
Adaptive Discretization for Probabilistic Model Building
Genetic Algorithms

Chao-Hong Chen
Dept. of Computer Science

National Chiao Tung University
HsinChu City 300, Taiwan

chaohung@csie.nctu.edu.tw

Wei-Nan Liu
Depart. of Computer Science
National Chiao Tung University

HsinChu City 300, Taiwan

wnliu@csie.nctu.edu.tw

Ying-Ping Chen
Depart. of Computer Science
National Chiao Tung University

HsinChu City 300, Taiwan

ypchen@cs.nctu.edu.tw

ABSTRACT
This paper proposes an adaptive discretization method, called
Split-on-Demand (SoD), to enable the probabilistic model
building genetic algorithm (PMBGA) to solve optimization
problems in the continuous domain. The procedure, effect,
and usage of SoD are described in detail. As an example,
the integration of SoD and the extended compact genetic
algorithm (ECGA), named real-coded ECGA (rECGA), is
presented and numerically examined. The experimental re-
sults indicate that rECGA works well and SoD is effective.
The behavior of SoD is analyzed and discussed, followed by
the potential future work for SoD.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter learn-
ing ; I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
Adaptive discretization, split-on-demand, extended compact
genetic algorithm, real-parameter optimization

1. INTRODUCTION
Genetic algorithms (GAs) [6, 2] are methodologies in-

spired by Darwinian evolution and designed according to the
biological genetic operations. As a flexible optimization tool,
genetic algorithms are nowadays widely applied to tackle a
number of real-world optimization problems. In principle,
genetic algorithms select good, promising individuals from
the current population and generate new candidate of solu-
tions by employing recombination and mutation.

According to the theory of design decomposition [3], the
key components to the GA success include identifying, re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

producing, and exchanging the structure of the solutions.
Recombination, one of the main GA operator, mixes the
promising sub-solutions, called building blocks (BBs), and
creates the solutions. Genetic algorithms therefore work
very well for the problems which can be somehow decom-
posed into sub-problems. However, the problem-independent
recombination operator with fixed chromosome representa-
tions often breaks building blocks and results in ineffective
mixing. It is the reason when traditional genetic algorithms
meet complex solution structures which consist of a group
of related genes, they oftentimes fail to effectively identify
and efficiently exchange the building blocks to create good
final solutions [4].

In order to appropriately mix genes, the evolutionary al-
gorithms based on utilizing probabilistic models were pro-
posed and developed [7, 9]. In such schemes, the offspring
population is generated according to the estimated proba-
bilistic model of the parent population instead of using reg-
ular recombination and mutation operators. The probabilis-
tic model is expected to reflect the problem structure, and
better performance can be achieved via exploring and ex-
ploiting the relationship between genes. These evolutionary
algorithms are called probabilistic model building genetic
algorithms (PMBGAs) or estimation of distribution algo-
rithms (EDAs) [7, 9].

In PMBGAs, decision variables are often coded with bi-
nary coding or gray coding. However, it is reportedly dif-
ficult to find high accuracy solution in solving continuous
problems. Moreover, many real-world engineering problems
are real-parameter optimization problems, such as structural
optimization problems and the design of a transonic wing
of an aircraft. In the literature, several attempts to apply
PMBGAs to problems in the continuous domain have been
made, including continuous PBIL with Gaussian distribu-
tion [11], real-coded variant of PBIL with interval updat-
ing [12], BEA for continuous function optimization [13], and
the real-coded BOA [1]. In this paper, we propose a frame-
work that can enable the PMBGAs designed for handling
bit-strings to tackle real-valued optimization problems. Par-
ticularly, we develop a new, adaptive discretization encoding
scheme that can be easily integrated into PMBGAs, and we
use the extended compact genetic algorithm (ECGA) [5] as
an example in the present work.

In next section, we will first briefly introduce ECGA. In
section 3, we will describe in detail how the proposed Split-
on-Demand (SoD) encodes the solutions of real values into
discrete numbers. In section 4, we use SoD to enable ECGA
to handle real-valued decision variables and test the inte-

1103

grated framework with the benchmark proposed in the spe-
cial session on real-parameter optimization in CEC 2005 in
section 5. Finally, section 6 concludes this work.

2. BRIEF REVIEW OF ECGA
As a study subject, we will first briefly review the extended

compact genetic algorithm (ECGA) in this section. ECGA,
proposed by Harik [5], is based on the idea that the choice of
a good probability distribution is equivalent to learning ge-
netic linkage. The probabilistic models used in ECGA are a
class of probabilistic models known as the marginal product
models (MPMs). ECGA uses MPMs to model partitions of
the decision variables. The measure of good distributions is
quantified based on the minimum description length (MDL)
principle [10]. The key concept of the MDL model is that
all things being equal, simpler distributions are better than
more complex ones. The MDL restriction penalizes both
inaccurate and complexity, thereby leading to an optimal
probability distribution.
The ECGA can be algorithmically outlined as:

1. Generate a random population of size N .

2. Apply the tournament selection at a rate S.

3. Model the population using a greedy MPM search.

4. If the model has converged, stop.

5. Generate a new population using the given model.

6. Return to step 2.

The complexity measure of MPM is the sum of Model
Complexity and Compressed Population Complexity. By
the MDL principle, we wish to minimize the Combined com-
plexity. Combined Complexity = Model Complexity + Com-
pressed Population Complexity.

