A Representational Ecology for Learning Classifier
Systems

James A. R. Marshall
Department of Computer Science
University of Bristol
Bristol BS8 1UB, U.K.

marshall@cs.bris.ac.uk

ABSTRACT

The representation used by a learning algorithm introduces
a bias which is more or less well-suited to any given learning
problem. It is well known that, across all possible problems,
one algorithm is no better than any other. Accordingly, the
traditional approach in machine learning is to choose an ap-
propriate representation making use of some domain-specific
knowledge, and this representation is then used exclusively
during the learning process. To reduce reliance on domain-
knowledge and its appropriate use it would be desirable for
the learning algorithm to select its own representation for
the problem. We investigate this with XCS, a Michigan-
style Learning Classifier System. We begin with an analy-
sis of two representations from the literature: hyperplanes
and hyperspheres. We then apply XCS with either one or
the other representation to two Boolean functions, the well-
known multiplexer function and a function defined by hy-
perspheres, and confirm that planes are better suited to the
multiplexer and spheres to the sphere-based function. Fi-
nally, we allow both representations to compete within XCS,
which learns the most appropriate representation for prob-
lem thanks to the pressure against overlapping rules which
its niche GA supplies. The result is an ecology in which the
representations are species.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence|: Learning—Concept learn-
ing; 1.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search— Heuristic methods

General Terms
Algorithms

Keywords

bias, GBML, hyperplanes, hyperspheres, Learning Classifier
Systems, No Free Lunch, representation, XCS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’06 July 8-12, 2006, Seattle Washington, USA

Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

1529

Tim Kovacs
Department of Computer Science
University of Bristol
Bristol BS8 1UB, U.K.

kovacs@cs.bris.ac.uk

1. INTRODUCTION

The No Free Lunch theorem [15, 16, 13], in its various
forms, is a central result for Machine Learning (ML) and
for optimisation. One form of the theorem states that no
one learning algorithm is any better than another, across all
possible problems to which it might be applied [15]. Con-
sequently, naively applying an ML algorithm ‘off the shelf’
is unpromising. The problem for the ML practitioner, then,
is to acquire some domain knowledge on the problem to be
learned, and apply this in the design of critical aspects of
the algorithm. One such critical aspect of algorithm de-
sign is selection of the representation to use. Examples of
such practice are now widespread in the literature, such as
the careful selection of representation and operators when
applying Genetic Algorithms to combinatorial optimisation
problems [8]. However, one possible approach to mitigating
this impasse suggests itself; by providing an algorithm with
several different representations, it may be able to learn to
apply the most suitable without recourse to domain knowl-
edge. To demonstrate this concept, we investigate two dif-
ferent representations, hyperplanes and hyperspheres, for
learning a well known boolean function, the multiplexer.
We examine the differences between the representations, and
demonstrate the superiority of hyperplanes for this problem.
We then introduce a new boolean function, designed to be
most efficiently represented with hyperspheres. We conclude
by introducing a modified version of the Learning Classi-
fier System (LCS) XCS, able to simultaneously learn with
classifiers of different representations, and present numeri-
cal results on its application to the two problems considered.
As this extended LCS does not allow genetic recombination
between classifiers of different representational type, it may
be thought of as an ecology of species competing within the
same environment.

2. HYPERPLANES AND HYPERSPHERES
FOR BOOLEAN FUNCTIONS

Different representations are prevalent in different classi-
fication algorithms. For simplicity we restrict ourselves to
considering classifiers for boolean functions, which provides
a good starting point for future analytical and empirical
work on richer representations. However, even the boolean
domain includes the key feature of representational bias that
we want to study.

For Learning Classifier Systems, such as XCS [14], a ternary
alphabet is commonly used to define classifiers. Classifiers

are strings of 0s and 1s, indicating that a match between the
corresponding bits in the classifier and the instance being
classified is required at that position, and wildcard symbols
(#s), indicating that the classifier will match any instance
at that particular position. A classifier matches an instance
if and only if all of the specified bits on the classifier’s string
match all the corresponding bits on the instance string.
Thus, the traditional LCS representation defines classifiers
as hyperplanes of dimension d on a n-dimensional space,
where d is the number of wildcard symbols on the classi-
fier string, and n is the length of the classifier or instance
strings.

