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ABSTRACT
The properties of symmetric fitness functions are investi-
gated. We show that a well-known encoding scheme induc-
ing symmetric functions has the non-synonymous property
and the search spaces obtained from symmetric functions
have the zero-correlation structures. The Walsh analysis
reveals the properties of symmetric functions related to ad-
ditive separability, problem difficulty measures and so on.
Our results support the claim of other researchers that the
search spaces with symmetry induce relatively difficult prob-
lems. The results also present some limitations of existing
problem difficulty measures for symmetric fitness functions.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on discrete structures

General Terms
Theory

Keywords
Symmetric fitness functions, encoding scheme, search space
analysis, problem difficulty measures, Walsh analysis

1. INTRODUCTION
Let Σ be a set of characters or an alphabet. Denoted by

x[i] is the ith character of x for a string x ∈ Σn. For x ∈ Σn

and a permutation π on Σ, π(x) is defined to be the string
in Σn satisfying π(x)[i] = π(x[i]). A function f : Σn → R

is symmetric if f(x) = f(π(x)) for any x ∈ Σn and any
permutation π on Σ. Let Π(x) be the set of strings obtained
by a permutation on x:

Π(x) = {π(x)|π is a permutation on Σ}.
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So, a symmetric function f is invariant on the set Π(x) for
any x ∈ Σn. We call Π(x) the symmetric class of x.
Symmetric fitness functions have been discussed in a num-

ber of papers in the area of evolutionary computation. Some
of them were designed for studying the dynamics of evolu-
tionary algorithms on search spaces with symmetry. Exam-
ples appeared in the two-max problem [1] [2], the H-IFF
problem [3], and the connected clusters problem [4]. Some
others were produced in encoding a class of combinatorial
optimization problems. The problems are called grouping
problems [5] and commonly concerned with partitioning a
given item set into mutually disjoint subsets. In the prob-
lems, the k-ary encoding, in which k subsets are represented
by the integers from 0 to k − 1, has been generally used.
Examples of the problems include the max-cut problem [6],
graph partitioning [7] [8] [9], graph coloring, bin packing,
and workshop layouting [5]. Besides the above, some Ising
problems [4] [10], which originated from statistical physics,
induce symmetric fitness functions, too.
There have been studies for the search spaces with sym-

metry. Throughout a series of papers [11] [12] [2] [4], Van
Hoyweghen et al. provided the results that the search spaces
induced by symmetric fitness functions cause a synchroniza-
tion problem. The synchronization problem refers that an
evolutionary algorithm is stuck in a local optimum because
noninferior building blocks of different optima cannot be
combined to improve, and so leads to the slow genetic search.
For alleviating the problem, they proposed some solutions.
There were some results indicating that traditional crossover

operators may lose the power of exploitation in the search
spaces induced by symmetric fitness functions. In order to
alleviate the problems, a few approaches were proposed in-
cluding adaptive crossovers that recombine parents in terms
of phenotypes [7] [13] [14] and normalization methods that
transform one parent to another genotype to be consistent
with the other parent and recombine the parents using tra-
ditional crossovers [8] [9] [15] [16]. Recently, it was shown
that a well-devised crossover operator outperforms a muta-
tion operator in searching optima on the H-IFF problem [17]
and the Ising problem on the ring [10], both of which induce
symmetric fitness functions.
In this paper, we consider the properties of symmetric fit-

ness functions. The properties that we investigate are con-
cerned with encoding schemes, the correlation structures of
search spaces, the Walsh analysis of fitness functions, and
statistical measures of problem difficulty. Rigorous analy-
sis from a number of viewpoints gives new insights into the
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symmetric functions. Our results support the previous em-
pirical results that the search spaces with symmetry induce
relatively difficult problems.
This paper is organized as follows. In Section 2, we present

the non-synonymous property of the encoding schemes in
which a phenotype is represented by the strings of a symmet-
ric class. In Section 3, correlation structures of landscapes
induced by symmetric functions are investigated. We ana-
lyze symmetric functions using Walsh transform and provide
their properties including those related to additive separa-
bility in Section 4. In Section 5, some results of symmetric
functions are presented in terms of a few statistical measures
of problem difficulty. Finally, we make our conclusions in
Section 6.