Model Complexity = log N
X

I

2S[I] ,

where N is the population size, and S[I] is the length of the
Ith subset of genes.

Compressed Population Complexity = N
X

E(MI) ,

where E(MI) is the entropy of the marginal distribution of
subset I .

Instead of applying traditional crossover and mutation op-
erators, ECGA generates the new population from the MPM
obtained in step 3. In this way, new individuals are gener-
ated without breaking building blocks. In the original design
of ECGA, the framework can only deal with bit-strings. In
next section, we will propose the encoding method and in-
tegrate it into ECGA in section 4.

3. SPLIT-ON-DEMAND
In this section, we present an encoding method called

Split-on-Demand (SoD), which can encode real-coded deci-
sion variables into discrete numerical values. The main idea
of Split-on-Demand is to split the interval where we demand
to know in more detail and to build a more accurate prob-
abilistic model with the information obtained during the
search process. Because of the behavior to split the inter-
val which needs further investigation, we call the proposed
encoding scheme Split-on-Demand.

Dimension 1 Dimension 2

Interval Code Interval Code

-100 ∼ -50 0 -100 ∼ 0 0

-50 ∼ 0 1 0 ∼ 50 1

0 ∼ 50 2 50 ∼ 100 2

50 ∼ 100 3

Figure 1: An example code table constructed by
Split-on-Demand for a real-parameter optimization
problem of two dimensions.

100−100 −50 0 50

(a) Split configuration on dimension 1.

100−100 0 50

(b) Split configuration on dimension 2.

-100

-50

 0

 50

 100

-100 -50 0 50 100

(c) Combined split configuration on both dimensions.

Figure 2: Illustration of the solution space split ac-
cording to the code table given in Figure 1.

As described, SoD splits a dimension of real numbers into
several intervals and gives each of them an integer code. We
can then translate a vector of real numbers to a vector of
integers, which can be represented by bits or binary codes
more intuitively. As an example, given a real-parameter
optimization problem of two dimensions, one possible code
table constructed by SoD is shown in Figure 1. According to
the code table, the solution [−72.3, 24.8] is encoded as [0, 1],
and the solution [13.8,−5.3] as [2, 0]. Figure 2 shows the so-
lution space split by the code table given in Figure 1 as an
illustration. Figure 2(a) is the split configuration on dimen-
sion 1, Figure 2(b) is the split configuration on dimension 2,
and Figure 2(c) is the combined split configuration on [di-
mension 1, dimension 2], which is the whole solution space.
The code table splits the solution space into 12 regions.

After describing the usage of the SoD code table, we now
discuss the way to construct it. The principle of the pro-
posed encoding scheme is to split the real number interval
in which there are a lot of search points. Because the tour-
nament selection operator is applied to choose the promising
individuals at each generation, if there are a number of in-
dividuals in certain region after selection, we consider that

1104

1: procedure Split-on-Demand
2: Split(low bound, high bound)
3: γ ← γ × ε
4: end procedure

1: procedure Split(low, high)
2: mid← random[low, high]
3: num low ← number of individuals in [low, mid]
4: num high← number of individuals in [mid, high]
5: if num low ≥ N × γ then
6: Split(low, mid)
7: else
8: Add Code(low, mid)
9: end if

10: if num high ≥ N × γ then
11: Split(mid, high)
12: else
13: Add Code(mid, high)
14: end if
15: end procedure

Figure 3: Pseudo code of SoD.

region important and believe the probability to find good
solutions in that region is higher. Therefore, we split the
promising region to gain higher resolution as well as achieve
better accuracy in order to assist the back-end PMBGA to
build high quality probabilistic models.

In order to determine which real number interval to split,
we employ a split rate γ, where 0 < γ < 1. Assume that the
population size is N , if an interval contains more than N×γ
individuals, the interval should be split. By adjusting the
split rate, we can control the accuracy of the probabilistic
model which we want to build. If more accurate probabilistic
models are necessary, smaller split rates should be used such
that the value range of the decision variables is split to more
intervals. Furthermore, for the same reason, the split rate
can also be used to control the code length. The higher the
split rate, the shorter the code length, and vice versa.