An alternative representation is sometimes used in certain
types of Artificial Immune System (AIS) [9] and also in some
forms of LCS [2]. Here, classifiers are represented as a fully-
specified binary string, and by a number, corresponding to a
Hamming-distance within which instances are considered to
be matched by the classifier. Hence, such a representation
defines classifiers as hyperspheres of radius r, where r is the
Hamming-distance within which instances are considered to
be matched by the classifier. An instance that differs at r
or less bits from a classifier of radius r is matched by that
classifier. Hyperspheres are a form of the “partial matching”
introduced by Booker[3].

Knowing that the representation used in a learning al-
gorithm results in learning bias within that algorithm, we
should already suspect that these two different representa-
tions, hyperplanes and hyperspheres, are likely to have dif-
ferent characteristics, leading to different performance. It is
interesting at this point to investigate these characteristics
in some detail.

The first point to note is that hyperplanes and hyper-
spheres are not equivalent types of representation in the fol-
lowing significant sense: the generalisation of hyperplanes is
conditioned on individual dimensions while that of hyper-
spheres is not. That is, a hyperplane selects which dimen-
sions it generalises over (using hashes) while a hypersphere
merely specifies how many dimensions to generalise over (us-
ing a radius).

This indifference as to which dimensions match makes it
difficult to express many concepts with hyperspheres. One
option is to use many very specific spheres. Another is to
use default hierarchies. We anticipate that there may be a
greater need for default hierarchies when using spheres than
using planes (see the appendix for one example), although
we have yet to investigate this in full.

Another observation is that spheres grow more quickly
than planes as we generalise them. That is, increasing the
radius of a sphere by one results in it matching more new
states than adding one hash to a plane; planes are a finer-
grained representation. (This too suggests that default hi-
erarchies may be more useful with spheres than planes.)

The size (number of input instances matched) of a plane
is given by

od
where 0 < d < n is the dimension of the hyperplane. Note

that for a given d this expression is independent of n, the
problem size. In contrast, hypersphere size increases mono-

tonically with n as
i n
k)
k=1

1530

2500

2000 -

1500 -

1000 -

Classifier size

500

0 1 2 3 4 5 6 7
Hypersphere radius

Figure 1: Hypersphere sizes on 11-bit functions

where 0 < r < n is the radius of the hypersphere. For
illustration, the sizes of hyperplanes and hyperspheres of
varying radius and dimension on an 11-bit boolean function
are shown in figures 1 and 2 respectively.

It is also interesting to investigate the space of possible
classifiers of both types. The number of possible hyper-
planes is a function of both hyperplane dimensionality d,
and problem size n, being given by

) 5(n—d)
(d)z |

The number of hyperplanes of different dimension on an 11-
bit boolean function is illustrated in figure 3.

In contrast, the number of hyperspheres is constant for
any specified radius, depending only on problem size n, and
assuming all possible radii of hypersphere can be specified
is given by

(n+1)2™.

As problem size n increases, the search space for hyper-
planes will become much larger than that for hyperspheres
(see the appendix for further details).

Having examined the differences in the characteristics of
the two different representations, let us now examine their
relative performance on a well-known problem, the boolean
multiplexer.

An n-bit boolean multiplexer is an addressing problem
with n-bit problem instances, made up of k address bits,
which specify an index into the following 2* data bits, where
n = k + 2*. The class of a particular instance is given by

