns
in the environment with each set. This generates training
data of the form {a, f(a)} with f(a) = αr(a) + βc(a) + σ

MLCV Control PolicyMLCV Control Policy

ImageImage

ProcessingProcessing

LibraryLibrary

ValueValue

FunctionFunction

Figure 6: Online operation of MLCV. The control
policy selects operators greedily with respect to its
learnt value function. This is done in an attempt
to produce an image interpretation with the highest
expected accuracy.

being the fitness of action set a, calculated as a combina-
tion of the reward collected r(a) and the running time c(a).
Here α and β are scaling coefficients, while σ is an additive
constant. Each initial random action subset contributes one
data point to the training set. As a tractable number of
such subsets is bound to be small in any realistically scaled
domain, GAMM extrapolates the data onto the collection of
all possible subsets of the original action set. This is done
using a generalization method such as machine learning with
artificial neural networks. The resulting generalized fitness
function is called meta-model following [6]. Figure 7 illus-
trates the process.

Next, a genetic algorithm performs a search in the space
of action sets, using the machine-learned meta-model as a
fitness function. The set a with the maximum f(a) is the
output of GAMM, Figure 8.

6. RELATED RESEARCH IN FEATURE
SELECTION

GAMM was a pioneering tool for automated selection of
action sets for agents in Markov Decision Processes. A re-
lated field of research is automatic feature selection. Fea-
tures are similar to MDP actions in that they can be inter-
dependent, redundant and that their performance can only
be fully evaluated by running the actual system. Below, we
revisit the discussion of these methods found in [9].

Traditionally, greedy methods were used for feature selec-
tion [7, 14], but an improvement was found by implementing
a GA for the task [19]. Within these GAs used for feature
selection, both weighted combinations of criteria [16, 18] and
pareto-optimal optimization [4, 12] proved successful.

While feature selection bears some similarity to action set
selection, there are important differences. All features are
applied to the data simultaneously, while actions are ap-
plied sequentially, with the output of one action being the
input of the following action. Also, the application of ac-
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Figure 7: GAMM: Part 1: Meta-models are learned from evaluating N random subsets of the full action set,
and combining the rewards collected and running time into a fitness value.
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Figure 8: GAMM: Part 2: Discovery of an action set for a MDP agent.

tions is guided by a dynamic control policy that can involve
loops, back-tracking and early termination. Parameteriza-
tion is typical with actions, a requirement seen much less
when working with features. This limits the applicability of
feature selection methods to action set selection.

7. EMPIRICAL EVALUATION

In order to demonstrate portability of the GAMM tool,
we applied it to the MLCV system for oil sands ore image
interpretation. This is the first application of GAMM out-
side of the original publication. The tool itself was made
available to us by the authors of [9] and was used “as is”
in the new domain. A total of 150 labeled ore images were
made available to us. These images were captured with a
camera suspended above a conveyor belt carrying ore from a
mine in Fort McMurray, Alberta. In each fold, a selection of
100 images were used for MLCV training and the other 50
images were used for testing. This process was repeated over
100 cross-validation folds each partitioning the 150 images
randomly. The control parameters are found in Table 1.

During each generation of the genetic algorithms within
the GAMM tool, two individuals were chosen for mating
from the evolving population of action sets using rank selec-
tion (i.e., the probability of a chromosome being chosen is

proportional to its rank within the population). Using uni-
form crossover, two offspring were produced, and replaced
two members of the population, again using rank selection.
The children were then mutated according to the mutation
rate. The initial population was created using a weighted
random scheme.

Two different meta-models to approximate the actual fit-
ness of action sets were used, namely, artificial neural net-
works (GA/NN) and näıve Bayes (GA/NB).

As in the original application of GAMM [9], the competi-
tion consisted of a method called “Top” (Algorithm 1), that
ranks an operator a based on the average fitness of action
sets containing a. We also compared against the full action
set, a hand-selected action set, and a randomly selected ac-
tion set. The full action set is shown in Table 2. Both
the Top method and the randomly selected action sets are
composed of a random number of operators at each cross-
validation fold. This is because the Top method only ranks
operators, it does not indicate what number of them to in-
clude in a set.

Section 7.1 shows the performance of MLCV with a per-
fect policy. That is, instead of using the regular control pol-
icy that MLCV learns during its training phase, the best
produced interpretation was output to the user for each
novel image. This can be viewed as the potential for each
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Table 1: Cross-validation experiment methods and
parameters.

Methods and Data Used
Number of training operator sets: 1000
Number of training images: 50
Number of validation images: 50
Number of testing images 50
Selection methods used: Genetic Algorithms,

Random selection,
Top, Full set,
Manual selection

Fitness functions (meta-models) Artificial Neural
used (within GAs): Networks,

Näıve Bayes
GAMM Parameters
Populations: 100, 500
Generations: 1000, 10000
Mutation Rates: 0.05, 0.2
Crossover: Uniform

Fitness Equation Coefficients
α: 1/(2 ·MaxAccuracy)
β: 1/(2 ·MaxCost)
γ: 1/2

Algorithm 1 A filter method, called “Top” for selecting
action sets.
Input: Training data, desired number of operators d in set
Output: Domain specific action set

1: for each operator A in the full set do
2: for each training datum {attributes,fitness} do
3: if A is present in the training datum then
4: Add this fitness to A’s total
5: Increment count
6: Calculate A’s fitness by dividing total by count
7: Sort actions by their fitness
8: Output top d operators

action set, since this is the best fitness MLCV can possibly
achieve with each set.