The procedure of Split-on-Demand can be describe as fol-
lows, and the pseudo code of SoD is shown in Figure 3. Sub-
routine Split-on-Demand first calls subroutine Split on the
interval [low bound, high bound], where the low bound and
high bound are the bounds of this dimension. Split gener-
ates a random number mid in the interval in question and
counts the individuals in the two intervals: [low bound, mid]
and [mid, high bound]. If an interval contains more than
N × γ individuals, Split will be recursively called to split
that interval until no interval should be further split.

When all split operations are done, we decrease the split
rate by a factor ε, where 0 < ε < 1. The reason to de-
crease the split rate is to have a higher split rate to keep
the diversity and implement a coarse-grained, global search
at the early stage of search. As the search process goes by,
we obtain more and more information about the solution
space and know where to put more search points to find
good solutions. Hence, at the late stage of search, a lower
split rate is needed to build accurate probabilistic models
for conducting a fine-grained, local search. The factor ε can
be set to control the speed of convergence. An appropriate
ε can help the search algorithm to avoid wasting time on
useless regions as well as being trapped at local optima and
therefore is key to an efficient search process.

1

−100 100

2

(a) Population distribution and 2 split positions at genera-
tion 1. γ = 0.5. 10× γ = 5.

4

−100 100

2 13

(b) Population distribution and 4 split positions at genera-
tion 10. γ = 0.4. 10× γ = 4.

2

−100 100

1453

(c) Population distribution and 5 split positions at genera-
tion 20. γ = 0.3. 10× γ = 3.

Figure 4: Population distribution and the split po-
sitions at different generations.

We now give a typical example of how SoD run on the pop-
ulation for demonstration. Assume that the population size
is 10, and the initial split rate γ = 0.5. Figure 4 depicts how
the individuals distributed at different generations. Initially,
Figure 4(a) shows that the first position to split, marked by
1, is randomly generated. We then discover that the number
of individuals in the left interval is larger than 10 × γ = 5.
Under this condition, SoD calls Split to perform a ran-
dom split on the left interval and gets the second split po-
sition, marked by 2. After the second split, the numbers
of individuals in the two intervals, the left interval and the
right interval to the second split position, are both less than
10×γ = 5. As a consequence, SoD stops the split operation
and decreases the split rate.

Figure 4(b) is the population distribution and the split po-
sitions at generation 10. The split rate γ is now 0.4. Similar
to the procedure described in the previous paragraph, SoD
performs a random split to cut the whole interval into two
intervals. It can be observe that both the left and the right
intervals contain more than 10 × 0.4 = 4 individuals, and
as a result, SoD calls Split on both the left and the right
intervals. For the left interval, SoD randomly splits it into
two intervals and finds out that its right interval still con-
tains more than 4 individuals. SoD recursively calls Split

to split that interval. By conducting the recursive split oper-
ation until no more interval has to be split, 4 splits make the
value range 5 intervals. Moreover, in Figure 4(c) the pop-
ulation is at generation 20, and the split rate is decreased
to 0.3. SoD runs on the population, and the value range is
split into 6 regions by 5 split points.

One might wonder that the proposed encoding scheme
seems similar to the marginal fixed-height histogram (FHH)
introduced in [16]. In fact, there are two significant differ-
ences between SoD and FHH. The first difference is the size
of the code table. In FHH, the height of the histogram is
fixed, and for any population, the number of bins employed
in the algorithm is fixed. However, in SoD, even with the
same split rate, for different populations, SoD may gener-
ate the code table of different sizes. That is, the code table
size in SoD may vary. For the other difference, the MPM
model built according to the individuals encoded by SoD is
not of the identical height. Such a flexibility might make
the MPM model more accurate than that built according to
the individuals encoded by FHH.

1105

For handling the adaptive discretization during an opti-
mization process, Figure 5 shows an example of how SoD co-
operating with ECGA splits the solution space at different
generations when minimizing a two-dimensional objective
function F1 =

P
x2

i , where the bound of every dimension is
[−100, 100], and the global optimum is (0, 0). Figure 5(a)
depicts the split configuration on the solution space at gen-
eration 1. The split configuration seems random because
the whole population is highly diverse at generation 1. Later
on, at generation 50, the population begins to converge, and
Figure 5(b) shows that SoD splits the solution space around
(0, 0) into many regions and leaves other parts of the solu-
tion space unencoded. Finally, in Figure 5(c), it can be ob-
served that SoD focuses on the solution space close to (0, 0)
at generation 100. With the population converging to (0, 0),
ECGA is able to explore the promising solution space more
thoroughly and to find the solutions of the higher precision
with the assistance of SoD.

Another example is the two-dimensional objective func-
tion F2 =

P
10 − |xi|. Figure 6 depicts how SoD splits

the solution space, of which the bound of each dimension
is [−10, 10], when minimizing F2. There are four global
minima located at (−10,−10), (−10, 10), (10,−10), and
(10, 10), respectively. Figure 6(a) is the split configuration
on solution space at generation 1. Because the population
is initially random, the split configuration seems random.
In Figure 6(b), we can observe that at generation 10, be-
cause the population begins to converge to the global min-
ima, the split points are close to the four corners where the
global minima of F2 are located. Finally, Figure 6(c) shows
that almost all split points are around the region close to
(10, 10) because the population converge to only one of the
four global optima at generation 20.