2. MAXIMALLY NON-SYNONYMOUS
PROPERTY

The notion of synonymous/non-synonymous encodings was
first introduced by Rothlauf and Goldberg [18]. According
to them, a redundant encoding is synonymous if the geno-
types that are assigned to the same phenotype are simi-
lar to each other and is non-synonymous otherwise. They
showed that for synonymously redundant encodings GA per-
formance does not change and that non-synonymously re-
dundant encodings do harm to the GA performance. In this
section, we consider the encodings in which a phenotype is
represented by the strings of a symmetric class. As stated
above, such encodings have been generally used in grouping
problems. We show that the encodings have the maximally
non-synonymous property.
Given the phenotype space S for a problem, a redundant

encoding is a surjective genotype-phenotype map ϕ : G → S ,
where G represents the genotype space and |G| > |S|. For a
phenotype s ∈ S , we define H(s) ⊆ G by

H(s) = {x ∈ G|ϕ(x) = s},
which is the set of genotypes that share the phenotype s.
We call H(s) the coset (or neutral set) corresponding to s.
Suppose that we are given a redundant encoding ϕ : G →

S and a distance metric d defined on G. We assume that
d is the Hamming distance metric following the convention.
The sum of the distances between genotypes is decomposed
into X

x,y∈G
d(x, y) = D(ϕ) +D′(ϕ),

where

D(ϕ) =
X
s∈S

X
x,y∈H(s)

d(x, y)

and

D′(ϕ) =
X

s�=t∈S

X
x∈H(s)

X
y∈H(t)

d(x, y).

D(ϕ) is the sum of the distances among the genotypes be-
longing to the same coset and D′(ϕ) is the sum of the dis-
tances between the genotypes belonging to different cosets.
Since D(ϕ) indicates how closely the genotypes in cosets are
located in the genotype space for the encoding ϕ, an encod-
ing ϕ may be regarded as synonymous if the value of D(ϕ)
is relatively small (equivalently, the value of D′(ϕ) is rela-
tively large since D(ϕ)+D′(ϕ) is constant for a fixed G) and

non-synonymous otherwise. A measure equivalent to D(ϕ)
was mentioned in [18].
We first investigate which encoding has a maximally non-

synonymous property.

Theorem 1. Suppose that a phenotype space S is encoded
by the genotype space Σn, where the coset sizes of phenotypes
are pre-defined. If an encoding ϕ satisfies that

|{x ∈ H(s)|x[i] = a}| = |{x ∈ H(s)|x[i] = b}| (1)

for all s ∈ S, i ∈ {0, 1, . . . , n − 1}, and a, b ∈ Σ, then ϕ
maximizes D(ϕ).

Proof. Note that

D(ϕ) =
X
s∈S

X
x,y∈H(s)

d(x, y)

=
X
s∈S

X
x,y∈H(s)

nX
i=1

1(x[i] �= y[i])

=
X
s∈S

nX
i=1

X
x,y∈H(s)

1(x[i] �= y[i]),

where 1(·) means the indicator function. Now we consider
the value of

P
x,y∈H(s) δ(x[i], y[i]) for a fixed s ∈ S and i.

Let ta = |{x ∈ H(s)|x[i] = a}| for a ∈ Σ. Then,X
x,y∈H(s)

δ(x[i], y[i]) =
X

a�=b∈Σ

tatb

=
X
a,b∈Σ

tatb −
X
a∈Σ

t2a

=

 X
a∈Σ

ta

!2

−
X
a∈Σ

t2a .

Since
P

a∈Σ ta = |H(s)|, Px,y∈H(s) δ(x[i], y[i]) is maximized

if and only if
P

a∈Σ t
2
a is minimized. By the Lagrange mul-

tiplier method,
P

a∈Σ t
2
a subject to

P
a∈Σ ta = |H(s)| is min-

imized when ta = tb for all a, b ∈ Σ. This completes the
proof.

Theorem 2. Suppose that a phenotype space S is encoded
by the genotype space Σn, where the coset sizes of phenotypes
are defined to be multiples of |Σ|. If an encoding ϕ maxi-
mizes D(ϕ), then it satisfies the condition (1).

