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ABSTRACT 
Segmentation of medical images is challenging due to poor image 
contrast and artifacts that result in missing or diffuse organ/tissue 
boundaries. Consequently, this task involves incorporating as 
much prior information as possible (e.g., texture, shape, and 
spatial location of organs) into a single framework. In this paper, 
we present a genetic algorithm for automating the segmentation of 
the prostate on two-dimensional slices of pelvic computed 
tomography (CT) images. In this approach the segmenting curve 
is represented using a level set function, which is evolved using a 
genetic algorithm (GA). Shape and textural priors derived from 
manually segmented images are used to constrain the evolution of 
the segmenting curve over successive generations. 

We review some of the existing medical image segmentation 
techniques. We also compare the results of our algorithm with 
those of a simple texture extraction algorithm (Laws’ texture 
measures) as well as with another GA-based segmentation tool 
called GENIE. Our preliminary tests on a small population of 
segmenting contours show promise by converging on the prostate 
region. We expect that further improvements can be achieved by 
incorporating spatial relationships between anatomical landmarks, 
and extending the methodology to three dimensions.   

Categories and Subject Descriptors 
I.4 [Image Processing and Computer Vision]: Segmentation – 
pixel classification, edge and feature detection.  

General Terms: Algorithms, Experimentation. 

Keywords 
Level Set Methods, Texture Segmentation, Genetic Algorithms. 

1. INTRODUCTION  
Identifying specific organs or other features in medical images 
requires a considerable amount of expertise concerning the shapes 
and locations of anatomical features. Such segmentation is 
typically performed manually by expert physicians as part of 

treatment planning and diagnosis. Due to the increasing amount of 
available data and the complexity of features of interest, it is 
becoming essential to develop automated segmentation methods 
to assist and speed-up image-understanding tasks. 

Medical imaging is performed in various modalities, such as 
magnetic resonance imaging (MRI), computed tomography (CT), 
ultrasound, etc. Several automated methods have been developed 
to process the acquired images and identify features of interest, 
including intensity-based methods, region-growing methods and 
deformable contour models [17]. Intensity-based methods identify 
local features such as edges and texture in order to extract regions 
of interest. Region-growing methods start from a seed-point 
(usually placed manually) on the image and perform the 
segmentation task by clustering neighborhood pixels using a 
similarity criterion. Deformable contour models are shape-based 
feature search procedures in which a closed contour deforms until 
a balance is reached between its internal energy (smoothness of 
the curve) and external energy (local region statistics such as first 
and second order moments of pixel intensity).   Such methods are 
typically based on only one image feature, such as texture, shape, 
pixel intensity, etc. However, due to the low contrast information 
in medical images, an effective segmentation often requires 
extraction of a combination of features such as shape and texture 
or pixel intensity and shape. This paper describes our attempts to 
develop a segmentation algorithm that incorporates both shape 
and textural information to delineate a desired object in an image. 
In particular, motivated by the work of Harvey et al. [7] and Tsai 
et al. [20][21], we developed a genetic algorithm for medical 
image segmentation. The genetic algorithm framework [14] 
brings considerable flexibility into the segmentation procedure by 
incorporating both shape and texture information. In the following 
sections we describe our algorithm in depth and relate our 
methodology to previous work in this area. We start by reviewing 
the active shape modeling approach for image segmentation, 
specifically the level set method of shape characterization. We 
then describe texture-based segmentation methods such as Laws’ 
textural feature extraction method. We also describe our studies 
of the GENIE system for multi-spectral feature extraction. 
Finally, we present the results of our method on segmenting the 
prostate based on a small training set of pelvic CT images. We 
compare these results with those from similar runs on GENIE. 

1.1 Active Shape Modeling 
Since the pioneering work by Kass et al. [9], much work has been 
done on active-contour approaches for image segmentation 
[2][4][12]. Active-contour segmentation algorithms automatically 
construct one or more contours that segment a particular structure 
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or a set of structures in the image. These algorithms associate the 
segmenting contour with an energy (cost) function usually 
defined by curvature or image gradient. The curve representing 
the segmenting contour is deformed by minimizing the internal 
and external energy of the curve. The internal energy is defined as 
an intrinsic property of the curve itself, such as the smoothness of 
the curve (a curve segment is defined as smooth if the derivative 
of the function defining the curve exists, and is nonzero at all 
points on that segment of the curve). The external energy is 
defined using extrinsic properties (i.e., properties of the image 
and not the curve) such as the image gradient or pixel intensity. 
The energy function is a weighted sum of internal and external 
energy terms.  Minimizing this energy function attracts the 
contour towards the object.  