Section 7.2 shows results with the MLCV machine-learned
policy guiding the decision concerning which interpretation
to output. In all sections, the fitness of an action set a was
calculated as:

f(a) = 0.5
accuracy

MaxAccuracy
− 0.5

cost

MaxCost
+ 0.5

and falls in the range [0, 1]. The terms MaxAccuracy and
MaxCost are the interpretation accuracy and the execution
cost of the full action set, using the perfect policy.

7.1 Perfect Policy

In these experiments, MLCV was run with action sets cho-
sen by each of the described selection methods. The perfor-
mance was measured on 50 test (i.e., never seen before) oil
sand ore images. For each image, MLCV with a given action
set produces at least one interpretation of the image. Us-
ing the full action set, for instance, 3066 interpretations of
each image were produced. With the perfect policy, MLCV
output the best interpretation with respect to the scoring

Table 2: The full action set used in oil sand ore
experiments, consisting of 33 parameterized vision
operators. The morphological segmentation opera-
tor does not take any parameters.

Operator/Parameter Parameter values

Gaussian Filter/ 1, 3, 5, 7, 9, 11, 13, 15,
Gaussian Matrix Dimension 17, 19, 21
Threshold/ 25, 35, 45, 55, 65, 75, 85,
Threshold Value 95, 105, 115, 125, 135,

145, 155, 165, 175, 185,
195, 205, 215, 225

Morphological Segmentation no parameters
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Figure 9: Fitness of action sets found by six different
selection methods, using the perfect policy.

metric. Figure 9 shows the fitness of the action sets chosen
by six selection methods with the perfect policy.

The full set achieves a fitness of 0.5 in every fold, since
it achieves both MaxAccuracy and MaxCost. The sets
founds by the GAMM with a neural network for a meta-
model achieve 97% of the maximum interpretation accuracy
possible, while taking only 2% the running time of the full
set. The fittest action set found by GAMM, with respect to
the perfect policy, is shown in Table 3.

Table 3: The fittest action set found by GAMM,
with respect to the perfect policy.

Operator/Parameter Parameter values

Gaussian Filter/ 15
Gaussian Matrix Dimension
Threshold/ 45, 55, 105, 115, 125, 145
Threshold Value
Morphological Segmentation no parameters

7.2 Machine-learned Policy

In these experiments, MLCV first learned a state-action
value function (Q) and then used it greedily to choose an
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Figure 10: Fitness of action sets found by six differ-
ent selection methods, using machine learned policy.

Table 4: The fittest action set found by GAMM,
with respect to MLCV’s machine-learned policy.

Operator/Parameter Parameter values

Gaussian Filter/ 5
Gaussian Matrix Dimension
Threshold/ 35, 45, 55, 115,
Threshold Value 125, 135, 145
Morphological Segmentation no parameters

interpretation of a novel image (cf., Section 5). Figure 10
shows the fitness of action sets chosen by six selection meth-
ods with the machine-learned policy, on 50 test images.
Here, the fitness of an action set is determined by the follow-
ing process. First, the selection method produces an action
set. Then, a policy is learned with the produced action set.
This policy is then evaluated on test images (with the pro-
duced action set). The result is what is presented as the
accuracy and cost of the selection method.

The running time of MLCV using sets found by GAMM
is 2% that of running MLCV with the full set, as the fittest
action set found by GAMM contained only 9 operators, com-
pared to 33 in the full set. This demonstrates GAMM’s abil-
ity to remove redundant and ineffective operators given do-
main specifics. Secondly, the sets found by GAMM with the
neural network meta-model actually outperform the full set
in terms of interpretation accuracy, with the full set obtain-
ing only 45% the interpretation accuracy of the GA/NN set.
This demonstrates GAMM’s ability to tailor its operator set
to MLCV’s machine-learned control policy. Namely, a bulk
of low-quality interpretations are never generated with the
compact GAMM-selected operator set. This leaves MLCV
with fewer opportunities to err. The improvement in inter-
pretation performance despite having fewer choices parallels
human behavior where providing people with fewer choices
in life causes them to spend less time learning about useless
choices [15].

8. DISCUSSION AND FUTURE WORK

A recent generation of computer vision systems take ad-
vantage of reinforcement learning techniques to adapt their
operation to a broad spectrum of varying input conditions.
This accelerates the development cycle and makes these sys-
tems robust enough to deploy in the field. One of the last
vestiges of human intervention with such systems is the need
to select a compact high-performance set of actions. Until
last year, this task had remained a laborious and error-prone
manual process based on trial and error. At GECCO’05 ge-
netic algorithms were shown successful in automating this
task. The impressive demonstration was based on a single
point and raised the questions to portability and scalability
of the approach.

This paper presented the first demonstration of cross-
domain portability of the approach. We applied the tool
revealed last year to a different and more challenging do-
main. In it, genetics algorithms were able to increase the
interpretation accuracy by 55% while reducing the running
time of the system by 98%. This exceeds the performance
gains published in the original paper last year.

The importance of these results is three-fold. First, the
empirical evidence supports the claim that adaptive image
interpretation systems that use machine learning to acquire
a control policy over image processing operators, benefit
from having a smaller number of choices. Indeed, the pres-
ence of many suboptimal action choices, though harmless
with a perfect control policy, confuses machine learned con-
trol policies. Second, the new results demonstrate that the
tool proposed year (GAMM) can be applied to a different
domain without tweaks or modifications. Third, the results
in this paper provide preliminary evidence that GAMM can
scale up to more difficult domains.

Future work includes further experimenting with parame-
ters of the genetic algorithms, applications to yet more chal-
lenging domains, and comparing against other methods of
action set selection. Also, we will investigate a redundancy
measure in an attempt to assess potential gains of applying
GAMM to a given action set.
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