2500

2000 -

1500 -

1000 -

Classifier size

500 -

5 6 7
Hyperplane dimension

Figure 2: Hyperplane sizes on 11-bit functions

45000
40000 -
35000 -
30000 -
25000 -
20000 -
15000 -
10000 -
5000 -

Num classifiers

0 1 2 3 4 5 6 7 8 9 10 11

Hyperplane dimension

Figure 3: Number of hyperplanes on 11-bit func-
tions

the value of the data bit indexed by the address bits. The
smaller multiplexer problems, such as the 6-bit and 11-bit
multiplexer, are sufficiently small that we can enumerate
all possible classifiers for those problems, both hyperplane-
based and hypersphere-based. By evaluating the instances
covered by any given classifier and assigning the majority
class of those covered instances to that classifier, we may
evaluate the distribution of classifier accuracies for hyper-
plane and hypersphere classifiers. Note that such a distri-
bution of accuracies will be in the interval [50, 100]%, as we
are assigning the majority class to the classifiers. The accu-
racy distributions for hyperplane and hypersphere classifiers
of a particular size are illustrated for the 11-bit multiplexer
in figures 4 and 5 respectively. For a fair comparison the di-
mensionality of the hyperplanes and the radius of the hyper-
spheres have been set such that the classifiers are of similar
size under both representations (24 = 16 for hyperplanes,
and (111) + (101) = 12 for hyperspheres).

15000 —
- 10000 —
(]
=
@
=)
o
o
L 5000 —

0 — [1 ”

T T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10

accuracy

Figure 4: Hyperplane (dimension 4) accuracy dis-
tribution on 11-bit multiplexer

Note that, despite the much larger search space for hyper-
planes, 1/4 of all possible 4-dimensional classifiers are 100%
accurate. In contrast, 100% accurate hyperspheres do not
occur at all in the accuracy distribution presented in fig-
ure 5. In fact, it can easily be proved that for the boolean
multiplexer no hypersphere classifier of any generality (i.e.
with radius > 0) can be 100% accurate (see the appendix
for details).

Let us also briefly consider at this point hyperplanes of
lower dimension. Figure 6 shows the accuracy distribution

700 —
600 —|
500 |
400 |
300 —

Frequency

200 —
100 —|

0 —

I I I I I I I I I I I
00 01 02 03 04 05 06 07 08 09 10

accuracy

Figure 5: Hypersphere (radius 1) accuracy distribu-
tion on 11-bit multiplexer

for hyperplane classifiers of dimension 2, from which it can
be seen that 100% accurate classifiers are the mode. This
suggests a possible explanation for earlier observations of
the effectiveness of randomly generated classifiers on the
boolean multiplexer [11].

15000 —

10000 —

Freguency

5000 —

0 —

1 1 1 T 1 1 1 1 1 1 1
00 01 02 03 04 05 06 07 08 08 10

accuracy

Figure 6: Hyperplane (dimension 2) accuracy dis-
tribution on 11-bit multiplexer

Thus, despite the substantially larger search space for
hyperplanes compared with hyperspheres noted above, it
seems that finding a set of accurate hyperplane classifiers
for a boolean multiplexer is in fact likely to be much easier
than finding a set of accurate hypersphere classifiers. This is
unsurprising, given that the basic definition of the boolean
multiplexer is effectively given in terms of hyperplanes where
the only specified bits are the address bits and the one in-
dicated data bit. As such, multiplexer problems are a sta-
ple of the LCS literature (for a comprehensive list see [11]).
However, we should also be able to find a boolean function
in which hyperspheres significantly outperform hyperplanes,
by describing such a function in terms of hyperspheres. It
would then be interesting to evaluate the performance of
a classification algorithm on these different problems, when
equipped with different classifier representations. To achieve
this, we first need to extend a classification algorithm to sup-
port such different representations.

3. HYPERSPHERE CLASSIFIERS IN XCS
We extended XCS [14] to support hypersphere classifiers

Performance

T
0 10000 20000 0 10000

Num. classifiers

10000
Trials

(b

T
0 10000
Trials

@

20000 0

20000

0 10000

20000 10000 20000

300 —

20000

T
0 10000 20000
Trials

(©)

20000 0 10000
Trials

(d)

Figure 7: Control results for XCSphere initialised only with hyperspheres on (a) sphere function, (b) multi-
plexer; and for XCS on (c¢) hypersphere function, (d) multiplexer. Proportion of correctly classified instances,
and classifier population size, are plotted against generation number

in addition to the traditional hyperplane classifiers. To
achieve this, we took an existing implementation of XCS
[4], and modified it appropriately'. The extensions are for
the most part trivial. We must introduce a new classifier
class, defined by a binary string and a radius in the inter-
val [0, n], where n is the problem size. We must also define
a new matching function for this classifier class, based on
Hamming distance. We must then introduce new constants
to govern the mean and variance of the distribution from
which radii for new hyperspheres are assigned, the probabil-
ity of mutating the radius of a hypersphere when applying
the genetic algorithm to it, and the variance of the distri-
bution from which changes to a hypersphere radius during
mutation are drawn. XCS’ crossover operator is applied to
hypersphere classifiers in the same way as it is to the tra-
ditional hyperplane classifiers. However, the crossover op-
erator cannot be applied to two classifiers of different type.
Hence, the classifiers using different representations may be
thought of as different species that cannot mate with each
other.