Proof. From Theorem 1, it is enough to show that there
exists an encoding satisfying the condition (1). Let π be a
permutation on Σ such that πi(a) �= a for all 1 ≤ i ≤ |Σ|−1
and all a ∈ Σ. We partition the genotype space Σn into
the orbits generated by the permutation π. Since |H(s)| is
a multiple of |Σ| for each s ∈ S and the size of each orbit is
|Σ|, there is an encoding ϕ in which the genotypes in each
orbit belong to the same coset. The encoding ϕ satisfies the
condition (1) and the proof completes.

Inspired by the above theorems, we call an encoding sat-
isfying the condition (1) a maximally non-synonymous en-
coding. Given a maximally non-synonymous encoding, if we
choose a genotype from a fixed coset uniformly at random,
the allele in each gene follows the uniform distribution on
the alphabet.

Corollary 1. Suppose that each phenotype is represented
by the strings of a symmetric class under an encoding ϕ.
Then, ϕ is maximally non-synonymous.
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The corollary implies that the k-ary encoding for group-
ing problems is maximally non-synonymous. Combining the
corollary with the result of Rothlauf and Goldberg [18], it
is partially answered why traditional crossovers struggle in
grouping problems.

3. CORRELATION STRUCTURE

3.1 Correlation Measures
It is crucial to understand the structure of the search

space landscape for predicting the performance of a given
algorithm. Ruggedness is one of the most important fea-
tures to characterize the structure of a landscape. It is be-
lieved that, the more rugged the landscape is, the worse the
performance of an evolutionary algorithm is. Ruggedness
of a search space landscape is strongly related to correla-
tion between fitness and distance: A smooth landscape in-
duces a high correlation between fitness and distance while
a rugged landscape does a low correlation. For this reason,
many measures for estimating the ruggedness of a landscape
are based on the correlation. Examples include autocorrela-
tion [19], correlation length [20], fitness distance correlation
(FDC) [21], and the measures by Boese et al. [22].
FDC proposed by Jones and Forrest [21] have been widely

used for predicting problem difficulty in evolutionary com-
putation area [23] [24]. The FDC coefficient is defined by

ρFDC = Corr[fopt, dopt] =
Cov[fopt, dopt]

σ[fopt] · σ[dopt]
,

where fopt and dopt are random variables representing the
fitness difference and distance between a sampled genotype
and its nearest optimum, respectively. For a minimization
problem, a value of ρFDC = 1.0 means that fitness and dis-
tance are perfectly correlated and evolutionary search will
be successful. A value of ρFDC close to zero indicates that
fitness and distance are not linearly correlated and supports
that evolutionary search may fail for the problem. Boese et
al. [22] proposed another correlation-based measure, ρavg.
It is defined by

ρavg = Corr[fopt, davg] =
Cov[fopt, davg]

σ[fopt] · σ[davg]
,

where fopt is a random variable representing the fitness dif-
ference between a sampled genotype and an optimum and
davg is a random variable representing the average distance
from the sampled genotype to others. They applied the
measure to local optima space for a few combinatorial opti-
mization problems to show that a globally convex structure
(also known as “big valley”) appears in the landscapes of
the problems.
For a genotype x, we consider a correlation measure ρx as

follows.

ρx = Corr[fx, dx] =
Cov[fx, dx]

σ[fx] · σ[dx]
,

where fx and dx are random variables representing the fit-
ness difference and distance between a sampled genotype
and x, respectively. The measure ρx reflects the correla-
tion structure between fitness and distance toward x. If x
is the unique optimum in the genotype space, the two mea-
sures ρFDC and ρx are equivalent. In multimodal landscapes,
however, nearest optima for different genotypes may be dif-
ferent, which generally induces a difference between ρFDC

and ρx with an optimum x.

A typical evolutionary search may be considered as a pro-
cess in which a population of genotypes are evolved to con-
verge toward an optimal (or near-optimal) genotype. On the
other hand, more than one optimal genotype are generally
reflected into the value of ρFDC in multimodal landscapes.
In the landscapes induced by symmetric fitness functions,
a number of optimal genotypes are located distantly from
one another as seen in the last section, so the measure ρFDC

has a potential to mis-estimate the evolvability of an evo-
lutionary algorithm. For that reason, we use the measure
ρx with an optimum x (instead of ρFDC) for analyzing the
landscapes induced by symmetric fitness functions.