The level set approach for active contour modeling was proposed 
by Malladi et al. [13]. This methodology became very popular 
due to its ability to automatically represent changes in the 
topology of dynamic curves, such as the boundaries of soap 
bubbles, flames and other physical phenomena whose shape 
changes with time. In this approach the evolving boundary 
(interface) is built into a surface by adding another dimension to 
the curve evolution coordinate system. This level set function is 
defined in terms of the signed distance function. The signed 
distance function takes any pixel in the image and returns as its 
output the Euclidean distance between the pixel and the closest 
point on the interface. Pixels outside the interface have positive 
distance while pixels inside have negative distance values 
assigned to them. The “zero” level set is defined as the interface 
itself, i.e., the set of all points whose distance to the interface is 
zero. Figure 1 shows a square-shaped object in a binary image 
and illustrates how the signed distance map is computed from its 
pixel values. 

 
 
 
The level set approach is a powerful and general technique for 
image segmentation.  In this framework, a three-dimensional 
surface is created from the signed distance representation of the 
contour with negative values representing regions deeper than or 
below the zero level and positive values representing regions 

protruding above the zero level. As the contour deforms, the zero-
valued pixels of the signed distance map move along this three 
dimensional surface. Thus, this third dimension depicts the time 
dimension of the contour deformation. This representation of 
shape is tolerant to slight misalignments of object features and 
does not require finding correspondences between the pixel 
coordinates of the original and the deformed contours. Shape 
statistics such as mean shape and variance can computed directly 
from the signed distance maps instead of averaging over pixel 
coordinates of different contours.  

Level set methods have been used by Leventon et al. [12], and 
Chan and Vese [3] for medical image segmentation. Leventon et 
al. introduced the concept of shape representation by principal 
component analysis (PCA) on signed distance functions. They 
also incorporated statistical shape priors (i.e., shape information 
from training examples) into their geodesic active contour model 
in order to generate a posteriori estimates of pose and shape. 
(Pose is defined as a representation of the position, size, and 
orientation of an object in an image). Vese and Chan [22] 
introduced a region-based energy function in order to detect 
features with diffuse boundaries.  

A shape-based level set function was derived by Tsai et al. 
[20][21] and has been incorporated in this paper. Tsai et al.'s goal 
was to find the parameters of the level set function that produce a 
good model of the object shape based on priors from the training 
data. Tsai et al. derived these parameters via an optimization 
procedure that used statistics based on the pixel intensities of 
local regions in a set of training images.   

1.2 Texture-Based Segmentation 
Texture is defined as a quantitative measure of the variation in 
intensity of a surface. Texture-based segmentation algorithms are 
aimed at finding similarity measures to group image pixels. 
Various approaches for textural feature extraction have been 
developed to date [19] including co-occurrence matrices, wavelet-
based methods, Fourier transform methods, and intensity 
histogram methods, to name a few.  

For this project we compared our system with a simple texture 
feature extraction method called Laws’ texture energy measures 
[10]. The basic 1-D convolution kernels derived by Laws stand 
for level (L), edge (E), spot (S), wave (W) and ripple (R) texture 
types respectively. Justification for the convolution kernels can be 
found in [11]. Two-dimensional masks are generated from these 
kernel vectors by convolving each vector with the transpose of the 
other. The textural energy features are obtained by convolving an 
image with these two-dimensional integer coefficient masks 
(usually 5x5) followed by a non-linear windowing operation.  

1.3 GENIE 
Genetic algorithms have been applied to many image processing 
problems, such as edge detection [6], image segmentation [18], 
image compression [15], and feature extraction from remotely 
sensed and medical images [5]. A general-purpose image-
segmentation system called GENIE (“Genetic Imagery 
Exploration”) [7][8][16] was developed at the Los Alamos 
National Laboratory. GENIE uses a genetic algorithm to evolve 
image-processing “pipelines”:  sequences of elementary image 
processing operations, including morphological, arithmetic and 

Figure 1.  A square shaped object in a binary image.  The 
signed distance values are computed using the Euclidean 

distance of each pixel from the closest point on the contour. 
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point operators, and filters and edge detectors, among others.        
Each pipeline performs a segmentation of the image by 
classifying each pixel as being a positive or negative instance of a 
desired “feature” such as water, clouds, snow, etc.  