The only problem of any consequence that must be solved
in introducing hypersphere classifiers into XCS is designing
an efficient algorithm for checking when one hypersphere is
more general than another. This can be achieved in constant
time with the simple function

ifri=rmn
otherwise

false
min (17 +0,n) < T

g(5,n,rm,n) = { (1)

where 0 is the distance between the centres of the two
hyperspheres under consideration, r; is the radius of the hy-
persphere believed to be less general, r,, is the radius of
the hypersphere believed to be more general, and n is the
length of problem instances. If the inequality is satisfied,
then the more general hypersphere is indeed more general,
except in the case where the radii of both hyperspheres are
the same. This exception is required as one of the classi-
fiers needs to be genuinely more general than the other; in
other words it must cover more instances. The inequality in

Lthe source code for the extended XCS implementation is
downloadable from http://www.cs.bris.ac.uk/ marshall/

1532

equation 1 above would be satisfied if the two hyperspheres
had the same radius and were centred on the same instance,
yet these two classifiers would be equally general. However,
this case will not occur if we are using macroclassifiers [14],
as the identical classifiers will be represented by a single
macroclassifier.

All that remains to do to complete the extension is to in-
troduce one final constant, which controls the ratio of hyper-
sphere classifiers to hyperplane classifiers with which XCS
is initialised.

4. RESULTS

We are interested in whether, for a given problem, a clas-
sification algorithm can learn to use the most appropriate
representation from among several it has available to it. We
shall investigate this using our extended version of XCS,
named XCSphere and introduced in the previous section, as
applied to two boolean function problems. The first of these
is the boolean multiplexer which, as already discussed, is
particularly suited to representation using hyperplane clas-
sifiers. The second problem we shall design such that it is
more suited to representation by hypersphere classifiers.

The simplest way to define a boolean function such that it
is easily represented by hyperspheres is as follows. Assume
a boolean function with an odd number of bits n, and assign
classes to instances of the function according to their Ham-
ming distance from one of two instance strings: the instance
string consisting only of Os, and the instance string consist-
ing only of 1s. Those instances that are within Hamming
distance (n — 1)/2 of the Os string shall be assigned class 0,
and those that are within Hamming distance (n — 1)/2 of
the 1s string shall be assigned class 1. This function has the
advantages of being unambiguously describable by hyper-
spheres, and requiring generalisation (i.e. hyperspheres of
radius > 0) in order to be described efficiently. It is related
to the count ones problem used with LCS in e.g. in [6].

In figure 7 we present control results for two different clas-
sification algorithms, the standard XCS?2, and our version

2for the standard XCS we used Martin Butz’s implementa-
tion with the following settings: N = 800, a = 0.1, 8 = 0.2,

extended to use hypersphere classifiers instead of hyper-
planes (XCSphere®). We collected control results on per-
formance (proportion of presented instances correctly classi-
fied) and classifier population size, using our two test func-
tions, the hypersphere function and the multiplexer, with
100 replicates of each experiment. Note that the figures are
scatter plots of 100 replicates rather than the single average
curve normally plotted for XCS. As expected, XCSphere
performs well on the hypersphere function (7a), but fares
less well on the multiplexer (7b). Also as expected, the
traditional XCS performs well on the multiplexer (7d), but
struggles on the hypersphere function (7c).

In the experiments where the appropriate representation
is being used for a problem (7a and 7d), performance rapidly
converges on the maximum level in many if not all repli-
cates. Simultaneously in these experiments, after an ini-
tial exploratory proliferation, the number of classifiers be-
ing maintained by the algorithm converges towards the min-
imum number needed to represent the problem (2 for the hy-
persphere function, 2* = 16 for the multiplexer), although
additional classifiers are maintained due to XCS’ balance
between exploration and exploitation.