3.2 Zero Correlation for Symmetric Functions
Now we investigate the properties of the landscapes in-

duced by symmetric fitness functions. For two subsets A
and B of Σn, we denote by d̄(A,B) the expected distance
between the genotypes chosen uniformly at random from A
and B.

Proposition 1. For any subset A of Σn and any x ∈ Σn,

d̄(A,Π(x)) =

„ |Σ| − 1

|Σ|
«
n.

Proof. Note that

d̄(A,Π(x)) =
1

|A| · |Π(x)|
X
a∈A

X
y∈Π(x)

d(a, y)

=
1

|A| · |Π(x)|
X
a∈A

X
y∈Π(x)

nX
i=1

1(a[i] �= y[i])

=
1

|A| · |Π(x)|
nX

i=1

X
a∈A

X
y∈Π(x)

1(a[i] �= y[i]).

Since
P

y∈Π(x) 1(a[i] �= y[i]) =
“

|Σ|−1
|Σ|

”
|Π(x)| for any a ∈ A,

d̄(A,Π(x)) =
1

|A| · |Π(x)|
nX

i=1

X
a∈A

„ |Σ| − 1

|Σ|
«
|Π(x)|

=

„ |Σ| − 1

|Σ|
«
n.

The proposition means that a symmetric class is at the same
distance from any set of genotypes on average. It implies
that fitnesses and distances are not linearly correlated in
the landscapes induced by symmetric fitness functions.

Theorem 3. For any symmetric fitness function and any
x ∈ Σn, ρx = 0 and ρavg = 0.

Proof. To prove that ρx = 0, it is enough to show that
Cov[fx, dx] = E[fxdx] − E[fx] · E[dx] = 0. We denote by
∆f(x, y) the fitness difference between x and y for y ∈ Σn.
Then

E[fxdx] =
X
Π

Pr[y ∈ Π] · E[∆f(x, y)d(x, y)|y ∈ Π]

=
X
Π

Pr[y ∈ Π] ·∆f(x, y) · E[d(x, y)|y ∈ Π],

where the summation is over symmetric classes Π’s. From

Proposition 1, E[d(x, y)|y ∈ Π] = d̄({x},Π) =
“

|Σ|−1
|Σ|

”
n,
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which is invariant over symmetric classes. So,

E[fxdx] =

„ |Σ| − 1

|Σ|
«
n ·
 X

Π

Pr[y ∈ Π] ·∆f(x, y)
!

=

„ |Σ| − 1

|Σ|
«
n · E[fx].

Since

E[dx] =
X
Π

Pr[y ∈ Π] · E[d(x, y)|y ∈ Π]

=

„ |Σ| − 1

|Σ|
«
n ·
 X

Π

Pr[y ∈ Π]

!

=

„ |Σ| − 1

|Σ|
«
n,

it follows that E[fxdx] = E[fx] ·E[dx]. We omit the proof of
ρavg = 0, which is derived in a similar way.

The landscape induced by a symmetric fitness function does
not have a globally convex structure. It is not linearly cor-
related between fitness and distance toward any optimum.
So, it is not expected that an evolutionary algorithm for a
symmetric fitness function shows high-performance.

4. WALSH ANALYSIS
In this section, we restrict our attention to the fitness func-

tions defined on {0, 1}n. These functions are called pseudo-
Boolean.

4.1 Walsh Transform
In the area of evolutionary computation, many interest-

ing results were obtained by Walsh analysis that is based on
Walsh transform. Walsh transform is a Fourier transform for
pseudo-Boolean functions in which a pseudo-Boolean func-
tion is represented as a linear combination of Walsh func-
tions [25].
Let [n] be the set of the integers 1 through n. A bi-

nary string x ∈ {0, 1}n may be viewed as a subset of [n]
consisting of the positions in which x has non-zero values.
The Walsh function corresponding to a subset m of [n],
ψm(x) : {0, 1}n → R, is a pseudo-Boolean function defined
as

ψm(x) = (−1)|m∩x|.

We call m and |m| the support set and the order of ψm,
respectively. (The support set and the order of a pseudo-
Boolean function are defined in the below.) If we define an
inner product of two pseudo-Boolean functions f and g as

〈f, g〉 =
X

x∈{0,1}n

f(x) · g(x)
2n

,

the set of Walsh functions, {ψm|m ⊆ [n]}, becomes an or-
thonormal basis of the space of pseudo-Boolean functions.
Hence, a pseudo-Boolean function f can be represented as

f =
X

m⊆[n]

f̂(m) · ψm,

where f̂(m) = 〈f, ψm〉 is called the Walsh coefficient corre-
sponding to m. We refer to [26] for surveys of the properties
of Walsh functions and Walsh transform.