The genetic algorithm, starting with a population of random 
pipelines, evaluates the fitness of pipelines in the population, 
selects the fittest to produce the next generation, using crossover 
and mutation to produce offspring.  The fitness of each pipeline in 
the population is computed by comparing its final classification 
output with a set of training images, in which positive and 
negative examples of the desired feature have been manually 
highlighted.  At the end of a run of GENIE, the “fittest” pipeline 
in the population is used in conjunction with a linear classifier to 
segment the desired feature in new images by labeling each pixel 
as positive or negative.  

Harvey et al. [7] applied GENIE to a medical feature-extraction 
problem using multi-spectral histopathology images. Their 
specific aim was to identify cancerous cells on images of breast 
cancer tissue. Their method was able to discriminate between 
benign and malignant cells from a variety of samples.      

1.4 Overview of Our Work 
In this paper we describe our method to combine high-level 
textural and shape information for image segmentation. Our 
system uses a set of training images in each of which a 
segmenting contour surrounding a particular object (e.g., the 
prostate in a two-dimensional CT image) is drawn by hand.  In 
our system a segmenting contour is represented by a level set 
function. Each segmenting contour has a unique shape and pose 
(i.e., size, position, and orientation).    

We also have a set of "test images", not included in the training 
set, for which a human has provided segmenting contours. Given 
a new image containing an object of the desired class, the goal 
here is to evolve a contour that segments that object in the new 
image, such that the contour obeys shape constraints learned in 
the training images and also encloses a region whose texture is a 
good match for textures learned in the training images.   Several 
candidate contours form the individuals of a GA population. The 
GA is iterated until a fitness value greater than a certain threshold 
is achieved or the number of generations equals 1000.  

Earlier work on segmentation based on level set methods typically 
derived a curve evolution equation or used gradient descent 
procedures to search for a contour that minimizes internal and 
external energy. However, only first and second order statistics 
such as pixel intensity or variance have been used in these 
methods because they can be easily incorporated in an implicit 
representation of the curve. The derived gradient for this implicit 
function determines the direction of curve evolution.  

Cagnoni et al. [1] used a GA for segmenting medical images. The 
GA optimized the parameters of an elastic contour model using 
edge information (first-order statistics) from the images. In 
contrast, the GA framework here allows the use of any kind of 
high-level textural features for performing segmentation. The 
fitness function based on textural priors gives a fitness score that 
is used to rank good candidate solutions and propagate them to 
future generations. This eliminates the need to derive gradients of 
energy functions unlike other active shape contour model based 
segmentation algorithms.  

2. PROCEDURE 
A two-stage approach is proposed here for image segmentation 
using a genetic algorithm: the training stage and the segmentation 
stage. The data for the training stage is obtained from a set of n 
training images on which a human has outlined the object to be 
segmented by drawing a contour around it (e.g., the prostate in a 
2D slice of a pelvic CT image). The “shape prior” of a training set 
is defined as a representation of the mean shape over all these 
manually drawn contours, together with the average deviations 
from that mean. The textural properties of the object of interest 
are also derived from the same set of training data. The 
segmentation phase consists of the genetic algorithm evolving 
candidate solutions (i.e., candidate contours for segmenting the 
desired object in a new image), iterating over successive 
generations until a stopping criterion is satisfied.  

To summarize, the steps in this procedure are as follows:  

1. From a set of n manually segmented training images, derive a 
representation of the shape prior, that is, the mean shape and 
variability of the n segmenting contours.  

2. From the same training images, derive a representation of the 
mean texture of the segmented objects.   

3. Given a new image not in the training set, use the GA to evolve 
a segmenting contour for delineating the desired object in this 
image, as follows:  

(i) Start with an initial population of randomly generated shapes, 
constrained by the shape prior from step (1).  

(ii) The fitness of a given shape is determined by the match 
between the texture of its enclosed region and the mean texture 
from step (2).   

(iii) Perform selection, crossover, and mutation, as will be 
described below, to form a new population. 

(iv) Repeat until a fitness score above a certain threshold is 
achieved or the number of iterations exceeds 1000. 