In contrast, in the experiments where the inappropriate
representation is being used for a problem (7b and 7c), the
performance level reached is lower and much more variable
across replicates, with no replicate converging to a stable
maximum performance level. Simultaneously, the number
of classifiers explodes as the unsuitability of the represen-
tation forces the classification algorithm to use more classi-
fiers to try and cover the instance space. In the worst case,
the classification algorithm will be forced to enumerate the
instance space and assign a fully specific classifier to each
instance within it (a total of 2'' = 2048 classifiers for the
11-bit functions studied here).

We can examine statistically the benefit of choosing the
appropriate representation on the problems we have studied
here. We shall compare the classification accuracy achieved
after a learning period of 20,000 trials by both hyperplane
and hypersphere classifiers on each of the two problems, with
100 replicates of each.

As the results in figure 7 suggest, the hypersphere-based
XCS does significantly better on the hypersphere boolean
function than does the hyperplane-based XCS (P < 0.0005,
U = 13581.5, N4 = Np = 100; Mann-Whitney U-test on
performance). Similarly, the hyperplane-based XCS does
significantly better on the multiplexer than the hypersphere-
based XCS (P < 0.0005, U = 15050, Na = Np = 100;
Mann-Whitney U-test on performance).

Having established that neither hyperplane classifiers nor
hypersphere classifiers are generally superior on our two
boolean test functions, let us now examine the effects of
allowing XCSphere to choose between representations dur-
ing learning. This is achieved by setting the constant that
regulates the hyperplane/hypersphere classifier split at XC-

0 =0.1, v =5, 0ga = 25, g9 = 10, 041 = 20, x = 0.8,
m 0.04, Py = 0.5, predictionError Reduced = 0.25,
fitnessReduction = 0.1, 05, = 20, pr = 10.0, e = 0,
Fr =0.01. GA and ActionSet subsumption were enabled

3for XCSphere the constants used were as for the stan-
dard XCS, with the additional constants set as follows:
newRadiusMean = 1 and newRadiusStdDev = 1 control
the radii of hyperspheres generated without parents while
radiusMutation Prob = 0.5 and radiusMutationStdDev =
2 control the mutation of radii of offspring hyperspheres

1533

06 —

Performance

Sy

o

10000 20000 0

10000

2000C

500

400 o

300 4

Num. classifiers

2m o

120

T T
10000 20000

Trials

(b)

T
10000
Trials

(a)

o

20000 0

Figure 8: Results for XCSphere initialised with
equal numbers of hyperplanes and hyperspheres on
(a) hypersphere function, (b) multiplexer. Propor-
tion of correctly classified instances, and classifier
population size, are plotted against generation num-
ber

Sphere’s initialisation to be 0.5. Thus, when initialised, XC-
Sphere will have equally sized populations of hypersphere
and hyperplane based classifiers. During learning, these rep-
resentations will compete with each other to be maintained
in the classifier population. Results from applying this hy-
brid XCSphere to the two boolean functions are presented
in figure 8.

On examination the results for hybrid XCSphere, applied
to the hypersphere function (8a) and the multiplexer (8b),
appear encouraging. In both cases XCSphere has converged
to 100% classification accuracy to a greater or lesser extent
by the end of the learning period.

We can evaluate the performance of hybrid XCSphere
more quantitatively, by statistically comparing its classifi-
cation accuracy at the end of the learning period on each
of the problems against the version of XCS using only the
most suitable representation. We hypothesise that there is
no significant difference between the accuracy achieved by
the hybrid XCSphere and by the most appropriate single-
representation XCS in each case. This is indeed shown to
be the case for performance on the hypersphere function at
the end of the learning period, for hybrid XCSphere and
XCSphere using only hyperspheres (P = 0.1508, U = 9488,
N4 = Np = 100; Mann-Whitney U-test). The difference
in performance on the multiplexer between the hybrid XC-
Sphere and the hyperplane-based XCS is also clearly non-
significant, to such an extent that we cannot usefully apply a
Mann-Whitney U test; in the hyperplanes-based XCS 100%
of replicates converged to 100% accuracy within the learn-
ing period, while for the hybrid XCSphere the figure was
99%, with the one replicate that did not converge achieving
99.6% accuracy at the end of the learning period.