For two subsets s and t of [n], we denote by s � t the
symmetric difference of s and t: s � t = (s \ t) ∪ (t \ s).
Note that x � [n] means the bitwise complement of x and
a symmetric function f satisfies the property that f(x) =
f(x � [n]) for all x ∈ {0, 1}n.

Theorem 4. Suppose that f is symmetric. Then, f̂(m) =
0 for m ⊆ [n] with odd |m|.

Proof. Since f(x) = f(x � [n]) and ψm(x) = −ψm(x �
[n]) from the definition of the Walsh function,

f(x) · ψm(x) + f(x � [n]) · ψm(x � [n]) = 0

and so

f̂(m) = 〈f, ψm〉
=

X
x∈{0,1}n

f(x) · ψm(x)

2n

=
1

2

X
x∈{0,1}n

f(x) · ψm(x) + f(x � [n]) · ψm(x � [n])

2n

= 0.

Theorem 5. Suppose that f̂(m) = 0 for all m ⊆ [n] of
odd |m|. Then, f is symmetric.

Proof. Let

f =
X

m⊆[n] : |m| is even

f̂(m) · ψm.

Since ψm(x) = ψm(x � [n]) for all m ⊆ [n] with even |m|,
f(x � [n]) =

X
m⊆[n] : |m| is even

f̂(m) · ψm(x � [n])

=
X

m⊆[n] : |m| is even

f̂(m) · ψm(x)

= f(x).

From the theorems, we have

Corollary 2. A pseudo-Boolean function f is symmet-
ric if and only if it can be represented as a linear combination
of Walsh functions with even orders.

4.2 2-Bounded Symmetric Functions
For a pseudo-Boolean function f , the order of f is the

maximum order of Walsh functions that have non-zero Walsh
coefficients in the Walsh transform of f . A function f is
called k-bounded if the order of f is less than or equal to
k. In this section, we investigate the properties of the 2-
bounded symmetric functions.
From Corollary 2, a 2-bounded symmetric function f is

represented as a linear combination of the Walsh functions
of order zero and two:

f =
X

m : |m|=0 or 2

f̂(m) · ψm.

For a set m with |m| = 2, let the two bit positions in m be
im and jm. Then, the value of ψm(x) is −1 if x[im] �= x[jm]
and 1 otherwise, and so

ψm(x) = 1− 2 · 1(x[im] �= x[jm]).
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Using the fact that ψ∅(x) = 1 for all x ∈ {0, 1}n,

f(x) = f̂(∅) +
X

m : |m|=2

f̂(m) · (1− 2 · 1(x[im] �= x[jm]))

=
X

m : |m|=0 or 2

f̂(m)

+
X

m : |m|=2

−2 · f̂(m) · 1(x[im] �= x[jm])

= Df + Cf (x), (2)

whereDf =
P

m : |m|=0 or 2 f̂(m) andCf (x) =
P

m : |m|=2 −2·
f̂(m) · 1(x[im] �= x[jm]).
Given a 2-bounded symmetric function f , consider a weighted

graph G as follows. Set a vertex for each bit position. For
each Walsh function ψm such that f̂(m) �= 0, set the edge
connecting the two positions in m and assign the weight
−2 · f̂(m) on it. A binary string x ∈ {0, 1} may be viewed
as a bipartition of bit positions in which a bit position i
belongs to the “0” group if x[i] = 0 and it belongs to the
“1” group otherwise. When we partition the bit positions
into the two groups as indicated in x, Cf (x) is the sum of
weights of edges whose endpoints belong to different groups,
which is called the cut size of a bipartition x. Equation (2)
means that the problem of maximizing f is equivalent to the
max-cut problem on G, which is to find a bipartition of the
vertices of G maximizing the cut size.
The NP-hardness of the max-cut problem [27] implies that

the problem of maximizing 2-bounded symmetric functions
is also NP-hard. Approximation algorithms for the max-
cut problem may be applied to the problem of maximizing
2-bounded symmetric functions but their approximabilities
depend on the values of Walsh coefficients of a given func-
tion. For example, if Df ≥ 0 and the Walsh coefficients
of order two are all non-positive, the algorithm of Goemans
and Williamson [28] guarantees the 0.879-approximation ra-
tio. Since the max-cut problem is MAX-SNP-hard [29] [30],
there does not exist a polynomial time approximation scheme
for the problem of maximizing 2-bounded symmetric func-
tions unless P = NP.