4.  Calculate the "goodness of fit" of the fittest individual from the 
final generation, as described below.   

2.1 The Training Phase 
2.1.1 Deriving Shape Priors 
To derive the shape prior, each contour from the training data is 
represented as the zero level set of the signed distance function ψi 
(x,y) (where (x,y) are  the pixel coordinates and i =1 to n, the 
number of training contours used to find the shape variability). 
The mean shape and shape variability of the contours, obtained 
from the training images, are computed, using the methodology 
described in [20]. The mean level set function is defined (for n 
contours) as: 

                           ∑
=

=
n

i
i yx

n
yx

1
),(1),( ψΦ                     (1)                    

Mean offset functions are then derived by subtracting the mean 
from the signed distance representations of the training contours 
( Φ−= ii ψψ~ ). Assume the image is of size N = N1 x N2.  Let βi 
be the size N x 1 column vector consisting of the N2 columns of 
mean offset image iψ~  stacked to make a single column vector.  A 
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new matrix S (size N x n), called the shape variability matrix, is 
formed from n such column vectors, one for each training image 
   S = [β1,β2, …,βn]                                         (2) 
The variance in shape is then computed by the eigenvalue 
decomposition of this shape variability matrix.       
              TT UUSS

n
Σ=

1                                       (3) 

Here U is an N x n matrix whose columns represent n orthogonal 
modes of shape variation and Σ is an n x n diagonal matrix of 
eigenvalues. By rearranging the columns of U to form an N1 x N2 
structure, the n different eigenshapes can be obtained {Φ1, 
Φ2,…, Φn }.  (Details for this procedure can be found in [20].) 

2.1.2 Deriving Textural Priors 
We define textural priors as the high-level feature vectors derived 
for each pixel in the training image.  Two approaches to deriving 
high-level texture features are Laws’ textural measures and 
GENIE. We acquired an open source release version of the 
GENIE software from Los Alamos National Laboratory and 
tested it using our training images to obtain the high-level textural 
features.   In section 3 we compare the results of our GA using 
these textural features with the results of GENIE alone as well as 
Laws’ textural measures alone, as applied to the pelvic CT 
images. 

2.2 The Segmentation Phase 
Each individual in the GA population consists of a fixed-length 
string of real-valued “genes”.  Each such string represents a 
vector of shape and pose parameters defined as follows. Pose 
parameters are incorporated into this framework using an affine 
transform. The affine transform is the product of three matrices 
(equation 4): the translation matrix, the scaling matrix and the 
rotation matrix respectively. If x and y are the pixel coordinates of 
the input image then yx ~,~  are the pixel coordinates of the affine-
transformed image given by equation (4). 
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Here a, b are translation parameters, h is the scaling factor, and θ 
is the degree of rotation of an object. Following the lead of [20], 
the mean shape and shape variability derived from the training 
phase are used to define a level set function (equation 5) that 
implicitly represents the segmenting curve. 

∑
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+=
k

i
ii yxwyxyx

1

),(),(],[ ΦΦΦ                 (5) 

Each individual I in the population, represents a segmenting curve 
defined by the weighted eigenshapes and pose parameters: 

I=[W, P]                                                      (6) 

where, W=[w1, w2,…, wk], and P=[a, b, h, θ ]. Thus the number of 
real-valued genes on a GA chromosome is k+4, where k is the 
number of principal eigenshapes.  For the experiments reported 
here, we set k to 6.  To form an initial population of individuals 
for the GA, the weights for the k principal eigenshapes (wi) are 
chosen randomly from the space of [0, σi] (where σi

2 are the 

eigenvalues corresponding to the k eigenshapes). The pose 
parameters, P are chosen randomly from the range of values 
specified in Table 1.  
The segmenting contour represented by the GA individual can be 
expressed as: 

)~,~()~,~()~,~(
1

yxwyxyx
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ii∑
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The fitness of each individual is measured by comparing the 
textural properties of the region segmented by that individual to 
the desired texture derived from the training images. First, the 
textural feature planes (formed from the textural feature vectors 
generated for each pixel of a image) are generated for the test 
image (a new image not in the training set). Each pixel of the test 
image is then classified as “True” (desired texture) or “False” 
(otherwise) by using a Fisher linear discriminant. A Fisher linear 
discriminant finds an optimal linear combination of the feature 
planes and maximizes the separation between the desired and 
undesired texture features (i.e., maximizes the fitness). The fitness 
function is similar to the one used in GENIE [7][16]: 

          F = 500(A+(1-B))                                              (8) 
Here, A denotes the detection rate: i.e., the fraction of pixels 
inside the segmenting contour that are labeled “True” (i.e., 
texturally similar to the prostate). B denotes the false alarm rate: 
the fraction of pixels outside the segmenting contour that are 
labeled “True”. An increase in fitness means that more pixels 
inside (and fewer pixels outside) the contour are labeled as 
“True”. A fitness score of 1000, therefore, represents a perfect 
segmentation result.  