These two examples demonstrate that the split configura-
tion established by SoD appropriately responds to the status
of the population. The split configuration can encode the
individuals as precise as necessary for the cooperating PM-
BGA to build probabilistic models. Hence, SoD is an effec-
tive encoding scheme to make PMBGAs to tackle the real-
parameter optimization problem. In next section, ECGA,
as an example of PMBGAs, will be employed to show the
feasibility of integrating SoD and PMBGAs.

4. rECGA
In the previous sections, we proposed Split-on-Demand,

described the behavior of SoD, and demonstrated the effect
of SoD. In this section, we will show the way to plug SoD
into ECGA, as a showcase for the integration of SoD and
PMBGAs. The outcome is a new algorithm, called the real-
coded ECGA (rECGA), for solving real-parameter optimiza-
tion problems with the search power provided by ECGA.
rECGA can be put as:

1. Generate a random population of size N .

2. Apply the tournament selection at a rate S.

3. Use SoD to encode each dimension.

4. Model the population using a greedy MPM search.

5. If the model has converged, stop.

6. Generate a new population using the given model.

-100

-50

 0

 50

 100

-100 -50 0 50 100

(a) Generation 1.

-100

-50

 0

 50

 100

-100 -50 0 50 100

(b) Generation 50.

-100

-50

 0

 50

 100

-100 -50 0 50 100

(c) Generation 100.

Figure 5: Split configurations at different genera-
tions for the objective function F1 =

P
x2

i .

7. For every L generations,

(a) Sort the whole population.

(b) Run the Simplex algorithm on the best 10% indi-
viduals.

8. Return to step 2.

1106

-10

-5

 0

 5

 10

-10 -5 0 5 10

(a) Generation 1.

-10

-5

 0

 5

 10

-10 -5 0 5 10

(b) Generation 10.

-10

-5

 0

 5

 10

-10 -5 0 5 10

(c) Generation 20.

Figure 6: Split configurations at different genera-
tions for the objective function F2 =

P
10− |xi|.

In rECGA, we use SoD to encode each dimension of the
individuals in the current population after tournament se-
lection and do the MPM greedy search as in ECGA. We
also use a local search method in rECGA to improve the
performance. For every L generations, the population is

sorted according to the objective values, and the Simplex
algorithm proposed by Nelder and Mead [8] is conducted on
the best 10% individuals.

5. EXPERIMENTS
In this section, we will use rECGA to solve a set of test

functions and show the experimental results. The parame-
ters of rECGA we use in the series of experiments are pop-
ulation size = 250, probability of crossover = 0.975, tourna-
ment size = 8, γ = 0.5, ε = 0.998, and L = 5.

5.1 Test Functions
There are several optimization methodologies designed to

solve real-parameter optimization problems. The popular
approaches include real-parameter EAs, evolution strategies
(ES), differential evolution (DE), particle swarm optimiza-
tion (PSO), classic mathematical methods, such as quasi-
Newton method (QN), and hybridization of evolutionary
algorithms and classic methods. These methodologies are
quite different from each other in their operators, concepts,
and working principles. In order to make fair comparisons
between these optimization methods, a set of benchmark
functions for testing real-parameter optimization algorithms
was proposed in the CEC 2005 [15] as an attempt to setup a
standard set of benchmark functions of different properties
and characteristics.

In addition to the set of real-parameter optimization bench-
mark functions, the special session on real-parameter opti-
mization at CEC 2005 also established the evaluation cri-
teria as well as provided the performance results of many
optimization methodologies, including those aforementioned
algorithms, for comparison. Therefore, the performance of
rECGA will be compared to that of the existing algorithms
included in the special session at CEC 2005.

5.2 Experimental Results
The error values, f(x)− f(x∗), described in [15], are pre-

sented in Tables 1–5 for the 25 test functions. Because of
the space limitation, we compare the results of rECGA with
those of the population-based, steady-state optimization al-
gorithm [14], which was publiched in the special session.
The error values are also presented in the same format in
Table 6–10. Each column of the table corresponds to one
test function, and the number of dimensions for each prob-
lem is 10. The error values are recorded after 1, 000, 10, 000,
and 100, 000 function evaluations (FEs) for each one of the
25 runs. A run is considered a success if the final solution
reaches within the given fixed accuracy level. The prede-
fined accuracy levels are 1e− 6 for functions 1–5, 1e− 2 for
functions 6–14, and 1e − 1 for functions 15–25. The error
values of the 25 runs on one function are sorted and the
tables present the following items: the 1st (Best), the 13th
(Median), the 25th (Worst), and the average (Mean). The
tags † and ‡ put after the function number denote that the
function is considered solved or rECGA obtains comparable
results against other advanced algorithms, respectively. If
rECGA successfully reaches within the given accuracy level
for the particular function in at least one out of the 25 runs,
the function is considered solved by rECGA. Moreover, by
comparable results, we mean that rECGA does not reach
the given accuracy as other advanced algorithms and the
performance of rECGA is equally good compared to that of
other algorithms.