4.3 Additive Separability
For a pseudo-Boolean function f , the set of bit positions

that affect f is called the support set of f and denoted by
s(f). A function f : {0, 1}n → R is additively separable into
g and h if f can be represented as g + h and s(g) and s(h)
are disjoint. When the support sets of g and h are included
in the subsets s and t of [n], respectively, we also say that f
is additively separable into s and t. For a subset s of [n], the
set of binary strings over the bit positions in s is denoted
by Bs. If the support set of a function f is included in a
subset s of [n], the f restricted to s means the function that
is defined on Bs and inherits the value of f .

Proposition 2. A pseudo-Boolean function f : {0, 1}n →
R is additively separable into the subsets s and t of [n] if and

only if f̂(m) = 0 for all m ⊆ [n] such that m ∩ s �= ∅ and
m ∩ t �= ∅.

Proof. Suppose that f is additively separable into the
subsets s and t of [n]. Then, we may write f = g+h, where
s(g) ⊆ s and s(h) ⊆ t. Since s(g) ⊆ s (s(h) ⊆ t, resp.), g (h,
resp.) may be represented as a linear combination of ψm’s
with m ⊆ s (m ⊆ t, resp.). So, f can be represented as a

linear combination of ψm’s with m ⊆ s or m ⊆ t. From the
fact that ψm’s constitute an orthonormal basis of the space
of pseudo-Boolean functions, f is uniquely represented as a
linear combination of ψm’s and so the result follows.
Now consider the opposite side. Suppose that f̂(m) = 0

for all m ⊆ [n] such that m ∩ s �= ∅ and m ∩ t �= ∅. Then,
we may decompose f as

f =
X
m⊆s

f̂(m) · ψm +
X
m⊆t

f̂(m) · ψm.

Letting g =
P

m⊆s f̂(m) · ψm and h =
P

m⊆t f̂(m) · ψm, we

have that f = g + h with s(g) ⊆ s and s(h) ⊆ t.

Theorem 6. Suppose that f is symmetric. If f is addi-
tively separable into the subsets s and [n] \ s of [n], f(x) =
f(x � s) for all x ∈ {0, 1}n.

Proof. From Proposition 2, f can be represented as

f =
X

m⊆s : even |m|
f̂(m) · ψm +

X
m⊆[n]\s : even |m|

f̂(m) · ψm.

If we denote

g =
X

m⊆s : even |m|
f̂(m) · ψm

and

h =
X

m⊆[n]\s : even |m|
f̂(m) · ψm,

we see that g(x � s) = g(x) and h(x � s) = h(x) for all
x ∈ {0, 1}n and so f(x � s) = f(x) for all x ∈ {0, 1}n.

The converse of Theorem 6 does not hold for arbitrary sym-
metric functions but it does hold for 2-bounded symmetric
functions.

Lemma 1. If f(x) = f(x � s) for all x ∈ {0, 1}n, f̂(m) =
0 for all m ⊆ [n] such that |m ∩ s| is odd.

Proof. Since f(x) = f(x � s) and ψm(x) = −ψm(x �
s),

f(x) · ψm(x) + f(x � s) · ψm(x � s) = 0

and so

f̂(m) = 〈f, ψm〉
=

X
x∈{0,1}n

f(x) · ψm(x)

2n

=
1

2

X
x∈{0,1}n

f(x) · ψm(x) + f(x � s) · ψm(x � s)

2n

= 0.

Theorem 7. A 2-bounded symmetric function f is addi-
tively separable into the subsets s and [n] \ s of [n] if and
only if f(x) = f(x � s) for all x ∈ {0, 1}n.