Our GA uses rank selection, single-point crossover, and mutation.  
Rank selection is implemented by assigning a numerical rank to 
each individual, based on its fitness value, and by making higher 
ranked individuals more likely to be selected to produce 
offspring. Fixed-length individuals are used here, and single-point 
crossover is implemented (here, with probability 1 per pair of 
parents) by swapping same length segments of genes between two 
individuals. For each pair, a single crossover point is chosen 
randomly with uniform probability over genes in the 
chromosome.  Mutation is performed by randomly changing the 
value of a gene (one of the wi or one of the a, b, h, θ values that 
make up an individual) based on the ranges specified in Table 1. 

 

Table 1. GA Parameters 

Population Size 25 

Mutation Probability 0.02 per gene 

Crossover Probability 1.0, Single Point 

Selection Criteria Rank Selection 

k, No. of principal eigenshapes 6 

Pose parameters a, b Integer (0-10) 

Pose parameter θ 0°-360° 

Pose parameter h (0.5-2.0) 

 

1174



The GA is iterated until the optimum fitness is attained or after a 
specified number of generations has been produced. Following 
[8], we define the goodness of fit, G, as a means to evaluate the 
closeness of a candidate segmenting contour to the human-drawn 
contour for a given test image. The fitness function defined in 
equation (8) is not used as a goodness of fit because it is defined 
based on the textural prior obtained from the training images.   

To calculate G, we generate two binary images corresponding to 
the human-drawn contour and the contour derived from an 
evolved individual: in each, the pixels inside the segmenting 
contour are set to 1 and outside are set to 0.  Define H as the 
Hamming distance between these two binary images⎯that is, the 
number of pixels that are classified differently (wrongly) in the 
evolved individual's segmentation from corresponding pixels in 
the manually segmented binary image. The goodness of fit is 
numerically defined as:  

       G = (1 – (H/N)) x 1000           (9) 
where N is the total number of pixels in the image. A score of 
1000 represents a perfect match with the training data.  

3. RESULTS 

 

 

 

 

 
 
 
We tested our system on images taken from a database of 2700 
pelvic CT scans, acquired through collaborations with radiologists 
at Oregon Health & Science University (OHSU). About 100 CT 
scans from this database have been manually segmented by 
Arthur Hung, M.D. (Dept of Radiation Oncology, OHSU).  

A 3D CT scan for each patient consists of 15-20 slices of 2D 
images stacked together. The prostate is visible in about 10-12 of 
these slices; the rest display other organs in the pelvic region such 
as the bladder and the rectum. The prostate is located between the 
bladder and the rectum and is about 3 cm in size along the height 
of the body. The bladder and the rectum are more texturally 
prominent on the CT scans and are used by the radiologist to help 
locate the prostate on these images. The prostate has been 
manually delineated three times on the same set of images by the 
radiologist. This provides a database for intra-operator variability.  

Figure 2 shows a typical pelvic CT scan and Figure 3 shows the 
same image with a manually placed contour depicting the prostate 
area. Figure 4 shows a different slice of the same patient's CT 
scan. Figure 5 shows the manually placed prostate contour on this 
new slice. Note how the shape of the prostate changes from slice 
to slice.  

Figure 3. The 2D pelvic CT scan of Figure 2 manually 
segmented by a radiologist. The white contour labeled 

“prostate” was drawn by hand. 

Figure 4. A different slice from the CT scan of the 
same patient. 

Figure 2. A typical 2D pelvic CT scan before manual 
segmentation by a radiologist. 

Figure 5. The prostate region marked the CT scan for 
the same patient. The white contour was marked by a 

radiologist. 
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The manually segmented contours derived from the CT scans of 
one patient (10 x 3= 30 images) have been used as the training 
data for this analysis. A set of 10 2D CT scan slices from another 
patient has been used as test images. Figure 6 shows a test image 
used for experiments here. 