At the same time, in both cases the number of classifiers
in the population has initially exploded, and then converged
on a number close to the optimal number of classifiers with
which the problem can be described (if we are free to choose
the appropriate representation). Tables 1 and 2 below show
classifiers having fitness above 0.9 discovered by the hybrid
XCSphere in a typical run, for each of the functions tested.

For the multiplexer, XCSphere discovers all 32 classifiers
in %[O] — the minimal, accurate, non-overlapping solution
[10]. Similarly, XCSphere discovers the 4 classifiers in %[O]
for the hypersphere function. (Note that twice as many clas-
sifiers as are strictly needed are present, as for each classifier
XCS maintains another one differing only in the action spec-
ified and in the prediction — a complete map of the reward
function [14]).

To get a complete picture of the performance of hybrid
XCSphere, we must also compare its time to converge (if at
all*) on 100% classification accuracy with that of XCS and
hyperspheres-only XCSphere. We might expect that the hy-
brid XCSphere will take longer to learn a problem than the
appropriate dedicated-representation classifier system will.
This is indeed shown to be the case for the one-tailed hy-
pothesis that hybrid XCSphere is slower to converge than
XCS on the multiplexer (¢ = —4.41, P < 0.0005, N = 100;
2-sample i-test). Mean trials to converge for traditional
XCS is 6731, (std. dev. 2509), compared to 8335 (std.
dev. 2634) for hybrid XCSphere. However, the one-tailed
hypothesis that hybrid XCSphere is slower to converge than
hyperspheres-only XCSphere on the hypersphere problem is
not supported (U = 9607, Na = Np = 100; Mann-Whitney
U-test), and in fact there is even weak evidence that hy-
brid XCSphere is the quicker to converge on the hypersphere
problem (P = 0.1125, U = 9607, Na = Np = 100; Mann-
Whitney U-test). However, we note that the sphere problem
is very simple and perhaps not a good basis for such a com-
parison.

5. DISCUSSION

This paper has demonstrated the ability of XCS, given a
choice of two alternative representations, to make use of the
most appropriate one in learning a boolean function. In the
experiments presented here a hybrid version of XCS is ini-
tialised with a population of random classifiers, half of which
are hypersphere-based and half hyperplane-based. This hy-
brid XCSphere is then able to converge on the most effi-
cient hyperplane-based set of classifiers for the multiplexer,
or the most efficient hypersphere-based set of classifiers for
a hypersphere-based function we designed. The statistical
tests on performance of the hybrid XCS against dedicated
versions restricted to use only the most appropriate repre-
sentation for the problem tested again, showed no significant
difference in classification accuracy achieved at the end of
the learning period. However, significant differences were
shown between applying the appropriate and inappropri-
ate representations to a given problem within the single-
representation version of XCS. XCS should be particularly
good at exploiting the most suitable representation due to
its strong competition between overlapping classifiers [10].
This ability to exploit the most suitable representations on
the problems tested against has allowed XCSphere to out-
perform, in terms of classification accuracy, either of the
pure-representation versions of XCS when evaluated against
both boolean functions considered. This suggests a pos-
sible escape from the problems raised by representational
bias. However, while on the hypersphere problem hybrid
XCSphere was no slower to converge on 100% classifica-
tion accuracy than hyperspheres-only XCSphere, and was

“4replicates failing to converge were assigned a convergence
time equal to the total number of trials in the learning period