Proof. The only-if part was proven in Theorem 6 and
we prove the if part. Suppose that f(x) = f(x � s) for
all x ∈ {0, 1}n. Since f is 2-bounded, it is enough to show

that f̂(m) = 0 for all m ⊆ [n] such that |m ∩ s| = 1 and
|m ∩ ([n] \ s)| = 1, which is proven by Lemma 1.
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Theorem 8. Suppose that f is symmetric and additively
separable into the functions g and h. Then, g, h, the g
restricted to s(g), and the h restricted to s(h) are symmetric.

Proof. From Proposition 2,

g =
X

m⊆s(g) : even |m|
f̂(m) · ψm (3)

and

h =
X

m⊆s(h) : even |m|
f̂(m) · ψm. (4)

Since g and h are represented as linear combinations of
Walsh functions with even orders, Corollary 2 implies that
g and h are symmetric. From Equations (3) and (4), it is
clear that g(x) = g(x � s(g)) and h(x) = h(x � s(h)) for all
x ∈ {0, 1}n, which proves that the g restricted to s(g) and
the h restricted to s(h) are symmetric.

Corollary 3. Suppose that f is symmetric. If there ex-
ists y ∈ R such that |{x ∈ {0, 1}n|f(x) = y}| = 2 (mod 4),
f is additively inseparable.

Proof. Suppose that f is additively separable into s and
[n] \ s for a subset s of [n]. From Theorem 6, f(x) = f(x �
s) = f(x � ([n] \ s)) = f(x � [n]) for all x ∈ {0, 1}n so that
|{x ∈ {0, 1}n|f(x) = y}| = 0 (mod 4) for all y ∈ R. This
yields a contradiction.

Corollary 3 implies that a symmetric function that has an
assignment of unique fitness up to bitwise complement is
additively inseparable. So, a symmetric function that has
unique optimum up to bitwise complement is additively in-
separable. Many problems including the two-max problem,
the H-IFF problem, and the Ising problems induce such sym-
metric fitness functions. Corollary 3 further implies that a
symmetric function having unique fitness up to bitwise com-
plement cannot be additively separated no matter how we
permute the fitness values of assignments as long as the sym-
metric property is preserved. For example, permuting the
fitness values in the two-max problem produces another ad-
ditively inseparable function.

Corollary 4. Suppose that f is symmetric. If f is ad-
ditively separable into k disjoint subsets of [n], f has at most
2n−k different values.

Proof. Suppose that f is additively separable into the
subsets s1, . . . , sk of [n]. From Theorem 6, we see that

f(x) = f(x � s1) = f(x � s2) = · · ·
= f(x � s1 � s2) = f(x � s1 � s3) = · · ·
= · · ·
= f(x � s1 � · · · � sk).

Since there are at least 2k assignments of the fitness value
f(x) for all x ∈ {0, 1}n, f has at most 2n−k different val-
ues.

We say a function f fully separable if it is additively separa-
ble into n disjoint subsets of [n], i.e., it can be optimized at
each bit position independently of the other positions.

Corollary 5. If a symmetric function f is fully separa-
ble, f is constant.

Proof. Immediate from Corollary 4.

5. FIRST-ORDER PROJECTION AND
RELATED MEASURES

In this section, pseudo-Boolean symmetric functions are
considered as in the last section. For the moments related
to fitness functions, we assume the uniform distribution in
which input strings are sampled uniformly at random.
Epistasis variance is a statistical measure for predicting

the difficulty of a given problem with respect to evolution-
ary algorithms [31]. Given a pseudo-Boolean function f :
{0, 1}n → R, the epistasis variance of f is defined as

ε2(f) =
1

2n

X
x∈{0,1}n

(f(x)− ξ(x))2 ,

where

ξ(x) = E[f ] +

nX
i=1

(E[f(y)|y[i] = x[i]]− E[f ]) .

Let Pf be the projection of f onto the function space spanned
by the Walsh functions whose order is at most one. From
the orthonormality of Walsh functions,

Pf =
X

|m|≤1

f̂(m) · ψm.

It was independently discovered in [32], [33], and [34] that
ξ coincides with Pf . So, epistasis variance represents the
mean square error between a given function and its approx-
imation with Walsh functions of order one:

ε2(f) = E[(f − Pf )
2].

To make epistasis variance invariant for constant multipli-
cation, a normalized measure, which is the epistasis variance
divided by the variance of the fitness function, was proposed
[35] [32]. For a function f , it is defined as

η(f) =
ε2(f)

Var[f ]
.