Prostate segmentation is challenging because the shape and size 
of the prostate varies considerably across patients. Also there are 
neither significant edges nor distinct textural differences to make 
the prostate visible in these images. Thus the interface between 
the prostate and the bladder or the rectum is typically not clearly 
defined. An expert radiologist uses prior knowledge of organ 
shapes and the relative positions of various anatomical landmarks 
to approximately and intelligently “guess” the location of the 
prostate on these images. A longer-term goal of our project is to 
simulate this procedure accurately by incorporating prior 
information about the relative spatial locations of organs. 

We compared our system with other methods for segmenting the 
prostate on the pelvic CT images. First, we tried to segment the 
images using Laws’ textural priors alone. The textural energy 
measures were derived for every pixel on the training images to 
produce texture feature planes [10]. An optimal linear 
combination of these feature planes was then derived such that the 
separation between feature pixels (pixels in the prostate region) 
and non-feature pixels was maximized. This Fisher linear 
discriminant was used on test images to classify pixels as feature 
or non-feature based on the computed texture energy planes for 
the test images. We found that Laws’ textural priors could only 
differentiate soft-tissue (regions marked white on Figure 7) from 
body cavity (regions marked black on Figure 7) due to the 
relatively low contrast information in the images. 
We then trained GENIE to generate an image processing pipeline 
to discriminate the prostate region on the same set of training 
images. This image processing pipeline was applied to the test 
images to derive regions on the pelvic CT scans with high-level 
texture similar to the prostate region. A sample segmentation 
result of a GENIE run on a test image is shown in Figure 8. The 
pixels classified by GENIE as texturally similar to the prostate are 
marked white and the other pixels are marked black. Not 
surprisingly, because GENIE does not create contour shape 
descriptions, it was not successful in identifying the prostate.  
In our next experiment we implemented our genetic algorithm 
with the parameters specified in Table 1. The initial contour was 
generated using mean shape and shape variability information 
derived from the training images and was placed randomly on a 
test image. The evolution of the curve (selection after cross-over 
and mutation) was guided by the fitness function derived from 
textural priors evolved by GENIE.  We found that the curve 
evolution process was able to converge on the approximate area 
of the prostate. Also, the shape priors constrained the growth of 
the curve to within the expected shape of the prostate. Figure 9 
shows the segmentation result of our algorithm on a single slice of 
the pelvic CT image. It took about 20 generations for the GA to 
converge on a contour that gives a reasonably good segmentation 
of the prostate area. 

 

 
 

  
 

Figure 7. Segmentation result (on the test image) using Laws’ 
textural measures. The white regions marked are classified 
texturally similar to prostate (positive). The black region is 

classified as negative. 

Figure 8. Segmentation result using GENIE: white regions 
(positive classifications), black regions (negative 

classifications) 

Figure 6. A slice from the CT scan of another patient 
(test image) 
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Not surprisingly, we found that our algorithm performed 
significantly better in segmenting the prostate on the images than 
the other methods that use textural information alone. Table 2 
shows the goodness of fit of the final segmentation results for 
each of the methods implemented here. The values given are 
averages of G over all the slices for the given patient (slices from 
one patient were used for the training data and slices from a 
second patient were used for the test data). 
 

Table 2. Goodness of fit of the final segmentation obtained 
from the three different methods.  The values given are 

averages of G over all the slices for the given patient. 

Classifier G: Training Data G: Test Data 

Our GA 985 991 

GENIE 950 708 

Laws’ Texture 
Measures 850 580 

4.  CONCLUSIONS AND FUTURE WORK 
The algorithm developed here evolves a segmenting contour by 
incorporating both texture and shape information to extract 
objects without prominent edges, such as the prostate on pelvic 
CT images. Representing the shape of the contours as level sets 
and encoding candidate solutions of the GA as segmenting 
contours eliminates the need for deriving the gradients of energy 
functions for shape evolution and simplifies the optimization 
procedure. Our experiments using a small training set and a small 
population of candidate segmentation contours shows promise by 
converging on the prostate area.  

The following enhancements to the above framework are 
proposed for improving the segmentation results. 

1. Incorporating position information: The relative position of the 
various organs, if incorporated, can be used for initial placement 
of the segmenting curve (which is random at present). This has 
the potential to significantly improve the segmentation results 

2. Extension to 3-D: Following the lead of [20], the pose 
parameters can be extended to represent the 3D pose of an object. 
The above framework can be used to evolve a surface instead of a 
curve in a 3-D domain. Thus information from all the slices of a 
CT scan can be used simultaneously for 3-D segmentation. We 
would also like to compare our results with the shape-based 
segmentation procedure implemented by Tsai et al. 
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