1534

Table 1: Classifiers of fitness 0.9 or above discovered
by XCSphere on the multiplexer during a typical run
condition action
100# #1474 0
O01#0H# A #H#H#
V114 H#H#H#H#0
0001 #H#H###H##
101##FH #1744
V11 HHH#H1
V10###H#H#H#H#1#
100####0##4#
O11HHH# L HH#H#
O10## 1H###HH#H#
O10## 1H###HH#H#
O000##H#####
1014 #H##0#H#
V114 H#H#H#H#0
OV HH# 1 HHH#
O10##O0H##H##
O001#H#H###H##
O01# 1A #HH#
LO1H##H#H#0F#
O11#H#H#OF#HH##
111 HFHHHH#H#1
V10###H#H#H 14
O01#0H# A #HH#H#
O11#H#H#OF#HH##
110##F###0F#
O10##0H#F#HH#H#
V104 ##H#H#H#0#
100####0##H#
101#H#FH##1#4#
10O ##H# 14 # 4
O000#H#A###H#
001 1 H##H##

olo|r|—|lo|o| | ||| ~|o|o|~|—|o|o|o|—|o|—|o| | ~|—|o|r|o|—|o|—

Table 2: Classifiers of fitness 0.9 or above discovered
by XCSphere on the hypersphere function during a
typical run

condition radius | action
11111111111 5 0
11111111111 5 1
00000000000 5 1
00000000000 5 0

even slightly faster, for the multiplexer XCSphere was sig-
nificantly slower than traditional XCS.

Other GBML work has used multiple representations to
reduce the impact of representational bias. Llora & Wil-
son’s [12] approach is to construct heterogenous decision
trees which may have different classes of internal node that
partition the instance space in different ways. These hybrid
decision trees are created in a Pittsburgh-style LCS, by al-
lowing subtrees from trees using different representations to
be recombined to produce a new hybrid decision tree.

Within our hybrid XCS implementation, classifiers of dif-
ferent representational type are manipulated separately by
the genetic algorithm, so there can be no recombination of
classifiers that make use of different representations. Thus

classifiers of each representation may be thought of as be-
longing to two separate species, that interact together and
compete for fitness within the same environment. Hence,
our approach to mitigating the effects of representational
bias can perhaps best be thought of as introducing an ecolog-
ical aspect into LCS. This approach differentiates our work
from that of Llord & Wilson [12]. Our work is also distin-
guished by the fact that we make only minor modifications
to the widely-known XCS algorithm to achieve our repre-
sentational ecology; we exploit the existing strong pressure
XCS has against overlapping rules due to its niche GA [10].

Bacardit, Goldberg and Butz also studied competing rep-
resentations in a Pittsburgh LCS [1]. In this work rules with
different default classifications competed and the system se-
lected suitable default rules for the task at hand. One of
our reviewers pointed out that this work found it necessary
to encourage diversity in representations later in the run to
avoid premature convergence to one representation, and that
a similar effect might occur in XCS. This reviewer suggested
allowing mutation from one representation to another might
help in this respect and this potential problem and solution
are certainly worth future investigation.

Other related work includes [5] in which XCSF (XCS with
function approximation — classifiers compute outputs based
on inputs) is modified to use hyperspheres and hyperellipses,
with good results compared to the previously used hyper-
rectangles. A natural extension of that work and the current
one would be to introduce an ecology of real-valued repre-
sentations into XCSF.

Future work will probably focus on enabling rule hierar-
chies in our implementation of XCS. This is likely to be of
particular importance for the application of hyperspheres to
boolean functions. In this paper we have considered one
boolean function which can be unambiguously described by
hyperspheres. However, our initial investigations suggest
that many boolean functions for which hyperspheres may
be suitable can only be tackled if action selection is influ-
enced by the degree of match between a rule and an input.
That is, hyperspheres require hierarchies of default and ex-
ception rules to efficiently represent many functions. For
example the parity function, which is very hard to describe
using hyperplanes, may be more easily described by hyper-
spheres, but only if the degree of match is incorporated into
the action selection mechanism. Indeed, for this reason the
hypersphere function we studied was much simpler in terms
of number of classifiers required for coverage, compared to
the multiplexer. We also anticipate developing our formal
understanding of the mechanisms required to support the
use of different representations, extending the range of rep-
resentations we consider (e.g. to include “r-chunks” repre-
sentations [7]), and extending the problem set we test them
against. In particular, the extended problem set will in-
clude problems which are best represented by a mixture of
classifiers, as done by Llora & Wilson [12].

6. ACKNOWLEDGEMENTS

Thanks are due to Bob Planqué for help with the scripts
used in analysing the results, to Martin Butz whose XCS
code we used and extended, and to the anonymous reviewers
for insightful comments.