1107

Function 1† 2† 3† 4† 5‡

1e3Best 1.30e+032.79e+031.07e+074.37e+033.70e+03
Median2.31e+035.76e+034.13e+078.14e+036.86e+03
Worst 3.62e+031.22e+049.05e+071.45e+049.03e+03
Mean 2.34e+036.40e+034.33e+078.33e+036.77e+03

1e4Best 3.71e-02 1.31e+019.15e+042.37e+015.43e+00
Median 2.42e-01 5.81e+011.01e+067.49e+014.22e+01
Worst 1.39e+001.52e+023.52e+063.08e+022.21e+02
Mean 3.37e-01 5.92e+011.22e+061.03e+026.24e+01

1e5Best 5.68e-14 1.14e-13 1.14e-13 6.06e-08 1.23e-04
Median 5.68e-13 1.08e-12 2.16e-12 5.98e-05 7.44e-04
Worst 2.33e-12 2.26e-11 2.58e+02 1.40e-02 5.48e+00
Mean 7.16e-13 2.37e-12 1.03e+01 1.25e-03 3.78e-01

† Considered solved according to the given accuracy.
‡ Comparable to the results obtained by other algorithms.

Table 1: Error values for function 1–5.

Function 6† 7† 8‡ 9† 10

1e3Best 3.58e+071.42e+032.05e+014.87e+015.95e+01
Median1.08e+081.64e+032.08e+016.78e+018.52e+01
Worst 3.98e+081.83e+032.09e+018.12e+011.05e+02
Mean 1.19e+081.66e+032.08e+016.66e+018.53e+01

1e4Best 8.83e+011.23e+032.04e+01 3.75e-01 9.32e+00
Median4.06e+021.24e+032.05e+015.46e+001.47e+01
Worst 3.41e+031.25e+032.06e+011.13e+013.49e+01
Mean 8.00e+021.24e+032.05e+015.65e+001.82e+01

1e5Best 3.41e-13 9.86e-03 2.00e+01 1.14e-13 4.98e+00
Median3.99e+00 2.73e-01 2.00e+01 1.42e-12 1.29e+01
Worst 9.87e+015.07e+002.00e+01 2.87e-11 3.08e+01
Mean 1.03e+01 5.27e-01 2.00e+01 3.64e-12 1.31e+01

† Considered solved according to the given accuracy.
‡ Comparable to the results obtained by other algorithms.

Table 2: Error values for functions 6–10.

Function 11‡ 12† 13‡ 14 15†

1e3Best 9.93e+001.43e+044.26e+013.91e+005.80e+02
Median1.20e+013.26e+043.73e+024.29e+006.93e+02
Worst 1.35e+015.15e+043.31e+034.53e+007.56e+02
Mean 1.19e+013.41e+046.22e+024.27e+006.90e+02

1e4Best 2.93e+001.50e+02 3.54e-01 2.99e+008.06e+01
Median5.52e+007.71e+021.98e+003.53e+004.53e+02
Worst 9.16e+004.40e+033.42e+004.07e+005.13e+02
Mean 5.21e+001.10e+031.95e+003.49e+003.92e+02

1e5Best 1.21e+00 1.71e-13 4.94e-02 1.79e+00 1.85e-13
Median3.84e+00 1.19e-11 4.31e-01 3.07e+004.28e+02
Worst 7.82e+001.69e+031.06e+004.02e+004.42e+02
Mean 3.85e+002.23e+02 4.56e-01 3.12e+003.08e+02

† Considered solved according to the given accuracy.
‡ Comparable to the results obtained by other algorithms.

Table 3: Error values for functions 11–15.

The experimental results indicate that rECGA can solve
the functions 1, 2, 3, 4, 6, 7, 9, 12, and 15, which are denoted
with †. Functions 1 and 2 are simple problems and can be
solved in every run. Function 3 is the shifted rotated high
conditioned elliptic function, which magnifies the error of
input. Even if the error of input is quite small, the error
value will be huge due to a huge multiplier. By utilizing the
good local search operator, rECGA is able to solve function

Function 16 17 18 19 20‡

1e3Best 2.17e+022.88e+021.07e+031.01e+031.08e+03
Median3.30e+023.61e+021.12e+031.10e+031.12e+03
Worst 4.13e+024.69e+021.16e+031.16e+031.16e+03
Mean 3.22e+023.62e+021.12e+031.10e+031.12e+03