Since ε2(f) ≤ Var[f ], the normalized epistasis variance sat-
isfies that 0 ≤ η(f) ≤ 1. Epistasis correlation [36] is another
measure based on first-order projection. It computes the
correlation coefficient between f and Pf :

ερ(f) = Corr[f,Pf ].

The normalized epistasis variance and the epistasis correla-
tion measure how well a given fitness function can be approx-
imated by its first-order projection. It is considered that if
a function has the normalized epistasis variance close to one
or the epistasis correlation close to zero, then evolutionary
algorithms will have a hard time optimizing the function.
The following describes the relation between Walsh coef-

ficients and moments of a pseudo-Boolean function.

Lemma 2. For a pseudo-Boolean function f ,

E[f ] = f̂(∅)
and

Var[f ] =
X
m�=∅

f̂(m)2.

Proof. The balanced sum theorem (see Theorem 19 in
[26]) says that E[ψm] = 1 if m = ∅ and E[ψm] = 0 otherwise.
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By linearity of expectation,

E[f ] =
X

m⊆[n]

E[f̂(m) · ψm] =
X

m⊆[n]

f̂(m) · E[ψm] = f̂(∅).

Next, define the norm of f as ‖f‖ = 〈f, f〉 1
2 . Then,

E[f2] = ‖f‖2 and, by Parseval’s identity [37],

‖f‖2 =
X

m⊆[n]

f̂(m)2.

Since E[f ] = f̂(∅),
Var[f ] = E[f2]− E[f ]2

=
X

m⊆[n]

f̂(m)2 − f̂(∅)2

=
X
m�=∅

f̂(m)2.

Combining Corollary 2 and Lemma 2, we have

Corollary 6. For a symmetric function f ,

Pf = E[f ].

Proof.

Pf =
X

|m|≤1

f̂(m) · ψm = f̂(∅) = E[f ].

Corollary 6 indicates that the first-order projection of a sym-
metric function is the constant function with the expected
value of the function. It draws the following.

Corollary 7. For a symmetric function f ,

ε2(f) = Var[f ] =
X

|m|≥2 and |m| is even

f̂(m)2.

Proof.

ε2(f) = E[(f − Pf )
2]

= E[(f − E[f ])2]

= Var[f ]

=
X

|m|≥2 and |m| is even

f̂(m)2,

where the last equality is derived from Corollary 2 and
Lemma 2.

Corollary 8. For a symmetric function f ,

η(f) = 1.

Proof. Immediate from the definition of η(f) and Corol-
lary 7.

Corollary 9. For a symmetric function f ,

ερ(f) = 0.

Proof. Since Pf is constant from Corollary 6,

Cov[f,Pf ] = E[f · Pf ]− E[f ] · E[Pf ]

= E[f ] · Pf − E[f ] · Pf

= 0.

Corollary 8 and 9 imply that symmetric fitness functions
constitute a class of the hardest problems in terms of the
normalized epistasis variance and the epistasis correlation.
This supports the previous empirical results that the search
spaces with symmetry induce relatively difficult problems.
However, it also suggests that the measures cannot discrim-
inate the degree of problem difficulty for symmetric fitness
functions. They are not useful for classifying the symmetric
fitness functions in terms of problem difficulty.

6. CONCLUSION
We investigated the properties of symmetric fitness func-

tions that are concerned with encoding schemes, the corre-
lation structures of search spaces, the Walsh analysis of fit-
ness functions, and statistical measures of problem difficulty.
It is interesting that the properties of the functions imply
the difficulty in maximizing the functions: Maximally non-
synonymous property, zero correlation structure of search
spaces, additive inseparability, high epistasis variance and
so on. These results partially explain why evolutionary al-
gorithms struggle in the problems with symmetric property.
We saw that two statistical measures of problem difficulty,

normalized epistasis variance and epistasis correlation, are
invariant for symmetric fitness functions. It is clear that all
the symmetric fitness functions are not hard to evolution-
ary algorithms. (For example, see [2].) Our results raise the
limitations of the measures in classifying symmetric fitness
functions in terms of problem difficulty. For the classifica-
tion, another suitable measure must be considered.
We are currently working on investigating the properties

of symmetric fitness functions further. This includes the
Walsh analysis for symmetric functions over multary alpha-
bets.
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