1535

7. REFERENCES

[1] J. Bacardit, D. E. Goldberg, and M. V. Butz.
Improving the performance of a Pittsburgh learning
classifier system using a default rule. To appear in:
Advances at the frontier of Learning Classifier
Systems. Springer, 2006.

J. Bassett. A Study of Generalization Techniques in
Evolutionary Rule Learning. MSc thesis, George
Mason University, Fairfax VA, USA, 2002.

L. B. Booker. Improving the performance of genetic
algorithms in classifier systems. In J. J. Grefenstette,
editor, Proc. of the 1st International Conference on
Genetic Algorithms and their Applications (ICGA85),
pages 80-92. Lawrence Erlbaum Associates, 1985.

M. V. Butz. XCSJava 1.0: An Implementation of the
XCS classifier system in Java . Technical Report
2000027, Illinois Genetic Algorithms Laboratory, 2000.
M. V. Butz. Kernel-based, ellipsoidal conditions in the
real-valued XCS classifier system. In Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO-2005), pages 1835-1842. ACM, 2005.

M. V. Butz, D. E. Goldberg, and K. Tharakunnel.
Analysis and improvement of fitness exploitation in
XCS: Bounding models, tournament selection, and
bilateral accuracy. Evolutionary Computation,
11:239-277, 2003.

F. Esponda, S. Forrest, and P. Helman. A formal
framework for positive and negative detection
schemes. IFEFE Transactions on Man, Systems and
Cybernetics Part B, 34:357-373, 2004.

E. Falkenauer. Genetic Algorithms and Their
Adaptation to Grouping and Clustering Problems.
Wiley, 1998.

J. D. Farmer, N. Packard, and A. Perelson. The
immune system, adaptation, and machine learning.
Physica D, 22:187-204, 1986.

T. Kovacs. Strength or Accuracy: Credit Assignment
in Learning Classifier Systems. Springer, 2004.

T. Kovacs and M. Kerber. High classification accuracy
does not imply effective genetic search. In Proc. of the
Genetic and Evolutionary Computation Conference
(GECCO-2004), pages 785-796. Springer, 2004.

X. Llora and S. W. Wilson. Mixed decision trees:
Minimising knowledge representation bias in LCS. In
Proceedings of the Genetic and Fvolutionary
Computation Conference (GECCO-2004), pages
797-809. Springer, 2004.

N. Radcliffe and P. Surry. Fundamental limitations on
search algorithms: Evolutionary computing in
perspective. In J. van Leeuwen, editor, Computer
Science Today: Recent Trends and Developments,
LNCS 1000, pages 275-291. Springer-Verlag, 1995.

S. W. Wilson. Classifier Fitness Based on Accuracy.
Evolutionary Computation, 3(2):149-175, 1995.

D. Wolpert. The lack of a priori distinctions between
learning algorithms. Neural Computation,
8:1341-1390, 1996.

D. Wolpert and W. MacReady. No free lunch
theorems for optimization. IEEFE Transactions on
Evolutionary Computation, 1(1):67-82, 1995.

(13]

APPENDIX

THEOREM 1. No hypersphere classifier for the multiplexer
can achieve both generality and 100% accuracy

PROOF. A general hypersphere classifier is centred on an
instance, which is of a particular class. By definition of the
hypersphere, this general classifier has radius > 1 and thus
also includes all other instances that differ at one point on
the bit string from the central instance. So, the classifier
will include the instance which is identical to the central
instance in all but indexed bit, and hence is of a different
class. Therefore, a hypersphere classifier of any generality
always includes instances of both classes and hence cannot
be 100% accurate [

1536

THEOREM 2. The space of possible hypersphere classifiers
for a boolean function is much smaller than the space of
possible hyperplane classifiers for that function

PrOOF. The number of possible hypersphere centres is
given by 2" while the number of possible hyperplane classi-
fiers is given by 3", where n is function length. Even allow-
ing that all possible radii 0 < r < n of hyperspheres may be
required to cover a boolean function, the space of possible
hypersphere classifiers will still remain much smaller, for as
n increases (n+1)2" < 3" [