1e4Best 1.01e+021.17e+024.15e+023.83e+024.48e+02
Median1.29e+021.58e+029.17e+028.01e+028.93e+02
Worst 1.90e+022.21e+021.01e+039.69e+021.02e+03
Mean 1.30e+021.60e+028.34e+028.14e+028.36e+02

1e5Best 9.87e+011.08e+023.00e+023.00e+023.00e+02
Median1.23e+021.29e+029.08e+028.00e+028.88e+02
Worst 1.55e+021.51e+021.00e+039.64e+021.01e+03
Mean 1.22e+021.30e+027.79e+027.95e+027.73e+02

† Considered solved according to the given accuracy.
‡ Comparable to the results obtained by other algorithms.

Table 4: Error values for function 16–20.

Function 21‡ 22 23‡ 24‡ 25

1e3Best 1.14e+039.64e+021.02e+039.34e+021.82e+03
Median1.30e+031.01e+031.31e+031.19e+031.86e+03
Worst 1.35e+031.08e+031.35e+031.34e+031.89e+03
Mean 1.28e+031.02e+031.29e+031.17e+031.86e+03

1e4Best 5.00e+027.75e+025.60e+022.00e+021.69e+03
Median8.50e+027.87e+025.60e+022.01e+021.75e+03
Worst 1.14e+039.05e+021.25e+032.05e+021.78e+03
Mean 7.72e+027.96e+028.48e+022.02e+021.75e+03

1e5Best 3.00e+027.32e+025.60e+022.00e+021.49e+03
Median5.00e+027.59e+025.60e+022.00e+021.73e+03
Worst 1.13e+038.75e+021.25e+032.00e+021.75e+03
Mean 7.25e+027.69e+028.21e+022.00e+021.71e+03

† Considered solved according to the given accuracy.
‡ Comparable to the results obtained by other algorithms.

Table 5: Error values for functions 21–25.

3. Function 4 is the shifted Schwefel’s problem 1.2 with
noise in fitness. rECGA can solve this problem in that SoD
can decrease the noise effect by randomly splitting the real
number interval initially. Function 5 is Schwefel’s problem
2.6 with global optimum on bounds. The special property of
function 5 is that function 5 can be solved if the individuals
are at bounds. Because of the property and behavior of
SoD, rECGA fails to achieve the success criterion, although
rECGA is able to provide comparable results.

Functions 6–14 are basic multimodal problems and ex-
panded multimodal problems. Although rECGA cannot
solve all these problems, most of the results are compara-
ble to that of other advanced algorithms. The optimum of
function 8 is within a very narrow valley, and the parame-
ter setting used in this experiment does not allow rECGA
to have a sufficient resolution to accurately find the valley.
Functions 15–25 are composition functions. They are com-
posites of the basic functions, and they are big challenges to
search algorithms. rECGA successfully solves only function
15. Some of the results of rECGA for functions 16–25 are
comparable to other algorithms. rECGA and many of other
algorithms can only find the local optima.

Several difficulties remain to be overcome, and therefore,
we will continue to work on SoD to provide a versatile en-
coding scheme. The future work for SoD includes the follow-
ing items. (1) SoD can quickly focus on the intervals with

1108

Function 1 2 3 4 5

1e3Best 3.67e+03 6.26e+03 2.23e+07 9.72e+03 7.30e+03
Median 8.29e+03 1.33e+04 9.42e+07 1.79e+04 1.110e+04
Worst 1.10e+04 2.06e+04 1.50e+08 2.91e+04 1.34e+04
Mean 7.84e+03 1.31e+04 9.31e+07 1.81e+04 1.07e+04

1e4Best 1.43e-02 7.01e+01 7.75e+06 1.42e+02 1.41e+03
Median 7.53e-02 2.05e+02 2.50e+07 3.84e+02 2.43e+03
Worst 1.83e-01 4.33e+02 5.12e+07 8.57e+02 3.28e+03
Mean 9.42e-02 2.33e+02 2.57e+07 4.08e+02 2.46e+03

1e5Best 3.76e-09T7.57e-09T5.90e+038.68e-09T 9.15e-01
Median8.31e-09T9.54e-09T2.04e+049.96e-09T 3.82e+01
Worst 9.89e-09T9.88e-09T9.87e+04 8.02e-06 2.55e+02
Mean 8.71e-09T9.40e-09T3.02e+04 7.94e-07 4.85e+01

Table 6: Error values for functions 1–5 for [14].

Function 6 7 8 9 10

1e3Best 7.72e+08 4.59e+02 2.04e+01 6.58e+01 8.47e+01
Median 1.53e+09 7.59e+02 2.07e+01 9.60e+01 1.31e+02
Worst 3.97e+09 1.26e+03 2.09e+01 1.13e+02 1.56e+02
Mean 1.82e+09 8.12e+02 2.07e+01 9.49e+01 1.28e+02

1e4Best 1.77e+05 8.82e+00 2.00e+01 3.28e+01 4.12e+01
Median 1.12e+06 1.71e+01 2.00e+01 4.55e+01 5.30e+01
Worst 4.94e+06 2.36e+01 2.02e+01 5.72e+01 6.58e+01
Mean 1.24e+06 1.70e+01 2.00e+01 4.51e+01 5.25e+01

1e5Best 8.30e-09T5.27e-09T2.00e+014.76e-09T6.26e-09T
Median 3.99e+00 5.42e-02 2.00e+018.82e-09T8.85e-09T
Worst 1.09e+02 1.53e-01 2.00e+01 2.98e+00 2.98e+00
Mean 2.07e+01 6.40e-02 2.00e+01 1.19e-01 2.39e-01

Table 7: Error values for functions 6–10 for [14].

Function 11 12 13 14 15

1e3Best 9.42e+002.56e+048.93e+014.13e+007.38e+02
Median1.16e+017.60e+041.96e+034.38e+008.50e+02
Worst 1.29e+011.32e+059.84e+034.63e+009.10e+02
Mean 1.14e+018.29e+042.38e+034.39e+008.41e+02

1e4Best 7.63e+002.56e+042.59e+003.67e+006.37e+02
Median1.01e+014.55e+043.53e+004.27e+007.34e+02
Worst 1.18e+017.14e+044.66e+004.51e+007.88e+02
Mean 1.01e+014.78e+043.63e+004.25e+007.25e+02

1e5Best 7.64e+001.98e+02 3.28e-01 1.53e+002.79e+02
Median9.22e+002.50e+04 7.15e-01 2.40e+004.63e+02
Worst 9.91e+004.00e+041.07e+003.30e+007.06e+02
Mean 9.11e+002.44e+04 6.53e-01 2.35e+005.10e+02

Table 8: Error values for functions 11–15 for [14].

many individuals. However, it might ignore some intervals
with fewer individuals. If we use the niching techniques
to distribute the computation power to more intervals, we
may avoid such a problem caused by many local optima.
(2) By using the fixed coordinate system, it cannot model
the solution space accurately when the problem has the ro-
tated properties. In this case, rotating the coordinate sys-
tem with the problem might be a possible way to improve
the performance of SoD. (3) In our current framework, we
use the uniform distribution to spilt the solution space. We
might try to use other probability distributions such that
the split configuration of the solution space might provide
further search power for SoD. (4) We do not know very well

Function 16 17 18 19 20

1e3Best 3.78e+024.07e+021.09e+031.11e+031.06e+03
Median4.35e+025.25e+021.22e+031.23e+031.20e+03
Worst 5.59e+026.67e+021.30e+031.32e+031.34e+03
Mean 4.47e+025.27e+021.22e+031.22e+031.21e+03

1e4Best 1.73e+021.72e+028.48e+028.47e+028.60e+02
Median1.95e+022.17e+029.47e+029.91e+029.77e+02
Worst 2.22e+022.42e+021.06e+031.08e+031.07e+03
Mean 1.95e+022.14e+029.52e+029.76e+029.74e+02

1e5Best 8.75e+018.82e+013.00e+023.00e+023.00e+02
Median9.37e+019.69e+018.22e+028.24e+028.26e+02
Worst 1.13e+021.14e+029.51e+029.42e+029.59e+02
Mean 9.59e+019.73e+017.52e+027.51e+028.13e+02

Table 9: Error values for functions 16–20 for [14].

Function 21 22 23 24 25

1e3Best 1.22e+039.37e+021.25e+034.86e+025.53e+02
Median1.35e+031.10e+031.41e+037.22e+027.73e+02
Worst 1.40e+031.22e+031.45e+039.95e+029.74e+02
Mean 1.34e+031.09e+031.40e+037.63e+027.72e+02

1e4Best 9.42e+025.50e+021.03e+034.08e+024.10e+02
Median1.13e+037.95e+021.17e+034.12e+024.11e+02
Worst 1.14e+039.30e+021.20e+034.13e+024.13e+02
Mean 1.12e+037.43e+021.16e+034.11e+024.11e+02

1e5Best 5.00e+025.27e+025.59e+024.05e+024.05e+02
Median1.08e+037.29e+021.10e+034.06e+024.06e+02
Worst 1.09e+038.69e+021.11e+034.07e+024.07e+02
Mean 1.05e+036.59e+021.06e+034.06e+024.06e+02

Table 10: Error values for functions 21–25 for [14].

about the relationship between SoD’s parameters and its
behavior, it needs more study. (5) Finally, the integration
of SoD and ECGA works well on the standard benchmark
functions. Application of SoD to other PMBGAs should be
investigated in the future.

6. CONCLUSIONS
In the present work, we proposed an adaptive discretiza-

tion method, called Split-on-Demand (SoD), to enable the
PMBGAs or EDAs designed for handling bit-strings to tackle
real-parameter optimization problems. The procedure of
SoD was presented in detail, and the effect of SoD was dis-
played. As an example, we also demonstrated the way to in-
tegrate SoD into ECGA, named real-coded ECGA (rECGA),
and examined rECGA with a recently defined set of bench-
mark functions. The experimental results were compared
to that of other advanced methodologies and indicated that
rECGA work well on the set of test functions. After dis-
cussing the performance of rECGA on different test func-
tions, the future work to enhance SoD was presented.

SoD is designed and developed for adaptively discretizing
real number intervals to assist PMBGAs, EDAs, and other
algorithms to work on real numbers. SoD reflects the distri-
bution of the current population and encodes the real num-
bers in discrete codes as necessary. The usage of SoD makes
it easy to be applied to the existing algorithms designed for
the bit or integer representations. This paper shows that
SoD is simple and flexible, and the numerical results of the

1109

example rECGA indicate that developing SoD is a promis-
ing research direction. More work along this line needs to
be done. We will continue to work on SoD to enhance and
improve its capability and applicability.

7. ACKNOWLEDGMENTS
The work was partially sponsored by the National Sci-

ence Council of Taiwan under grant NSC-94-2213-E-009-
120. The authors are also grateful to the National Center
for High-performance Computing for computer time and fa-
cilities.

8. REFERENCES
[1] C. W. Ahn, R. S. Ramakrishna, and D. E. Goldberg.

Real-coded Bayesian optimization algorithm, bringing
the strength of BOA into the continuous world. In
Proceedings of the GECCO 2004 Genetic and
Evolutionary Computation Conference, pages 840–851,
2004.

[2] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley,
New York, 1989.

[3] D. E. Goldberg. The Design of Innovation: Lessons
from and for Competent Genetic Algorithms, volume 7
of Genetic Algorithms and Evoluationary
Computation. Kluwer Academic Publishers, June
2002. ISBN: 1-4020-7098-5.

[4] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic
algorithms: Motivation, analysis, and first results.
Complex Systems, 3(5):493–530, 1989. (Also TCGA
Report No. 89003).

[5] G. R. Harik. Linkage learning via probabilistic
modeling in the ECGA. IlliGAL Report No. 99010,
University of Illinois at Urbana-Champaign, Illinois
Genetic Algorithms Laboratory, Urbana, IL, 1999.

[6] J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
MI, 1975. ISBN: 0-262-58111-6.

[7] P. Larrañaga and J. A. Lozano. Estimation of
Distribution Algorithms: A New Tool for Evolutionary
Computation, volume 2 of Genetic algorithms and

evolutionary computation. Kluwer Academic
Publishers, Boston, MA, October 2001. ISBN:
0-7923-7466-5.

[8] J. Nelder and R. Mead. A simplex method for function
minimization. Computer Journal, 7:308–315, 1965.

[9] M. Pelikan, D. E. Goldberg, and F. G. Lobo. A survey
of optimization by building and using probabilistic
models. Computational Optimization and Applications,
21(1):5–20, 2002. (Also IlliGAL Report No. 99018).

[10] J. Rissanen. Stochastic Complexity in Statistical
Inquiry. World Science, 1989.

[11] M. Sebag and A. Ducoulombier. Extending
population-based incremental learning to continuous
search spaces. In Proceedings of the Fifth International
Conference on Parallel Problem Solving from Nature
(PPSN V), pages 418–427, 1998.

[12] I. L. Servet, L. Trave-Massuyes, and D. Stern.
Telephone network traffic overloading diagnosis and
evolutionary computation techniques. In Proceeings of
the Third European Conference on Artificial Evolution
(AE 97), pages 137–144, 1997.

[13] S.-Y. Shin and B.-T. Zhang. Bayesian evolutionary
algorithms for continuous function optimization. In
Proceedings of the 2001 Congress on Evolutionary
Computation (CEC2001), pages 508–515, 2001.

[14] A. Sinha, S. Tiwari, and K. Deb. A population-based,
steady-state procedure for real-parameter
optimization. In Proceedings of the 2005 Congress on
Evolutionary Computation (CEC2005), pages
514–521, 2005.

[15] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb,
Y.-p. Chen, A. Auger, and S. Tiwari. Problem
definitions and evaluation criteria for the CEC 2005
special session on real-parameter optimization.
Technical Report, Nanyang Technological University,
Singapore, May 2005.

[16] S. Tsutsui, M. Pelikan, and D. E. Goldberg.
Evolutionary algorithm using marginal histogram
models in continuous domain. IlliGAL Report No.
2001019, University of Illinois at Urbana-Champaign,
Illinois Genetic Algorithms Laboratory, Urbana, IL,
2001.

1110

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

